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ABSTRACT Estimating the minimal number of rank-1 tensors in the Canonical Polyadic Decomposition
(CPD), known as the canonical rank, is a challenging area of research. To address this problem, we propose
a method based on convex optimization to jointly estimate the CP factors and the canonical rank called
FARAC for joint FActors and RAnk canonical estimation for the PolyadiC Decomposition. We formulate
the FARAC method as a convex optimization problem in which a sparse promoting constraint is added to
the superdiagonal of the core tensor of the CPD, whereas the Frobenius norm of the offdiagonal terms is
constrained to be bounded. We propose an alternated minimization strategy for the Lagrangien to solve
the optimization problem. The FARAC method has been validated on synthetic data with varying levels of
noise, as well as on three real data sets. Compared to state-of-the-art methods, FARAC exhibits very good
performance in terms of rank estimation accuracy for a large range of SNR values. Additionally, FARAC
can handle the case in which the canonical rank exceeds one of the dimensions of the input tensor.

INDEX TERMS Rank and factors estimation, Canonical Polyadic Decomposition, convex optimization

I. INTRODUCTION

L arge amounts of data are usually generated by sensor
networks, massive experiment, simulations, etc. In a

very wide range of applications, data need more than two
dimensions for efficient description [2], [10], [28], [41]. To
represent such data, multidimensionnal arrays (a.k.a. tensors)
are suitable in order to capture complex interactions among
input features of data. Tensors can be seen as a generaliza-
tion of vectors (1st order tensors) and matrices (2nd order
tensors). The order of a tensor is its number of dimensions.
Various tensor decompositions exist to mitigate the curse of
dimensionality i.e. to avoid the exponential growth of storage
cost [3], [12], [18], [22], [29].
The most popular tensor decomposition is the Canon-
ical Polyadic Decomposition (CPD) [37]. The CPD is
widespreadly used in differents fields such as chemometrics,
telecommunications, blind source separation [16], [24], [26],
[27], [39]. CPD is particularly attractive owing to its unique-
ness property [1], [14]. However, the CPD requires knowl-
edge of the rank. Unfortunately, the problem of determining
the canonical rank is NP-hard [4].
In the present study, we propose estimating both the canon-

ical rank and the CP factors from noisy observations. We
give a formulation of the problem of interest as a convex
optimization problem. The reminder of the paper is organised
as follows:
First, we introduce some notations and preliminaries in mul-
tilinear algebra in section II. We then review some existing
works for the estimation of the canonical rank III. In section
IV, we describe our proposed approach and our algorithm
for solving the problem. As a final step, we do a number of
numerical experiments in section VI to evaluate and compare
our proposed approach with CORCONDIA (CORe CONsis-
tency DIAgnostic) method.

II. NOTATIONS AND ALGEBRAIC BACKGROUND
In this section, we recall some algebraic definitions on tensor
algebra from [37]:
Definition 1: (Inner product): The inner product of two N-
order tensors X ,Y ∈ RI1×···×IN is defined as:

⟨X ,Y⟩ =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

X (i1, . . . , iN )Y(i1, . . . , iN ).
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Definition 2: (Tensor Frobenius Norm): The norm of a tensor
X is defined as:

||X ||F =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

X 2(i1, . . . , iN ).

Definition 3: (n-mode multiplication) The n-mode product
of a tensor X ∈ RI1×···×IN with a matrix U ∈ RJ×In is a
tensor of order N and size I1 × . . . In−1 × J × · · · × IN as
shown by:

(X ×n U)(i1, . . . , in−1, i, in+1, . . . , iN ) =
In∑

in=1

X (i1, . . . , iN )U(i, in).

Definition 4: (Diagonal tensor) A tensor X ∈ RI1×···×IN

is diagonal if all of its entries are zero except thoes in its
superdiagonal, that is: X (i1, . . . , iN ) ̸= 0 only if i1 = i2 =
· · · = iN .
Definition 5: (Rank-one tensor) A tensor X ∈ RI1×···×IN of
order N is rank one if it can be written as the outer product
of N vectors:

X = u1 ◦ · · · ◦ uN :=
N

⃝
n=1

un, (1)

where un ∈ RIn with 1 ≤ n ≤ N .
Definition 6: (Unfolding) The n-mode unfolding of a tensor
X is a matrix denoted by X(n), whose columns are the n-
mode fibers of X .
Definition 7: (Tucker model) The Tucker decomposition
transforms a tensor X ∈ RI1×···×IN of multilinear ranks
(R1, . . . , RN ) using N factors Un ∈ RIn×Rn by a core
tensor G ∈ RR1×···×RN as follows:

