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Abstract
Properties of Al/TiB2 heterophase interfaces are investigated by means of atomic-scale

calculations. Focusing on practically important (111)Al // (0001)TiB2
basal interfaces, our

study allows to clarify various ambiguities present in the literature when calculating coherent
interface energies in non-binary systems: (i) while neglected in earlier works on Al/TiB2,
elasticity effects are properly taken into account, (ii) a critical point determining interface
stability being related to chemical potentials in ordered compounds, their ranges of values
are determined by a careful analysis ensuring TiB2 stability and absence of undesired other
phases, and (iii) comparing different simulation systems leads to conclude that periodic
boundary conditions should be preferred to free surface ones, frequently used in earlier
studies. This work is the first attempt to bring the improvements (i) to (iii) in the same
methodology and allows to obtain more realistic values of coherent interface energies than
those previously available in the literature.

1 Introduction

Due to their beneficial strength/weight ratio, aluminium alloys are of high interest in many
areas such as aeronautics, automotive or cutting tools industries. The properties of Al alloys are
enhanced by addition of TiB2 [1–3], a compound characterized by a high melting point (3173 K),
hardness (2500 HV) and Young modulus (565 GPa). A recent experimental study [2] revealed
that 7075 Al alloys reinforced by TiB2 nanoparticles present a total elongation to failure of
around 15% and a tensile strength of 677 MPa, namely higher than previously measured [4–9].
It was suggested [2] that these improved properties are related to the atomic structure of the
Al/TiB2 basal interfaces frequently present in the microstructure. Various misfit dislocation
densities have been reported at Al/TiB2 interfaces, depending on the orientation of the TiB2
facet. Indeed, (0001)TiB2 basal facets present a moderate misfit (6.27%), while misfits are much
higher (≥ 30%) for (011̄1)TiB2 pyramidal and (011̄0)TiB2 prismatic facets, a feature associated
respectively with coherent and semi-coherent Al/TiB2 interfaces. This dependence of the
degree of coherency on interface orientation is likely to induce intricate interface properties.
They are frequently investigated by means of atomic-scale simulation and modelling, since these
approaches conveniently allow to estimate interface structures and excess (free) energies, the
latter being key-parameters for interface stability.
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While such atomic-scale investigations are relatively straightforward for stress-free incoherent
interfaces (e.g. grain boundaries...), the level of intricacy raises significantly in the case of
coherent interfaces, because the excess energy then not only reflects local interface effects,
but must also include an elastic contribution due to the deformation of both phases induced
by coherency. While a reduced panel of heterophase coherent interfaces have already been
investigated from theory and simulation [10], it should be noted that considerable ambiguities
still currently exist among these available studies. Considering first binary systems to which the
majority of these works were devoted, these studies can be divided into two groups, depending
on the treatment of elasticity effects. As regards works ignoring elasticity, the earliest one is
related to Al/Al2Cu-θ′ interfaces [11] . Their energies were determined by molecular dynamics
with a modified-embedded-atom method (MEAM) potential and periodic boundary conditions
(PBC), leading to energies equal to 156 and 694 mJ/m2 for coherent and semi-coherent interfaces
respectively. Similarly, Ni/Ni3Al coherent interfaces with a 1.3% mismatch were studied using
molecular dynamics with EAM potentials [12] and PBC systems. Coherent interface energies
in Ni/Ni3Al were found to lie in the range 290-312 mJ/m2, two terminations (namely either
pure Ni or mixed Ni-Al) were possible for the Ni3Al side of the interface, leading to ambiguities
on the possible interface configurations. Turning towards works on binary systems in which
elasticity effects were taken into account, they adopted the same approach, namely subtracting
the elastic part to the excess energy in PBC multilayered systems. In this context, the Al/Al2Cu-
θ′ system, with 0.68% and 5.1% mismatch for coherent and semi-coherent interfaces [13,14], was
investigated by ab initio calculations, and interface energies respectively equal to 235 and 615
mJ/m2 were found. To conclude this survey of coherent interfaces in binary systems, metal-
hydride Zr/H-Zr interface energies were also determined by ab initio calculations. For the fully
coherent γ′ (ZrH) hydride, the basal (respectively prismatic) interface energy was assessed at
65 mJ/m2 (respectively 35 mJ/m2) while for the ζ phase, the prismatic interface energy was
of 35 mJ/m2 and the basal one very close to 0 [15]. All these values were quite low, certainly
due to the fact that these phases and the Zr matrix have close crystallographic structures. A
similar study was performed with the γ-ZrH compound [16]. Since it is tetragonal, it forms
basal coherent interfaces with the matrix, but contains a network of Shockley partials in its
semi-coherent prismatic interfaces. The obtained energies were in the range 170-200 mJ/m2 and
700-750 mJ/m2 for the coherent and semi-coherent cases respectively.

When tackling interfaces in non-binary systems, one is faced with a somewhat more intricate
situation, especially visible for aspects related to thermodynamics, the presence of (at least) three
chemical elements and only two phases making it difficult to settle precisely the equilibrium to
which the interface should be subjected. Due to this complexity, only few non-binary coherent
interfaces have been concerned with atomic-scale simulation studies up to now, namely (to the
authors’ knowledge) Al/Mg5Si6, Al/SiO2, Mg/TiB2 and Al/TiB2 [17–21]. For Al/Mg5Si6,
the methodology adopted was mostly similar to that followed in earlier works on binary cases,
at least those including proper separation of strain and interface energies. On the other hand,
the thermodynamic treatment was simplified by restrictive use of simulation systems containing
integer numbers of Mg5Si6 unit cells. While this assumption offers the advantage that interface
energies become independent of alloy composition, it may imply in general that the selected
interface configurations are insufficiently optimized. To overcome this difficulty, a slightly different
approach was employed in previous works on TiB2 or SiO2. Considering for instance TiB2, since
the stability of this ordered compound depends on the Ti and B chemical potentials, usually
unknown in practice, these quantities were therefore kept as control parameters, constrained
to lie within an interval consistent with TiB2 stability. While this framework, employed for
all previous works on Al/SiO2, Mg/TiB2 and Al/TiB2 [18–21], is rigorous and general, its
practical interest is however somewhat reduced by the fact that it no longer provides single values,
but only ranges with significant widths, for interface energies, making it difficult to determine
which interface configuration should be preferred in each case. Apart from thermodynamics,
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several debatable questions should be pointed out in these earlier works on coherent interfaces
in Al/SiO2, Mg/TiB2 and Al/TiB2. Concerning interfaces in Al/SiO2, in the single earlier
study available [18], using ab initio calculations and free surface conditions (FSCs), the low
mismatch (1%) in this system led the authors to assume that the elastic contribution can be
completely ignored, an assumption which however should deserve further checking. Moreover,
this work contains other unresolved issues, related to the termination of the SiO2 side of the
interface: three kinds of terminations (Si, one-O or two-O) being a priori possible, only the one-
O termination was considered (for tractability reasons) in the interface study, a choice however
questionable because the SiO2 (0001) surface with two-O termination was pointed out as the most
stable one in the same study. Depending on the O chemical potential, coherent interface energies
in Al/SiO2 were found to lie in the range 1.35-1.44 J/m2. As concerns a similar work performed
recently on Mg/TiB2 [19] using ab initio calculations and FSC systems, the authors considered
two possible terminations (either Ti or B) for the TiB2 side, resulting in interface energies in the
range 1.65-5.08 J/m2. As for Al/SiO2, the contribution of elasticity was not taken into account,
although the Mg/TiB2 interfaces were supposed fully coherent with a significant mismatch
(5.6%). Considering the last non-binary system investigated hitherto, namely Al/TiB2, similar
coherent interface energy calculations are reported in two studies relying both on FSC systems,
leading to values in the range 1.03− 3.23 J/m2 [20] and 1.00− 2.86 J/m2 [21]. It is worth
noting that, in the first [20] of these two works on Al/TiB2 interfaces, the simulation systems
used involved a single interface (together with Al and TiB2 free surfaces, i.e boundary conditions
labelled FSC1 below), contrary to the second work [21] which involved two non-identical interfaces
(with only Al free surfaces, i.e. boundary conditions labelled FSC2 below), questioning the
validity of the resulting Al/TiB2 interface energies. Most noticeably, in all these earlier works
devoted to Al/SiO2, Mg/TiB2 and Al/TiB2, interface energies were never found lower than
1000 mJ/m2, i.e. a surprisingly high energy bottom level for coherent interfaces.