X = G ×1 U1 · · · ×N UN := G
N
×n
n=1

Un

=

R1∑
r1

· · ·
RN∑
iN

G(r1, . . . , rN )u1,r1 ◦ · · · ◦ uN,rN ,

where un,r ∈ RIn is the r-th column of the n-th factor matrix
Un with 1 ≤ n ≤ N .
Definition 8: (CANDECOMP Decomposition (CPD)) A ten-
sor of order N and canonical rank R follows a CPD if it
admits a factorization as a sum of R rank-one tensors. The
CPD of a tensor X ∈ RI1×···×IN is given by:

X =

R∑
r=1

u1,r ◦ · · · ◦ uN,r =

R∑
r=1

N

⃝
n=1

un,r, (2)

CPD is a special case of the Tucker model where the core
tensor is diagonal and the multilinear ranks are all equal to
R. Hence, CPD in eq. (2) can be written in the Tucker format
as follows:

X = I
N
×n
n=1

Un.

Definition 9: (Tensor rank) The rank R of a tensor is defined
as the smallest number of components in an exact CPD.

We have the following upper bound on the maximum rank
(the largest attainable rank) for a 3-order tensor X ∈
RI1×I2×I3 [14]:

R ≤ min{I1I2, I1I3, I2I3}.

III. RELATED WORKS
Existing approaches for the canonical rank detection include:

• CORe CONsistency DIAgnostic (CORCONDIA) [33]
is a heuristic method for detecting the number of com-
ponents of the CP model. It measures the similarity
between the estimated core tensor from the ideal identity
core (called core consitency) for different CP models.
By analyzing the gap between the core consistency of
different CP models, it determines the correct number
of components. Taking the last model (starting with the
one-component model), whose core array is still similar
to the ideal diagonal tensor, gives the proper number
of components to use. CORCONDIA is intuitive and
has a simple approach. However, its computation is
prohibitive even for small tensors [8]. In addition, the
CORCONDIA method can not handle the case when
the canonical rank exceeds one of the dimensions of the
input tensor.

• A fast version of CORCONDIA was presented in [8]. It
suggests an efficient way to compute the CORCONDIA
diagnostic that takes advantage of sparse data and works
well as the tensor size grows. In cases where either
the tensor or the factors or both are sparse [8], their
algorithm significantly outperforms the state-of-the-art
baselines and scales well when the tensor size increases.
In the fully dense scenario, their proposed algorithm
is as good as the state of the art (The CORCONDIA
method) for rank estimation.

• Automatic Relevance Determination (ARD) [23] is a
Bayesian approach applied to the Tucker and CP mod-
els. In ARD, entries of CP factors are assigned a Gaus-
sian prior. The objective is to find the rank and the
CP factors by solving an l2−regularized CP decompo-
sition. By assigning priors to model hyperparameters
and learning the hyperparameters of these priors, ARD
reduces the excess of components and simplifies the
core structure.

• Detection of the number of components in CANDE-
COMP models via minimum description length (N-D
MDL) [17] is an extension of the minimum description
length (MDL) to the multilinear case for detecting the
number of components in a CP model using the gen-
eralized unfolding of the observation tensor. Under the
condition that the tensor rank is smaller than the size
of the most squared unfolded matrix, the generalized N-
D MDL criterion estimates the number of components
of the CPD. The drawback of the multilinear MDL
algorithm is that it fails to work when the tensor rank is
larger than the size of the most squared unfolded matrix
[17].
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• Using a Bayesian approach, [20] integrates the tensor
rank determination into the CPD. A scalable algorithm
is developed that processes mini batch data at a time by
incorporating stochastic optimization into the probalis-
tic tensor CPD.

• Automatic tensor rank estimation for nonnegative tensor
CPD is proposed in [19]. By interpreting the nonnega-
tive CPD using probability density functions, the prob-
lem is formulated as a statistical inference.

• The Gaussian-gamma prior was introduced in [21]
within a Bayesian framework in the context of prob-
abilistic CPD modeling for automatic rank determina-
tion.

• The GSL-CP method proposed in [40] estimates the
rank as well as the loading matrices of the decomposed
tensor. Without knowing the expected rank, the CPD is
computed by promoting group sparsity of the loading
matrix in orthonormal subspace.