This illustrates the difficulty to consider exhaustively all the possible interfaces in both
binary and non-binary systems. However, some works attempted to reduce this complexity
with some assumptions on nucleation. Works on the properties of Al/TiB2 interfaces have been
performed [22, 23] in which Al was melted by ab initio molecular dynamics calculations. The
authors of both studies compared two simulations depending on the termination of TiB2 (Ti-
terminated or B-terminated) and investigated the structural properties of these interfaces. They
drew the same conclusions, namely that Ti-terminated surface possesses a better layering order
of Al toward its crystallization state than B-terminated surface suggesting that Ti-terminated
surface is more favorable to Al nucleation. In another work [24], it is reported that the Ti-
terminated surface of TiB2 is guaranteed by a Ti-rich chemical potential in the system suggesting
that Al/TiB2 interfaces could be studied in Ti-rich conditions.

To sum up, this overview of the previous works dedicated to atomic-scale simulations of
coherent interfaces emphasizes several methodological issues as well as ambiguities on the predicted
interface properties. Concerning more specifically our subject of interest in this work, namely
the Al/TiB2 basal interfaces previously investigated in the couple of works [20,21], these issues
can be listed as follows:

1. Elasticity was not taken into account in these works.

2. As a consequence, abnormally high energies were proposed for coherent interfaces in Al/TiB2.

3. There are ambiguities on the selection and geometrical analysis of interface configurations.

4. Different kinds of boundary conditions (PBC or FSC) were used to perform the simulations,
leading to somewhat conflicting results, and without any information on the respective
merits of either choice.
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Table 1. Geometrical configurations of Al/TiB2 basal interfaces (with α=Al and β=TiB2).
FCC Al has an ABC stacking sequence while HCP TiB2 possesses an AB* stacking sequence,
B* indicating positions B and C.

Configuration Stacking sequence
I1 AαBαCαAα / Aβ{Bβ+Cβ}Aβ
I2 CαAαBα / Aβ{Bβ+Cβ}Aβ
I3 BαCαAαBαCα / Aβ{Bβ+Cβ}Aβ
I4 AαBαCαAα / {Bβ+Cβ}Aβ{Bβ+Cβ}
I5 CαAαBα / {Bβ+Cβ}Aβ{Bβ+Cβ}
I6 BαCαAαBαCα / {Bβ+Cβ}Aβ{Bβ+Cβ}

I7 AαCαBαAα / Aβ{Bβ+Cβ}Aβ
RA==⇒ I1

I8 BαAαCα / Aβ{Bβ+Cβ}Aβ
RA==⇒ I2

I9 CαBαAαCαBα / Aβ{Bβ+Cβ}Aβ
RA==⇒ I3

I10 AαCαBαAα / {Bβ+Cβ}Aβ{Bβ+Cβ}
RA==⇒ I4

I11 BαAαCα / {Bβ+Cβ}Aβ{Bβ+Cβ}
RA==⇒ I5

I12 CαBαAαCαBα / {Bβ+Cβ}Aβ{Bβ+Cβ}
RA==⇒ I6

In this intricate context, the aim of the present work is to properly investigate Al/TiB2 basal
interfaces by ab initio calculations, which requires to clarify points 1 to 4 above. Section 2 settles
the methodological aspects required for this interface study. In particular, a detailed structural
analysis is carried out, leading to a proper set of candidate configurations for Al/TiB2 interfaces,
together with a thermodynamic analysis of the role of Ti and B chemical potentials. Using
these tools, section 3 is devoted to the Al/TiB2 basal coherent interface study using multilayered
systems with various boundary conditions and rigorous handling of elasticity. Finally, in section 4,
important issues are discussed, such as the respective effects of elasticity and boundary conditions,
as well as the comparison of our results with earlier ones available in the literature.

2 Methodology

2.1 Details on ab initio calculations

In the present work, first-principles calculations are carried out with the Vienna Ab Initio
Simulation Package (version VASP.5.4.1). The generalized gradient approximation (GGA) [25]
in the Perdew-Burke-Ernzerhof (PBE) [26] functional form is used for the description exchange-
correlation. The plane wave cut-off energy is selected as 500 eV. The Gamma point centered
scheme and the Monkhorst-Pack mesh [27] are used for Brillouin zone sampling for the bulk and
interface calculations. The k-grids used are respectively 18×18×n (with n ∈ [1, 3]), 16×16×16
and 18×18×18 for the Al/TiB2 interfaces, bulk TiB2 and Al. All energy minimizations include
the optimization of atomic positions as well as supercell shape and volume. The total energy
is calculated using the tetrahedron method with Blöchl [28] corrections, convergence to values
lower than 10-3 eV/atom being ensured. For Ti, B and Al, the valence electrons considered in
the pseudo-potentials are 3s23p63d24s2(Ti), 2s22p1 (B) and 3s23p1 (Al). Atomic structures are
visualized with VESTA (Visualisation for Electronic and Structural Analysis) [29].

2.2 Bulk properties and stability of TiB2

The lattice parameters and elastic constants of the TiB2 and Al bulk phases with space groups
P6/mmm and Fm-3m respectively are calculated and reported in Tables A.1, A.2 and A.3. For
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TiB2, the calculated lattice parameters are aeq
TiB2

= 3.036 Å and ceqTiB2
= 3.232 Å, which is

consistent with experimental data (aeq
TiB2

= 3.023− 3.036 Å and ceqTiB2
= 3.226− 3.231 Å [30]).