• The canonical rank of a tensor is estimated in [6] using
an improved version of MDL (iMDL).

• Tensor learning models for regression are proposed
in [38]. In their regularization process, they employ
the group-sparsity norm, which promotes a low-rank
decomposition of the CP core as well as automatic
selection of the rank during the learning procedure.

• Using orthogonal CPD, [30] views the superdiagonal
of the CP core as analogous to the vector of singular
values. To determine the rank of an incomplete tensor,
they integrate a regularization with the CP-based tensor
nuclear norm.

• The method proposed in [25] is based on convolutional
neural networks (CNN) with a pre-decomposition using
CPD providing rank-one components to the CNN.

In short, state-of-the-art methods use either Bayesian ap-
proaches, propose rank estimation within a learning frame-
work, or use too restricting constraints like factor orthogo-
nality. In contrast to existing methods, the proposed method
belongs to the family of deterministic parameter estimators.

IV. PROPOSED METHOD (FARAC)
The purpose of this section is to present the method FARAC
for estimating the canonical rank and the CP factors simul-
taneously. This is accomplished by minimizing the super-
diagonal of the core tensor using the l0 norm as an objective
function, as well as adding a constraint on the reconstruction
error and an another one on the offdiagonal terms by allowing
them to be non-zero but bounded. Our goal is to find a CP
core tensor structured as shown in Fig. 1. The canonical rank
is the number of strictly positive and ordered values of the
tensors’ superdiagonal 1.
In the following, G denotes the CP core tensor, λ its super-
diagonal and G̃ is defined according to:

G = diag(λ) + G̃,

1The sign of the superdiagonal entries can always be absorbed into the
factors.

FIGURE 1. CP core tensor G of a rank-R tensor of order 3 and size R0 with
λ1 > · · · > λR > 0 .

where diag(λ) is a diagonal tensor whose superdiagonal is λ.
Our optimization problem can then be expressed mathemati-
caly as follows:

minimize
G,(Un)n

||λ||0,

subject to
1

2

∣∣∣∣∣∣∣∣X − G N
×n
n=1

Un

∣∣∣∣∣∣∣∣2
F

≤ ϵ1,

1

2

∣∣∣∣∣∣G̃∣∣∣∣∣∣2
F
≤ ϵ2,

(3)

where ϵ1 and ϵ2 are small positive constants. Unlike existing
methods that estimate the canonical rank, we do not constrain
the CP factors to be orthogonal [11], [13]. However, since
minimizing the l0 norm is NP-hard [5], we minimize the l1
norm of λ. Eq. (3) becomes:

minimize
G,(Un)n

γ1||λ||1,

subject to
1

2

∣∣∣∣∣∣∣∣X − G N
×n
n=1

Un

∣∣∣∣∣∣∣∣2
F

≤ ϵ1,

1

2

∣∣∣∣∣∣G̃∣∣∣∣∣∣2
F
≤ ϵ2,

(4)

where γ1 is a strictly positive hyper-parameter.

A. DERIVATION OF OUR APPROACH (FARAC)
In this section, we present the proposed approach for solving
the optimization problem with constraints in eq. (4). Recall
that the Lagrangien function is the augmented objective
function by the constraint equations using the Lagrangien
multipliers. Following this, the Lagrangien function of the
problem in eq. (4) is given by:

LG,{Un} =

γ1||λ||1+
γ2
2

(∣∣∣∣∣∣∣∣X − G N
×n
n=1

Un

∣∣∣∣∣∣∣∣2
F

− ϵ1

)
+
γ3
2

(∣∣∣∣∣∣G̃∣∣∣∣∣∣2
F
− ϵ2

)
,

(5)

where γ2 and γ3 are two strictly positive Lagrange multipli-
ers. According to the Lagrangien method [35], LG,{Un} is
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minimized with respect to {Un}n, G̃ and λ. To do that, we
will proceed iteratively. We first minimize LG,{Un} w.r.t the
n-th CP factor Un at each iteration, assuming the remaining
factors and G are known. This is a classical linear regression
problem. Following that, we minimize LG,{Un} w.r.t G̃ using
the factors {Un}n from the previous step. The convexity w.r.t
G̃ is demonstrated in Appendix B. Then, we update G̃ using
the Adam optimizer [7]. Finally, we minimize LG,{Un} w.r.t
λ, which is also a convex optimization problem as shown in
Appendix B. Its solution is given by the soft thresholding
operator [34] using the current updates of G̃ and {Un}n.
The final expressions of the exact solutions of CP factors,
the gradient of the Lagrangien w.r.t the G̃ and the formula to
update the superdiagonal of G are given below. Details of the
computations can be found in Appendix A.

• CP factors Un:

Un = X(n)

 l=1⊗
l=N

l ̸=n

Ul

GT
(n)

 l=1⊗
l=N

l ̸=n

(
UT
l Ul

)−1

 . (6)

• Gradient of LG,{Un} w.r.t the offdiagonals of G i.e
G(r1, . . . , rN ) such that r1 ̸= r2 or . . . or rN−1 ̸= rN :

[∇G̃(LG,{Un})](r1, . . . , rN ) =

− γ2

I1∑
i1=1

· · ·
IN∑
iN

A(i1, . . . , iN )[
N∏

n=1

Un(in, rn)

]
+ γ3G̃(r1, . . . , rN ), (7)

where A = X − G
N
×n
n=1

Un.

• Formula for updating the superdiagonal of G:

λl = S γ1
γ2

(
−
〈 N

⃝
n=1

un,l,

R0∑
r=1
r ̸=l

λr

N

⃝
n=1

un,l

〉
+

〈
X − G̃

N
×n
n=1

Un,
N

⃝
n=1

un,l

〉)
,

(8)

where S γ1
γ2

is the soft thresholding operator [34] defined
as follows:

Sµ(x) =

 x− µ if x > µ
0 if |x| ≤ µ
x+ µ if x < −µ

(9)

The whole algorithm of our derived approach is described in
Algorithm 1.

V. COMPLEXITY ANALYSIS
• We evaluate the complexity of Algorithm 1 by taking

into consideration the SVDs in the initialization and
the main parts of the algorithm, as the computations of

Algorithm 1: Joint FActors and RAnk Canonical
estimation for the Polyadic decomposition (FARAC)

Input: X ∈ RI1×...IN : CP Tensor,
R0: Upper bound of the rank of X .

Require: α: Stepsize;
β1, β2 ∈ [0, 1]: Exponential decay rates;
T : Maximum number of iterations
ϵ = 10−8: Parameter to avoid numerical
instability.

Initialize: For 1 ≤ n ≤ N :

U (0)
n =


svd(X(n), R0) if In > R0,
conc

(
svd(X(n), R0),

(R0 − In)random uniform vectors
)

else.

• G(0) ∼ U(0, 1) of order N and size (R0, . . . , R0).
• m

(0)

G̃ = v
(0)

G̃ = 0 (Initialize the first and the second
moment estimates ).

for t = 1, . . . , T :

1: Compute Un
(t) from eq. (6).

2: Compute the gradients of LG,{Un} w.r.t G̃ using (7).
3: Update biased first moment estimate of the offdiags:

m
(t)

G̃ ← β1m
(t−1)

G̃ + (1− β1)∇(t)

G̃ .

4: Update biased second raw moment estimate of the
offdiags:

v
(t)

G̃ ← β2v
(t−1)

G̃ + (1− β2)∇2(t)

G̃ ,

5: Compute bias-corrected first and second moment
estimates of the offdiags:

m̂
(t)

G̃ ←
m

(t)

G̃
1− βt

1

; v̂
(t)

G̃ ←
v
(t)

G̃
1− βt

2

,

6: Update G̃ :

G̃(t) ← G̃(t−1) − α
m̂

(t)

G̃√
v̂
(t)

G̃ + ϵ
.

7: Update the superdiagonal of G using eq. (8):

λ
(t)
l = S γ1

γ2

(
−

〈
N

⃝
n=1

u(t)
n ,

R0∑
r=1
r ̸=l

λ(t)
r

N

⃝
n=1

u(t)
n

〉
+

〈
X − G̃

N
×n
n=1

U (t)
n ,

N

⃝
n=1

u(t)
n

〉)
,

where S γ1
γ2

is defined in eq. (9).

end for
CP-rank: Number of non-zero values of the
superdiagonal of G.
CP factors: Columns of U (T )

n with indices of
non-zero values of the superdiagonal of G
Returns: [CP-rank, CP factors]
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FIGURE 2. Accuracy of rank estimation of a tensor of size 5 × 5 × 5 w.r.t the
threshhold parameter. The true rank is R = 2 and R0 = 5.