For FCC Al, the calculated lattice parameter is aeq
Al = 4.0409 Å which is also in complete

agreement with the experimental data aeq
Al = 4.04145 Å [31]. The reference energy of FCC Al

is EAl
Ref=-3.745 eV/atom. The formation energies Hf in eV of the various Al-Ti-B phases XiYj ,

with X,Y=Ti,B or Al are calculated as:

Ef (XiYj) = (i+ j)E
XiYj
Ref − iE

X
Ref − jEYRef (1)

where i and j stand for the numbers of X and Y atoms respectively, while ERef corresponds
to the total energy per atom of the supercell after relaxation to zero pressure. To get the bulk
energies of titanium and boron, α-B12 and α-Ti are chosen. The formation energy of TiB2
calculated in this work is -3.178 eV which is consistent with [20, 21, 32]. The formation energy
of Al3Ti is -1.594 eV, which fits the experimental [33–35] or theoretical values [20, 21]. The
formation energy of AlB2 is also in good agreement with theoretical data [20,21,32], with a value
of -0.135 eV.

In interface calculations, chemical potentials are needed (see below). In previous works
[20,21], the conditions for the stability of TiB2 were determined only by considering the absence
of α-Ti and α-B12 phases. However from experiments [3], AlB2 and Al3Ti do not form either,
and therefore, these phases are also taken into account in our work in order to ensure that their
presence is effectively forbidden in the thermodynamic treatment. On the whole, the range of
stability of TiB2 avoiding the formation of AlB2, Al3Ti, α-Ti and α-B12 is expressed as a function
of ∆µTi = µTiB2

Ti − Eα-Ti
Ref by the following equation (Appendix B):

Hf (TiB2)−Hf (AlB2) ≤ ∆µTi ≤ Hf (Al3Ti) (2)

which, for the ab initio energetics used here, yields numerically:

− 3.043eV ≤ ∆µTi ≤ −1.594eV (3)

Equation (3) defines the range of stability of the TiB2 compound.

2.3 Geometrical analysis of Al/TiB2 basal interfaces

From experiments [3, 36–38], the most commonly accepted orientation relationships (OR) for
Al/TiB2 basal interfaces is:

(111)Al//(0001)TiB2 , [11̄0]Al//[112̄0]TiB2 (4)

Hence, our work is carried out by using this OR to construct the Al/TiB2 interfaces which
yields the following correspondence between Al and TiB2 crystallographic directions (Figure 1):

1

2
[11̄0]Al //

1

3
[112̄0]TiB2

1

2
[112̄]Al // [1̄100]TiB2

1

3
[111]Al //

1

2
[0001]TiB2

(5)

The (0001)TiB2 and (111)Al planes are in epitaxial correspondence, Al is the most deformable
phase, indeed its elastic constants are much smaller than those of TiB2 (Appendix A.1, Tables
A.2 and A.3). The calculation of the coherency mismatch between Al and TiB2 leads to a
value of 6.45% (Appendix A.2). For the FCC Al phase, the stacking sequence of (111)Al is
an ABC arrangement, while HCP TiB2 yields an AB stacking sequence of (0001)TiB2 planes.
Therefore, the numbers of permutations of layers for Al and TiB2 are 3! and 2! respectively,
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Table 2. Comparison between the configurations of Al/TiB2 basal interfaces in our work
and those proposed in [20, 21]. Configurations for which the interface energy is calculated are
highlighted in green. The configurations are categorized according to the Ti- and B-termination
planes at the interface. The question marks stand for ambiguities on the configuration labelling
( [20]).

This work Han et al. [20] Deng et al. [21]

T
i-t

er
m
in
at
ed I1 OT Ti OT Ti

I2
I3

}
→ ? HCP Ti ←

{
HCP Ti
FCC Ti

MT Ti MT Ti MT Ti

B
-t
er
m
in
at
ed I4 HCP B OT B

I5
I6

}
→ ? OT B ←

{
HCP B
FCC B

MT B1 MT B -
MT B2 - MT B

which leads to an initial set of 12 configurations listed in Table 1. However, by considering
specific symmetry operations, this initial set can be reduced. Indeed, the π rotation RA around
an axis perpendicular to the basal plane (111)Al // (0001)TiB2

and passing through an atom of
the A layer exchanges B and C positions while the A positions remain unchanged. This rotation
RA transforms configurations from I7 to I12 to configurations from I1 to I6. In Table 2, these
different configurations are compared to the ones proposed previously in works [20, 21]: three
new configurations (MT Ti, MT B1 and MT B2) should be added to the present work, resulting
from rigid-body translations within the interface plane and ignored in our geometrical analysis.
This comparison highlights several ambiguities on interface configurations. Firstly, the earlier
configuration labellings may be confusing (HCP B from [20] corresponds to OT B from [21],
whereas HCP B from [21] corresponds to OT B from [20]). Moreover, the description used
by [20] leads to uncertain configurations. For instance, it is unclear whether HCP Ti from [20]
corresponds to HCP Ti or FCC Ti from [21] and to I2 or I3 in our present work. In a similar
way, OT B from [20] may correspond to HCP B or FCC B in [21] and to I5 or I6 in our work. To
remedy this deficiencies, we thus found necessary, to investigate interface energies for the whole
set of configurations identified and listed in the first column of Table 2. It must be emphasized
that in [20,21], interface energies were performed only for two configurations (HCP Ti and HCP
B). This point will be discussed in more details in Section 4.

2.4 Energies of Al/TiB2 multilayers

To get appropriate interface energies, the elastic contribution should be subtracted from the
excess energy, defined as the difference between the total energy of the system containing the
interface and the energies of the bulk phases. To tackle this issue, the most seemingly reliable
method [16] consists in using multilayers, for which the excess energy noted ∆Emulti(p, χ) depends
on the total (including both phases) number p of Al, Ti or B layers used and the volume fraction
χ of the TiB2 phase (χ =

VTiB2
VAl+VTiB2

where VTiB2 and VAl stand for the volumes of the TiB2 and
Al phases in the supercell). ∆Emulti(p, χ) is expressed by:
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Figure 2. Illustration of the three types of boundary conditions (PBC, FSC1, FSC2) adopted in
this work in the case of the I5 configuration. The red dashed lines indicate the Al/TiB2 interface
positions.

∆Emulti(p, χ) = E
Al/TiB2
tot −

∑
i

niµi (6)

= E
Al/TiB2
tot − nAlE

Al
Ref − nTiµ

TiB2
Ti − nBµ

TiB2
B (7)

with EAl/TiB2
tot the total energy of the system containing the Al/TiB2 interface after relaxation

and ni the number of atoms of type i in the system. All theses quantities depend on p and χ. As
outlined above, three different types of supercell have been adopted to assess this excess energy
according to the literature. The first type of supercell labelled PBC contains one slab of Al and
one slab of TiB2 without any vacuum and is periodic in each direction. The second one, labelled
FSC1, also contains one slab of Al and one slab of TiB2 with vacuum at the extremity of each
slab and then involves free surfaces of Al and TiB2. This supercell is similar to the one employed
in [20]. Finally, the third one contains one block of TiB2 between two blocks of Al in contact
with vacuum, this supercell being used in work [21] and labelled FSC2 in the following. These
three types of supercell are used in this work and represented in Figure 2.