SNR [db] 15 20 25 30 35 40
Accuracy [%] 72 77 87 91 96 100

TABLE 1. Accuracy of FARAC w.r.t SNR for a tensor of a noisy tensor Xnoise
of size 5 × 5 × 5. The true rank is R = 6 and R0 = 7.

the different gradients and the shrinkage operator. The
complexity is evaluated as follows:

O

((
N∑

n=1

In

)
R2

0 + T

[
N +

(
N∑

n=1

In

)
R0

+

(
N∏

n=1

In

)(
N +R0 +NRN−1

0

) ])
, (10)

where T is the number of iterations.
• If I = max(I1, . . . , IN ), then the complexity in eq. (10)

becomes:

O
(
IR2

0 + T
(
N + IR0 + I(N +R0 +NRN−1

0 )
))

.

VI. NUMERICAL EXPERIMENTS
All the experiments are conducted on a computer with an
Intel Core i7 9th generation 2.6 GHz processor and 32 Go
RAM memory running Windows 10.
It should be noted that the gradients’ computations are auto-
matically done on the Tensorflow framework [9]. The learn-
ing rate and the exponential decay rates used in the Adam
optimizer are all equal to their default values (α = 0.001,
β1 = 0.09, β2 = 0.0999).

A. NUMERICAL SIMULATIONS
1) Synthetic data
We create a synthetic rank-R real valued tensorX of order N
using the CP model. The CP factors are derived from a single
realization of the normal standard distribution. B is a zero

FIGURE 3. Convergence curve of the mean reconstruction error using the
Relative Square Error (RSE) along iterations using FARAC. We used a noisy
tensor Xnoise with a size of 5 × 5 × 5 and an SNR of 25db. The threshold
parameter is equal to 0.02.

FIGURE 4. The mean principal angle between the three subspaces spanned
by CP factors along iterations using our method. We used a noisy tensor
Xnoise with a size of size 5 × 5 × 5 and an SNR of 25db. The threshold
parameter is equal to 0.02.

mean, unit variance and white noise. Our noisy data tensor is
given by:

Xnoise = X ′ + σB′, (11)

where X ′ = X
||X||F and B′ = B

||B||F . Hence, the SNR will be
calculated using the following formula:

SNR = −10 log10 σ2 ∈ [0 db, 40 db].

FARAC has been runed on a rank-2 tensor X with size
I × I × I where R0 = I = 5. Experiments are conducted
on a tensor with these parameters until other settings are
indicated. Similar results are obtained for tensors with other
orders and sizes. By using X and eq. (11), we generate 100
noisy realisations of the inpout tensor. Accuracy is defined
as the proportion of realizations where the estimated rank is
accurate.

VOLUME 4, 2022 5



FIGURE 5. FARAC Vs. CORCONDIA accuracy w.r.t SNR for a tensor of a
noisy tensor Xnoise with SNR values ranging from 0db to 40db. Xnoise is of size
5 × 5 × 5. Different CP models with a rank ranging from 1 to 5 are used to fit
CORCONDIA. R = 2 is the true rank.

FIGURE 6. Accuracy of rank estimation of a noisy tensor Xnoise with different
low SNR values ranging from 0db to 10db using FARAC. The size of Xnoise is
5 × 5 × 5. The used large bound of rank used is R0 = 5, while the true rank
is R = 2.

2) Real datatsets
• Amino acid fluorescence: As described in [31], the

data set includes the excitation and emission spectra
of five samples of different concentrations of tyrosine,
tryptophane and phenylalanine, forming a tensor of 5
(samples) × 51 (excitation) × 201 (emission). This
dataset can be described by a rank-3 CP model.

• Sugar process data [32]: The dataset contains 265 sam-
ples that can be arranged in an IJK three-order ten-
sor of size 265 × 571 × 7. The first mode relates to
samples, the second to emission wavelengths, and the
third to excitation wavelengths. The (ijk)-th element of

FIGURE 7. The CORCONDIA approach’s accuracy for a noisy tensor Xnoise.
SNR values range from 0db to 5db. The size of Xnoise is 5 × 5 × 5. Different
CP models with a rank ranging from 1 to 5 are used to fit CORCONDIA.
R = 2 is the true rank.

FIGURE 8. Convergence losses of FARAC on the Amino acid and the Dorrit
fluorescence datasets (top) with rank estimation over iterations (bottom).

this tensor, X (i, j, k), represents the measured emission
intensity from sample i, excited at wavelength k, and
measured at wavelength j. This dataset is modeled by a
rank-4 CP model.

• Dorrit fluorescence data [15]: Fluorescence spectrome-
ter was used to measure 27 synthetic samples containing
different concentrations of four analytes (hydroquinone,
tryptophan, phenylalanine and dopa). Each fluorescence
landscape corresponds to 233 emission wavelengths and
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FIGURE 9. Convergence loss of FARAC (top) and rank estimation (bottom) on
the sugar process dataset over iterations .

24 excitation wavelengths. A rank-4 CP model is used
to model this dataset, which is represented as a tensor of
size 27× 233× 24.

B. RESULTS
1) Synthetic data

• Accuracy of estimated ranks using the proposed ap-
proach is illustrated in Fig. 2. We can clearly see that
the FARAC approach can estimate the exact canonical
rank while being robust to the choise of the threshold
parameter.

• Fig. 3 depicts the convergence curves of the proposed
method in terms of the Reconstruction Square Error
(RSE) at each iteration t, which is given by:

||Xnoise −X (t)||F
||Xnoise||F

.

We can see that the reconstruction error quickly de-
creases to zero w.r.t iterations.

• The recovery of the CP factors is shown in Fig. 4
by checking the subspace error. This can be done by
computing the principal angle [36] between the true
subspaces and the estimated ones at each iteration t:

θ(t) = arcsin
(√

2||UnU
†
n − Û (t)

n Û (t)†
n ||F

)
,

where Un and Û
(t)
n are the exact and the estimated fac-

tors at iteration t, respectively. We see that the principal

angle between the subspaces of the three CP factors
converges to a low value with respect to iterations.

• In Fig. 5, we compare the FARAC method with COR-
CONDIA with respect to SNR values. We can see that
FARAC clearly outperforms the state-of-the-art method
for large range values of SNRs.

• In Table 1, we show the accuracy of the rank estimation
using FARAC when the true rank exceeds one of the
dimensions of the input tensor. As we can see, FARAC
can handle this difficult scenario for a large range of
SNR values. The CORCONDIA approach, on the other
hand, is ineffective in that situation [17].

• According to Fig. 6, at very low SNR, FARAC tends to
overestimate the true rank. In contrast, rank estimation
using the CORCONDIA method becomes a very diffi-
cult task at low SNR according to Fig. 7.

Compared with the state-of-the-art method, FARAC shows
very good performance in terms of the accuracy of rank
estimation for large range of values of SNRs while being
robust to the choise of the threshold parameter. FARAC also
handles the difficult case where the rank is bigger than one of
the dimensions of the input tensor.

2) Real datasets
• In Fig. 8 and 9, we present the convergence loss of

FARAC, as well as the rank estimation over iterations on
the amino acid fluorescence, the dorrit fluorescence and
the sugar process datasets. As shown in these figures,
the rank is well estimated for the three real datasets.
The threshold parameter is selected so that the curve
of the reconstruction loss exhibits good convergence
properties. Based on the noise level, one can use a grid
search over the range of values [0.1, 0.01, 0.001]. It is
important to note that the FARAC method is robust to
the choice of the threshold as shown in Fig. 2. For the
amino and dorrit fluorescence datasets, the threshold
parameter used is equal to 0.01; for the sugar process
dataset, it is equal to 0.001.

VII. CONCLUSION

We have addressed in this work the challenging problem
of the canonical rank estimation by defining it as a convex
optimization problem. The proposed method, called FARAC
jointly estimates the canonical rank and the CP factors. We
have compared FARAC to the well-known CORCONDIA
method and found that FARAC is much more accurate. We
have also shown that FARAC shows strong robustness to the
choice of the threshold parameter and can handle the difficult
case when the rank exceeds one of the dimensions of the
tensor, unlike the CORCONDIA method. Last but not least,
we illustrate the efficiency of the FARAC method on real
datasets.
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A. DETAIL COMPUTATIONS FOR THE DERIVATION OF
FARAC
Let us recall the Lagrangien of the problem (4) that we want
to minimize w.r.t (Un)n, G̃ and λ:

LG,{Un} =

γ1||λ||1+
γ2
2

(∣∣∣∣∣∣∣∣X − G N
×n
n=1

Un

∣∣∣∣∣∣∣∣2
F

− ϵ1

)
+
γ3
2

(∣∣∣∣∣∣G̃∣∣∣∣∣∣2
F
− ϵ2

)
,

• We denote by LUn
, the part of LG,{Un} which depends

only on Un.