∆Emulti(p, χ) can be divided into several contributions: the elastic energy eel(χ)pVl, with
eel the elastic energy density and Vl the average volume of one layer, the interface energy σ
and, depending on the type of supercell considered, the Al or TiB2 free surface energies. The
following expressions (8) to (10) describe this additive energy decomposition of the multilayer
excess energy for the various systems (PBC, FSC1 or FSC2):
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Figure 3. Surface energy of (111)Al as a function of the number p of layers, depending on the
basal lattice parameter aAl

(111) defined in Figure 1.

∆EPBC
multi(p, χ) = 2AσPBC + eel(χ)pVl (8)

∆EFSC1
multi (p, χ)−A(γAl

(111) + γTiB2
(0001)) = AσFSC1 + eel(χ)pVl (9)

∆EFSC2
multi (p, χ)− 2AγAl

(111) = 2AσFSC2 + eel(χ)pVl (10)

where A is the area of a single Al/TiB2 interface in each simulated system, γAl
(111) and γ

TiB2
(0001)

being the free surface energies of (111)Al and (0001)TiB2 planes. From equations (8) to (10),
after linear regression, interface energies can be extracted by extrapolating the left-hand term to
p = 0, while the slope yields the elastic energy density in each case.

3 Results

3.1 Al and TiB2 surfaces

To study the FSC1 and FSC2 systems, that involve free surfaces, as shown in equations (9) and
(10), the surface energies for Al and TiB2 must be determined beforehand.

The surface energy of each phase φ=(Al,TiB2) can be expressed as follows:

γφ =
1

2A
(Eφtot −

∑
i

niµ
φ
i ) (11)

where Eφtot stands for the total ab initio energy of the p-layer φ supercell with free surfaces,
and µφi corresponds to the chemical potential of species i (Al, Ti or B) in phase φ. The surface
energy is calculated for increasing numbers p of layers (111)Al and (0001)TiB2 , in order to ensure
a good convergence. In Figures 3 and 4, the surface energies of non-deformed Al (aAl

(111) = aAl,eq
(111),

see Figure 1) and TiB2 are reported and converge within 10 mJ/m2 for p = 19 and p = 15
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Figure 4. Surface energies of TiB2 as a function of the number p of layers, depending on the Ti
or B terminations and ∆µTi.

Figure 5. Surface energy γTiB2
(0001) of (0001)TiB2 as a function of ∆µTi, for Ti and B terminations

of TiB2. The surface energy values are converged with the number p of layers (Figure 4). The
non-shadowed zone indicates the TiB2 range of stability (equation (3)).

respectively. For non-deformed Al, the surface energy of (111)Al planes is 0.693 J/m2, which
is different from previous evaluations (0.83 J/m2 in [20] and 0.80 J/m2 in [21]). TiB2 surface
energies depend on chemical potentials and are displayed in Figure 5, for the range of stability
of this compound expressed in equation (3). The two surface terminations, either Ti or B of
TiB2, are studied. In B-rich conditions (∆µTi = −3.043 eV ), the Ti-terminated surface presents
a higher energy (4.59 J/m2) than the B-terminated surface (2.69 J/m2), which indicates that
the B-terminated surface is more favorable in these conditions. In Ti-rich conditions (∆µTi =
−1.594 eV ), this is the contrary (3.95 J/m2 for the B-terminated surface vs. 3.32 J/m2 for the
Ti-terminated surface).
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3.2 Al/TiB2 basal interfaces

The Al/TiB2 basal interface energies for the three systems (PBC, FSC1 and FSC2) and the
nine configurations of Table 2 are deduced from equations (8) to (10). As mentioned previously,
the additive decomposition expressed by these equations, mandatory to take into account the
elasticity, turned out to be adequate for various systems such as Al/θ′-Al2Cu [13, 14] or Zr/H-
Zr [16]. Since this approach was completely overlooked in previous works [20,21], it is necessary
to first check its applicability to this system. To this aim, ∆Emulti for MT Ti configuration
(Table 2) in PBC systems is first calculated for several values of χ (χ = 0.18, 0.38, 0.68) and for
each an extensive set of p. As shown in Figure 6, linear dependency on p is in agreement with
equation (8). In addition, the interface energy of MT Ti is not influenced by the TiB2 volume
fraction χ used (linear regressions give approximately the same value for p = 0).

Figure 6. Ab initio energies of Al/TiB2 basal interface multilayers for the MT Ti configuration
(symbols), as a function of the number p of layers for various TiB2 volume fractions χ, in the
case of PBC systems and Ti-rich conditions (∆µTi = −1.594eV ). The lines refer to the linear
regression performed to obtain the interface energy.

In Figure 7a, ∆Emulti of PBC systems is plotted as a function of the total number of layers
p for the nine configurations. The good linear dependency obtained for the nine configurations
further confirms the adequacy of the method, at least when using PBC systems. The interface
energies for PBC systems are then obtained after extrapolation to p = 0 from equation (8) to
eliminate any elastic energy. These features, the linear dependency with p and the non-influence
of the volume fraction χ on the interface energy, confirm that this approach is applicable for the
Al/TiB2 system, at least in PBC case.

It must be emphasized that the linear dependency with p of the left-hand terms in equations
(8) to (10) is ensured if the slope eel(χ)Vl is constant, i.e. if the TiB2 volume fraction χ is
constant. For the calculations, χ is then maintained at the same value for each configuration
in order to perform linear regressions and obtain interface energies. The volume fraction χ lies
between 0.32 and 0.45 for PBC and FSC1 systems and between 0.24 and 0.49 for FSC2 ones.
χ values are selected in order to get supercells as small as possible. For FSC2 systems, due to
an extra slab of Al, χ could not be at the same values as for the PBC and FSC1 systems. For
PBC and FSC1 systems, from 5 to 8 supercells are used depending on the configuration, for a
total number of layers p varying between 12 and 49. For FSC2 systems, from 2 to 4 supercells
are employed for p between 13 and 51. In Figures 7b and 7c, as for PBC, the FSC1 and FSC2
systems also show a good linear dependency with p.
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In the range of stability of TiB2 (equation (3)), the interface energies σPBC deduced from
the PBC systems present two distinct behaviors depending on the Ti chemical potential in
the TiB2 phase, as shown in Figure 8. In Ti-rich conditions, the Ti-terminated configurations
have smaller interface energies than the B-terminated configurations which means that Ti-
terminated configurations are more stable than B-terminated ones, also reported for surface
energies previously in this work (see Section 3.1). Irrespective to ∆µTi, the interface energy
value of configuration I1 is much higher (up to 1600 mJ/m2) than other Ti-terminated ones that
are extremely close to each other, which excludes I1 from favorable configurations. However, in B-
rich conditions, B-terminated configurations possess lower interface energies than Ti-terminated
ones indicating that B-terminated configurations are more favorable. The interface energies for
these configurations are close to each other, yet configurations MT B1 and I4 present superposed
and the lowest interface energies that make them the most stable ones in B-rich conditions.