LUn =
γ2
2

∣∣∣∣∣∣∣∣X − G N
×n
n=1

Un

∣∣∣∣∣∣∣∣2
F

(12)

The matricized form of eq. (12) is given by:

LUn =

∣∣∣∣∣
∣∣∣∣∣X(n) − UnG(n)

 l=1⊗
l=N

l ̸=n

UT
l

∣∣∣∣∣
∣∣∣∣∣
2

F

,

In contrast to the derivation of a classical CPD, G(n) is
not the identity matrix.
The gradient of LUn w.r.t Un can be calculated as in a
traditional matrix linear regression problem:

∇Un
(LG,{Un}) =

γ2

−X(n)

 l=1⊗
l=N

l ̸=n

Ul

GT
(n) + Un

 l=1⊗
l=N

l ̸=n

UT
l Ul


 .

We set ∇Un
(LG,{Un}) to 0 and get the exact formula of

Un:

Un = X(n)

 l=1⊗
l=N

l ̸=n

Ul

GT
(n)

 l=1⊗
l=N

l ̸=n

(
UT
l Ul

)−1

 .

• The part of LG,{Un} that depends only on G̃ is denoted
by LG̃ :

LG̃ =

γ2
2

∑
i1,...,iN

(
X (i1, . . . , iN )−

(
G

N
×n
n=1

Un

)
(i1, . . . , iN )

)2

︸ ︷︷ ︸
A2(i1,...,iN )

+
γ3
2

∑
r1,...,rN

G̃2(r1, . . . , rN )

Let us deriveLG̃ with respect to G̃(r1, . . . , rN ) such that
r1 ̸= r2 or . . . or rN−1 ̸= rN (diagonal elements are
excluded since they are equal to 0):

[∇G̃LG̃ ](r1, . . . , rN ) =

− γ2
∑

i1,...,iN

A(i1, . . . , iN )

(
N∏

n=1

Un(in, rn)

)
+

γ3G̃(r1, . . . , rN ). (13)

• We want to derive LG,{Un} w.r.t λ. Let us first rewrite it
as follows:

LG,{Un} = γ1||λ||1+
γ2
2

∣∣∣∣∣∣∣∣X − (G̃ + diag(λ)
) N
×n
n=1

Un

∣∣∣∣∣∣∣∣2
F

+
γ3
2

∣∣∣∣∣∣G̃∣∣∣∣∣∣2
F
,

= γ1||λ||1 +
γ2
2

∣∣∣∣∣∣ (X − G̃ N
×n
n=1

Un

)
−

R0∑
r=1

λr

N

⃝
n=1

un,r

∣∣∣∣∣∣2
F
+

γ3
2

∣∣∣∣∣∣G̃∣∣∣∣∣∣2
F

• We denote by Lλ, the part of LG,{Un} which depends
only on λ. Lλ is given as follows:

Lλ = γ1||λ||1 +
γ2
2

(∣∣∣∣∣
∣∣∣∣∣
R0∑
r=1

λr

N

⃝
n=1

un,r

∣∣∣∣∣
∣∣∣∣∣
2

F

− 2

〈
X − G̃

N
×n
n=1

Un,

R0∑
r=1

λr

N

⃝
n=1

un,r

〉
+

∣∣∣∣∣∣∣∣X − G̃ N
×n
n=1

Un

∣∣∣∣∣∣∣∣2
F

)

= γ1

|λl|+
∑
r ̸=l

|λr|

+
γ2
2

(∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
R0∑
r=1
r ̸=l

λr

N

⃝
n=1

un,r

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

F

+ λ2
l

∣∣∣∣∣∣∣∣ N

⃝
n=1

un,l

∣∣∣∣∣∣∣∣2
F

+ 2

〈
λl

N

⃝
n=1

un,l,

R0∑
r=1
r ̸=l

λr

N

⃝
n=1

un,r

〉

− 2

〈
X − G̃

N
×n
n=1

Un,

R0∑
r=1
r ̸=l

λr

N

⃝
n=1

un,r

〉

− 2

〈
X − G̃

N
×n
n=1

Un, λl

N

⃝
n=1

un,l

〉
+∣∣∣∣∣∣∣∣X − G̃ N

×n
n=1

Un

∣∣∣∣∣∣∣∣2
F

)
. (14)
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Let us derive Lλ with respect to λl and set it to 0.