For each configuration, the interface energies in the range of stability of TiB2 for the free
surface systems, FSC1 and FSC2, were also determined which leads to figures similar to Figure
8 (thus not shown). They globally exhibit the same features as the ones obtained for PBC
systems: (i) interface energies are between 1 and 4 J/m2, (ii) the increasing and decreasing
tendencies regarding the stability of these interfaces with chemical potentials remain identical,
(iii) configuration I1 still exhibits the highest energy, making it the least favorable configuration
compared to the other Ti-terminated configurations. However, some distinctions can be mentioned
regarding the overall stability order of configurations for a given Ti or B termination: (i) the
interface energy of configuration MT B1 becomes slightly lower (respectively higher) than I4
in FSC1 (respectively FSC2) compared to PBC systems, and in the same way (ii) the interface
energy value of MT B2 is slightly higher (respectively lower) than I6 in FSC1 (respectively FSC2).

The interface energies deduced from PBC, FSC1 and FSC2 systems are reported in Tables
3a and 3b for the two limiting cases corresponding to the boundaries of the TiB2 stability range
expressed by equation (3): ∆µTi = −1.594 eV (Ti-rich TiB2 conditions) and ∆µTi = −3.043 eV
(B-rich TiB2 conditions). Interface energies are first studied in Ti-rich conditions (Table 3a).
For PBC systems, the uncertainty on the interface energies associated to the linear regression
lies between 13 and 37 mJ/m2, then it never exceeds a few % of interface energies. Configuration
I1 has a much higher energy than the other configurations. If configuration I1 is excluded,
two distinct clusters of configurations arise: Ti-terminated interfaces (I2, I3 and MT Ti) which
possess lower interface energies than the B-terminated configurations (I4, I5, I6, MT B1 and MT
B2). The lowest interface energy, 785± 17 mJ/m2, is reached by configuration I2. Those results
-(i) I1 not favorable, (ii) Ti-terminated configurations more stable in Ti-rich conditions- are also
observed for the FSC1 and FSC2 systems. However, it should be mentioned that for FSC1, the
most favorable configuration is MT Ti with an interface energy of 826± 240 mJ/m2. Moreover,
interface energies obtained in free surface systems are higher, by an amount between 53 and 324
mJ/m2, than those obtained in PBC. The most stable configurations for PBC are from the most
stable to the least stable I2, MT Ti and I3, which is very similar to the ones from FSC2 systems (
most stable to the least stable : I2, I3 and MT Ti). For the FSC1 systems, the order of stability
is first MT Ti followed by I3 and then I2.

We now consider interface energies in B-rich conditions (Table 3b). For PBC systems, the
uncertainty of the linear regression lies between 14 and 40 mJ/m2. Configuration I1 has the
largest energy (3669±40 mJ/m2) in B-rich conditions also which confirms that this configuration
is not likely to form. B-terminated configurations (I4, I5, I6, MT B1 and MT B2) possess lower
energies than Ti-terminated configurations (I2, I3 and MT Ti). The lowest interface energy
(547± 21 mJ/m2) is obtained for configuration I4. As in Ti-rich conditions, results obtained for
PBC systems in B-rich conditions are also confirmed by FSC1 and FSC2. However, it should be
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Table 3. Interface energies σ (in mJ/m2) of Al/TiB2 basal interfaces for the nine configurations
in Ti and B-rich conditions. For FSC1 and FSC2 systems, values are obtained for an Al surface
energy γAl

(111) of 0.693 J/m2, which corresponds to non deformed bulk Al in Figure 3. Values in
brackets correspond to those calculated in the literature.

(a) Ti-rich conditions (∆µTi = −1.594 eV )

Configuration PBC FSC1 FSC2

T
i-t

er
m
in
at
ed I1 2374 ± 37a 2583 ± 28 2364

I2 785 ± 17 899 ± 39 (1450 [20]) 784 ± 147 (1000 [21])
I3 794 ± 18 849 ± 65 824 ± 31

MT Ti 793 ± 13 826 ± 240 830 ± 44

B
-t
er
m
in
at
ed I4 1838 ± 23 1994 ± 49 (3000 [20]) 1875 ± 46

I5 2028 ± 19 2160 ± 11 2104 ± 77 (2860 [21])
I6 2155 ± 14 2279 ± 39 2228 ± 48

MT B1 1845 ± 26 1960 ±17 1990 ± 2
MT B2 2151 ± 34 2344 ± 70 2120 ± 271

a. Uncertainty of linear regression
(b) B-rich conditions (∆µTi = −3.043 eV )

Configuration PBC FSC1 FSC2

T
i-t

er
m
in
at
ed I1 3669 ± 40a 3952 ± 31 3652

I2 2065 ± 17 2230 ± 45 (3228 [20]) 2094 ± 163 (2826 [21])
I3 2086 ± 20 2198 ± 71 2131 ± 32

MT Ti 2085 ± 15 2176 ±251 2121 ± 22

B
-t
er
m
in
at
ed I4 547 ± 21 649 ± 48 (1030 [20]) 561 ± 49

I5 749 ± 17 845 ± 11 800 ± 61 (1780 [21])
I6 864 ± 14 947 ± 37 930 ± 46

MT B1 555 ± 24 622 ±19 706 ± 8
MT B2 863 ± 34 1010 ± 63 842 ± 270

a. Uncertainty of linear regression
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Table 4. Elastic energy density eel(χ) (J/cm3) deduced from the linear regression with the total
number of layers p (7) for each configuration of Al/TiB2 basal interface in PBC, FSC1 and
FSC2 systems.

Configuration PBC χ FSC1 χ FSC2 χ

T
i-t

er
m
in
at
ed I1 173 ± 14 0.37 145 ± 6 0.37 176 0.49

I2 155 ± 6 0.45 152 ± 9 0.45 205 ± 54 0.38
I3 177 ± 7 0.33 190 ± 11 0.33 201 ± 9 0.24

MT Ti 169 ± 5 0.37 212 ± 43 0.37 218 ± 4 0.30

B
-t
er
m
in
at
ed I4 181 ± 6 0.37 166 ± 12 0.37 210 ± 14 0.29

I5 171 ± 6 0.45 156 ± 2 0.45 186 ± 32 0.38
I6 175 ± 4 0.33 182 ± 6 0.33 170 ± 13 0.38

MT B1 188 ± 7 0.37 183 ± 3 0.37 162 ± 2 0.48
MT B2 159 ± 9 0.37 155 ± 14 0.37 221 ± 90 0.48

mentioned that for FSC1, the most favorable configuration is MT B1 with an interface energy
value of 622±19 mJ/m2. In B-rich conditions, the PBC and FSC2 systems share the same order
of stability, from the most stable to the least stable configurations: I4, MT B1, I5, MT B2 and
I6, while for FSC1 systems it is first MT B1 then I4, I5, I6 and finally MT B2. It is observed
that interface energies for the couples (MT B1, I4), (MT B2, I6), and (MT Ti, I3) are close to
each other.

For FSC2 systems, it should be noted that only few data points (between one and three values
of p) are available. Indeed, FSC2 systems are larger than PBC or FSC1 ones due to an extra Al
slab (Figure 2). Moreover, additional constraints to keep a constant TiB2 volume fraction χ lead
to even larger supercells along the direction perpendicular to the interface. These fewer points
lead to a higher uncertainty of the linear regression. Moreover, the higher uncertainty obtained
in FSC1 and FSC2 may also be explained by the surface energies of Al and TiB2 used in the
calculations (equations (9) and (10)). This will be discussed in Section 4.

3.3 Comparison with micro-elasticity theory

The previous analysis in Section 3.2 proves the reliability of the additive decomposition of
multilayers energy (equations (8) to (10)) for Al/TiB2 basal interfaces. However, it may
be instructive to compare elastic energy densities eel(χ) from the above DFT results with
their counterparts deduced from micro-elasticity theory (µE) in order to investigate respective
adequacy between this theory and the various PBC, FSC1 and FSC2 systems. The elastic energy
density obtained analytically from µE (Appendix A, equation (A.21)) is calculated using as input
the lattice parameters and elastic constants of the Al and TiB2 phases indicated in Tables A.1,
A.2 and A.3. eel(χ) is plotted in Figure 9 and compared with the simulated data for each system
and configuration as a function of the volume fraction χ. The µE elastic energy density reaches
a maximum value for χ = 0.29 of eel = 235.5 J/cm3. In spite of the dispersion, it seems that
the DFT elastic energy density follows reasonably the µE prediction. Within the Al/TiB2
interface, aAl

(111) and aTiB2 (Figure 1) are equal to a common in-plane lattice parameter noted
(aint) due to coherency. From µE, it is also possible to determine the analytic expression of aint
as a function of the volume fraction χ (Appendix A, equation (A.27)), which is compared to
its DFT counterpart in Figure 10. It should be noted that for χ = 0 the lattice parameter aint
corresponds to the perfect FCC Al, i.e. aeqAl/

√
2 = 2.86 Å while for χ = 1, it corresponds to

aeqTiB2
. The data from ab initio calculations are slightly lower than the data obtained from µE
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theory. Yet the tendency of both data sets remains similar which suggests that our results are
in good agreement with the elasticity theory. Moreover, the PBC system provides data closer to
the elastic theory than free surfaces ones emphasizing its better reliability.

Table 4 provides a comparison of elastic energy density for the various systems used previously
and calculated from the linear regressions represented in Figure 7. Since the bulk properties must
not depend on the system, the same elastic energy density is expected in PBC, FSC1 and FSC2
cases. For PBC systems, the errors due to linear regression are small and lie between 4 and 14
J/cm3. The elastic energy density from PBC systems is first compared with the FSC1 ones
since both share similar volume fractions χ. FSC1 presents higher errors up to 43 J/cm3 (20%
of the elastic energy density). Taking into account errors induced by the linear regression, for all
configurations, PBC and FSC1 systems show good agreement on eel(χ) except for configurations
I1 and I5. However, for FSC2 systems, due to fewer points used in the linear regression, the
uncertainty is higher (up to 90 J/cm3) than for previous systems. It should be mentioned that
varying TiB2 volume fraction χ leaves the interface energy unchanged (Figure 6) but changes
the slopes of the linear regressions and thereby modifies the elastic energy density (equations
(8) to (10)). Hence, the good consistency obtained in comparing FSC1 and PBC elastic energy
densities is understandable, while the mismatch between FSC2 systems and previous PBC and
FSC1 systems can be explained by the different TiB2 volume fraction χ used. On the whole,
the elastic energy densities for all the systems are similar if the error bars and the effect of the
volume fraction χ are taken into account which is satisfactory.

4 Discussion

The key-issue deserving discussion concerns the treatment of elasticity in all previous atomic-
scale simulation works on interfaces in Al/TiB2 [20, 21] and other similar ternary systems
(Al/SiO2 [18], Mg/TiB2 [19]). Surprisingly, these studies dismissed the methodology used
in the simulation works of heterophase interfaces in binary systems [13, 14, 16, 39], in which
this treatment was correctly performed. More precisely instead of ensuring convergence with the
number of layers p, the authors in works [20,21] assumed that this convergence was guaranteed by
sufficient numbers of layers in each of the Al and TiB2 surfaces treated separately. However, this
procedure, which amounts to selecting p arbitrarily, erroneously transfers conclusions deduced
from homogeneous systems to heterogeneous ones and overlooks the coherency strain that induces
in Al/TiB2 a supplemental elastic energy absent from homogeneous structures [40, 41]. To
illustrate clearly the influence of such arbitrary choice of p, Figure 11 displays the p dependence
of Al/TiB2 multilayer energies for FSC1 and FSC2 systems, redrawn from Figure 7 together
with corresponding results for fixed p from previous works [20, 21]. It can be noted that, in
the FSC2 case, the comparison is made more difficult by the fact that the p values are slightly
different, p = 19 in work [21] whereas p = 21 in the present study, due to our correction to get
identical interfaces absent from [21]. On the whole, Figure 11 clearly demonstrates that using
arbitrary p values leads to strong overestimation of interface energies. Since similar remarks can
be done for other interfaces such as Al/SiO2 [18] and Mg/TiB2 [19], this emphasizes the large
ambiguity still existing on interface energies in these systems.