∇λl
(Lλ) = 0

⇔ γ1
∂|λl|
λl

+ γ2

(
λl

∣∣∣∣∣∣∣∣ N

⃝
n=1

un,l

∣∣∣∣∣∣∣∣2
F

+

〈
N

⃝
n=1

un,l,

R0∑
r=1
r ̸=l

λr

N

⃝
n=1

un,r

〉

−
〈
X − G̃

N
×n
n=1

Un,
N

⃝
n=1

un,l

〉)
= 0

⇔ λl +
γ1

γ2||
N

⃝
n=1

un,l||2

∂|λl|
∂λl

=

− γ2

〈
N

⃝
n=1

un,l,

R0∑
r=1
r ̸=l

λr

N

⃝
n=1

un,r

〉

+ γ2

〈
X − G̃

N
×n
n=1

Un,
N

⃝
n=1

un,l

〉
. (15)

Furthermore, we have the following:∣∣∣∣∣∣∣∣ N

⃝
n=1

un,l

∣∣∣∣∣∣∣∣2 =

N∏
n=1

||un,l||2 .

Since un,l are unit vectors, we have
∣∣∣∣∣∣∣∣ N

⃝
n=1

un,l

∣∣∣∣∣∣∣∣2 = 1.

Hence we find the following:

λl +
γ1
γ2

∂|λl|
∂λl

=−

〈
N

⃝
n=1

un,l,

R0∑
r=1
r ̸=l

,

λr

N

⃝
n=1

un,r

〉
+

〈
X − G̃

N
×n
n=1

Un,
N

⃝
n=1

un,l

〉
As a result, the value of λl can be computed using the
soft threshholding operator S γ1

γ2

[34]:

λl = S γ1
γ2

(
−

〈
N

⃝
n=1

un,l,

R0∑
r=1
r ̸=l

λr

N

⃝
n=1

un,r

〉
+

〈
X − G̃

N
×n
n=1

Un,
N

⃝
n=1

un,l

〉)

B. CONVEXITY
In this section, we will demonstrate that the Lagrangien in
eq. (14) is convex w.r.t to λ and G̃ so that the global minimum
will be reached. To do that, we will show that the hessian w.r.t
λ and G̃ are positive semi-definite matrices.

• Convexity w.r.t λ:
Let Hλ be the hessian of LG,{Un} w.r.t λ. Using the
gradient computed in eq. (15), we have:

Hλ(s, l) :=
∂2LG,{Un}

∂λs∂λl
= γ2

〈
N

⃝
n=1

un,l,
N

⃝
n=1

un,s

〉
.

Let x ∈ RR0 ,

xTHλx = γ2
∑
l,s

xl xs

〈
N

⃝
n=1

un,l,
N

⃝
n=1

un,s

〉

= γ2

〈∑
l

xl

N

⃝
n=1

un,l,
∑
s

xs

N

⃝
n=1

un,s

〉

= γ2

∣∣∣∣∣
∣∣∣∣∣∑

l

xl

N

⃝
n=1

un,l

∣∣∣∣∣
∣∣∣∣∣
2

≥ 0,

since γ2 is a positive Lagrange multiplier.
• Convexity w.r.t G̃:

We first place the elements G̃(r1, . . . , rN ) in a vector
x ∈ RR0

N−R0 and use the same method as for λ.
Let HG̃ be the hessian ofLG,{Un} w.r.t G̃. Using (13), we
compute the second derivates ofLG,{Un}. The following
derivatives are done only on the offdiagonals of G̃ since
its diagonal is zero.

HG̃(r1 . . . rN , r′1 . . . r
′
N ) :=

∂2LG,{Un}

∂G̃(r1, . . . , rN )∂G̃(r′1, . . . , r′N )

= γ2
∑

i1,...,iN

[
N∏

n=1

Un(in, r
′
n)

][
N∏

n=1

Un(in, rn)

]
+γ3.

Let x ∈ RR0
N−R0 ,

xTHG̃x =

γ2
∑

i1,...,iN

∑
rn

[
N∏

n=1

Un(in, rn)

]
︸ ︷︷ ︸

Z(i1,...,iN )

∑
r′n

[
N∏

n=1

Un(in, r
′
n)

]
︸ ︷︷ ︸

Z(i1,...,iN )

+ γ3x
Tx

= γ2||Z||2 + γ3||x||2 ≥ 0,

since γ2 and γ3 are strictly positive values.
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