Another important issue is related to ambiguities inherent to simulations performed with
FSC systems as done in earlier works [20, 21], due to the presence of strained surfaces in such
systems, which may cast doubt on the relevant quantities to use in equations (9) and (10).
Then, we propose in the following to investigate the effect of this deformation on the surface
energies and subsequently, on the estimation of interface energies by means of FSC1 and FSC2
systems. During the interface atomic relaxation, both phases are deformed, but due to the strong
discrepancy between Al and TiB2 elastic constants, Al is more strained than TiB2 as shown in
Figure 10: aint is closer to a

eq
TiB2

than aeqAl/
√

2, which means that the coherency strain is mainly

15



accommodated by Al. Hence, only the effect of the deformation on the surface energy of Al is
taken into account below. Applying equation (11), to obtain γAl

(111) for Al constrained in (111)
plane, implies to know EAl

Ref for various levels of strain in the plane. For this purpose, aAl
(111) is set

at various values between the lattice parameter of non-deformed Al and TiB2, i.e. a
eq
Al/
√

2 and
aeqTiB2

. Then, for each of these values, the ab initio energies of the supercells with different lattice
parameters along the direction perpendicular to the interface are calculated, the minimum energy
yields EAl

Ref for a given value of aAl
(111), as shown in Figure 12. Using the convergence criterion

p = 20 for any lattice parameter aAl
(111) (see Figure 3), the surface energy of strained Al γAl

(111)

is then plotted as a function of aAl
(111) (see Figure 13). The two limiting values are 0.693 J/m2

for non-deformed Al and 0.804 J/m2 for Al constrained by rigid TiB2. Surprisingly, the surface
energy displays a minimum and non-linear behavior with the in-plane lattice parameter. From
Tables 3a and 3b, it was already seen noted that there are some significant differences between
the interface energies estimated from FSC and PBC systems. The Al surface energy used to
obtain these results was 0.693 J/m2 corresponding to non-deformed Al. Yet, from Figure 3, the
Al surface energy depends on the in-plane lattice parameter. Tables C.1 and C.2, displaying the
interfaces energies for each system calculated using the surface energy of strained Al, show that
the Al surface energy has a significant influence on the interface energy, especially for FSC2,
which should not be neglected, even if this impact is not sufficient to explain the gap between
the FSC and PBC results. Then, the obtention of the surface energy to consider is far from being
straightforward if we acknowledge deformed phases. Therefore, the derivation of the interface
energies from FSC systems requires a delicate knowledge of surface energies for strained phases,
which demonstrates that using PBC systems allows a more direct and more reliable estimation
of interface energies in presence of coherency strain.

When discussing atomic-scale simulations of coherent heterophase interfaces, another point
requiring close examination deals with the choice of criteria relevant to compare the relative
stabilities of different interface configurations. In our work, we used interface energies as a
stability criterion (labelled min(σ) below) to compare straightforwardly all configurations, the
most stable configurations corresponding to lowest energies. In the previous studies dedicated
to Al/TiB2 interfaces [20, 21], an alternative strategy was employed to obtain the energies of
the most stable interfaces, via a two-step procedure involving as an intermediate quantity the
interface adhesion workWad and max(Wad(p, χ)) criterion. Whereas σ is a quantity intrinsic to a
given interface configuration, Wad(p, χ) is a priori different for each multilayer with period p and
TiB2 proportion χ associated to the same configuration. Therefore, it is relevant first to check the
equivalence of the min(σ) and max(Wad(p, χ)) criteria, when comparing interface configurations
as regards stability. To this aim, equations (E.4) and (E.5) established in Appendix E and
relating Wad and σ are convenient. Using these equations, it should be noted that, provided
the configurations compared have the same termination (Ti or B) of their TiB2 side, the related
surface energy term γTiB2 is equal for both configurations. Moreover, if p and χ are identical, then
the elastic terms (see equations (E.4) and (E.5)) are also equal. This demonstrates that, under
these conditions, the min(σ) and max(Wad) indeed yield the same stability order for the couple of
configurations studied. This justifies the first step of the procedure used in earlier works [20,21],
namely a max(Wad)-based classification among configurations with given TiB2 termination. This
lead the authors of works [20,21] to the pre-selection (valid whatever the chemical potentials) of
a couple (one Ti- and one B-terminated) of most favourable configurations, for which interface
energies were then calculated explicitly in a second step. This is the reason why, in these previous
studies [20,21], interface energies were calculated for only two configurations (HCP Ti and HCP
B), being respectively the most stable configurations with Ti and B terminations. While the
foregoing arguments have confirmed the formal equivalence between both stability criteria, a
second issue concerns the consistency of the results provided actually by these criteria in practical
applications. To check this point, we performed a systematic comparison of both criteria for all
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configurations of Al/TiB2 basal interfaces (Tables E.1 and E.2) for both terminations and
using FSC1 or FSC2 systems. As explained above, only adhesion works, not interface energies,
were reported for all configurations in works [20, 21]. To allow comparison, our calculation are
performed with the same numbers of layers p as in [20] (FSC1, p = 12,χ = 0.52) and [21] (FSC2,
p = 19,χ = 0.58). TheWad values are given in Tables E.1 and E.2 as well as the resulting order of
interface stability. Confronting the two criteria min(σ) and max(Wad), the σ- and Wad-deduced
orders of stability are not the same for the Ti-terminated MT Ti, I3 and I2 configurations, in
FSC1 as well as in FSC2 systems, which a priori contradicts the conclusion established above
concerning the equivalence between both criteria. This contradiction can however be removed,
recalling (see equations (E.4) and (E.5)) that these two criteria are expected to yield identical
results only if the elastic energy density is strictly equal for the compared configurations, which
is not the case according to Table 4. Since the σ values for these three configurations are close to
each other, these small differences in the elastic energy density are sufficient to change the order
of stability. Concerning configuration I1, there is a good agreement between both criteria, a high
interface energy corresponding to a weak adhesion work. The same elasticity argument can be
given to explain the stability inversions between both criteria for the B-terminated configurations.
Comparing now these trends with earlier works, we have also reported in Tables E.1 and E.2
the adhesion works calculated in [20, 21]. Based on the min(σ) criterion, our work predicts,
for Ti-terminated interfaces, that the I2, I3 and MT Ti configurations are the most favorable
configurations, with interface energies close to each other. The same conclusions were reached
in [20], reporting identical adhesion works (3.18 J/m2) for these three configurations. However,
the same work also reports for configuration I1 an adhesion work equal to 3.17 J/m2, implying
that I1 and the three aforemetioned configurations should be very similar in terms of Wad,
whereas σ values are very far apart in Table E.1. For the B-terminated configurations, the most
stable configurations are MT B1 or I4 in our work, I4 in [20], and MT B2 and I5 in [21], so
our work is in better agreement with [20]. Finally, it should also be noted that the Wad values
obtained in our work are quite different from those reported in [20,21] especially for Ti-terminated
interfaces, whereas the numbers of layers used in each phase to perform the calculations are the
same.

As mentioned previously, a last difficult issue with atomic-scale simulations of heterophase
interfaces in chemically complex (non-binary) systems involving ordered compounds (TiB2, SiO2,
Al/Mg5Si6) concerns the choice of the chemical potentials for the elements constituting these
compounds. This choice has drastic consequences on interface energetics, and the chemical
potentials were therefore kept as adjustable parameters in most earlier studies of these systems
(Al/SiO2 [18], Mg/TiB2 [19], Al/TiB2 [20, 21]), as well as in the current work on Al/TiB2.
However, in order to refine our picture of interfaces in such complex systems, it would be
desirable to reach more accurate information on these important quantities. To this aim,
considering specifically Al/TiB2, it is useful to recall first that (i) the Ti and B chemical
potentials are strongly dependent on the TiB2 composition, undergoing steep variations at
stoichiometry, and (ii) Ti and B chemical potentials characteristic of Ti excess in bulk TiB2 also
correspond preferentially to Ti-termination at TiB2 surfaces and Al/TiB2 interfaces. Keeping
in mind these general features, the authors of recent ab initio studies of Al(L)/TiB2 liquid-
solid interfaces [22, 23] have attempted to infer some conclusions about relevant choices of TiB2
composition and (Ti,B) chemical potentials. More precisely, the ab initio molecular dynamics
simulations used in both of these works, revealed that local crystalline ordering of several Al(L)
layers near the TiB2 surface preferentially occurs for Ti-termination, a feature suggesting that
this termination should possess a better nucleation power in the Al heterogeneous (i.e. on TiB2
particles) solidification process. Similarly, another recent study of Al(L)/TiB2 [42] relying of
adsorption isotherms also led to conclude that the nucleation power of TiB2 particles for solid Al
should increase with Ti content. Although this conclusion can hardly be directly related to Ti and
B chemical potentials (any absence of Ti terminations may not critically prevent solidification -
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other kinds of preferential sites being possibly available to form Al solid nuclei), it is qualitatively
in line with the experimental fact that Al-B-Ti master alloys (e.g. Al-5Ti-B) frequently have
global Ti excess with respect to TiB2 stoichiometry, suggesting that the same feature may hold
for the TiB2 compound. It should however be mentioned that TiB2 particles are not always
obtained from grain refiners: recent elaboration processes in 7075 Al alloys have rather involved
in situ mixed salt method [2] inducing unknown TiB2 composition. On the whole, this quick
survey emphasizes that the handling of TiB2 composition and (Ti,B) chemical potentials still
currently remains quite intricate, leaving much room for further investigations. To make one step
further in this direction, a possibility could be, still employing atomic-scale methods, to consider
more thoroughly the thermodynamic equilibrium between TiB2 particles and the surrounding
Al-based alloy. This in turn may require investigating in detail TiB2 properties, especially its
point defect structure, via the independent-point-defect approximation (IPDA) [43], an approach
already employed on various ordered compounds [43–47] as well as MgZn2 [48] especially relevant
in the context of Al-TiB2 alloys.

To conclude this discussion, it should be pointed out that the present work was devoted only
to basal interfaces in Al/TiB2. However, other interfaces with different orientations (pyramidal,
prismatic) are also involved between both phases. Due to the specific shape of TiB2 particles [3],
the study of prismatic interfaces would be of a special interest. However it was noted that the
situation for such interfaces becomes so much more intricate than for basal ones. In the latter
case, the whole study could be performed, in earlier works [20, 21] as in the present one, by
assuming that these interfaces are fully coherent, which is a reasonable assumption since the
mismatch in the TiB2 basal plane remains moderate (6,45%). In prismatic interfaces, a first
difficulty arises from the fact that according to the matching between Ti- and B- versus Al
planes at the interface, two limiting kinds of coherent system can naturally be identified: (i)
either Al planes are facing with Ti as well as B planes (m = n, m and n being respectively
the number of planes in Al and TiB2), (ii) or one Al planes are facing only with Ti planes, B
planes being excluded from the correspondence (n = m/2). These two limiting cases lead to
mismatch values in the interface plane (εSFTS33 ) respectively equal to -26% and 45%. Due to
these large values, prismatic interfaces can not be assumed coherent and a more realistic ratio
of m/n must then be searched. One way to estimate it is to minimize the elastic energy, which
consists in canceling the εSFTS33 component in the SFTS tensor: the expected theoretical ratio
m/n is equal to 1.45 (see Appendix A.2). Thus, for investigations of prismatic interfaces using
the same approach as for basal ones, supercells containing four (111)Al planes in correspondence
with six (0001)TiB2 planes would be needed (m/n = 3/2). Provided the number of prismatic
planes p is limited, this approach is still tractable. It turns out that this ratio is indeed the one
obtained experimentally in [2,3], which confirms the validity of the method used in Appendix A.2
to calculate the SFTS tensor. Preliminary investigations suggest that simulations of prismatic
interfaces may require significantly larger p values than for basal ones. However, this difficulty
should not be critical, since the SFTS tensor established in Appendix A.2 could also be used in
such cases to calculate the elastic energy using micro-elasticity theory for lower p values, thus
allowing convenient extrapolation to cases beyond the capabilities of simulation.

5 Conclusion

Few theoretical works have been dedicated to coherent interfaces in non-binary systems, mainly
due to thermodynamic and mechanical issues specific to them. Some available studies explore
different chemical configurations at the interface, which requires to use the chemical potentials
as control parameters varying on an interval for which the phases are expected to be stable.
However, they ignore the coherency strain energy contribution in their methodology when deducing
the interface energy. Other studies correctly handle elasticity but does not consider the possibility
of different terminations at the interface. For the first time, this work fills the gap between these
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two different approaches by optimizing the composition at the interface without overlooking the
role of the elastic energy. More precisely, the coherency behavior of the heterogeneous systems
is considered by extracting the elastic energy via a linear regression on multilayers by using
first-principles calculations.

Our methodology offers significant improvements in the assessment of interfacial energies,
as illustrated by the Al/TiB2 basal interfaces for which a full set of nine configurations are
analyzed. Like in the previous studies, the stability of Al/TiB2 basal interfaces depends greatly
on the chemical potentials in the TiB2 phase, indeed in Ti-Rich (respectively B-Rich) conditions,
Ti-terminated (respectively B-terminated) interfaces are the most favorable ones. However, the
interface energies obtained are significantly different from previous results and suit more coherent
interface energy level. This is partly due to the elastic contribution which is most of the time
neglected in the literature, especially in non-binary systems. In order to rationalize the elastic
results deduced from the ab initio calculations, they are compared to the elasticity theory and a
good agreement is obtained, especially for PBC systems.

Some other methodological issues are investigated and among them the choice of the type
of supercell used, either PBC or FSC. It appears that the use of FSC-type supercell requires
the preliminary determination of surface energies. However, these surfaces are strained due to
the coherency between both phases at the interface. It is shown in this paper that considering
the energy of the strained surface instead of the energy of the stress-free surface can induce
non-negligible changes of the resulting interface energy. The use of PBC-type supercells does
not require such care and should be preferred for interface energy calculations with multilayers.
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Figure 8. Interface energy of Al/TiB2 basal interfaces as a function of ∆µTi for the nine
configurations, in the case of PBC systems.

Figure 9. Elastic energy density of Al/TiB2 basal interfaces as a function of the TiB2 volume
fraction χ obtained from DFT calculations (symbols) and micro-elasticity theory (line) with a
maximum value of 235.5 J/cm3 for χ=0.29. The vertical error bars are due to the linear regression
and the surface energy. Another source of uncertainty is due to the χ quantity (Appendix D).
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Figure 10. Common in-plane lattice parameter at the Al/TiB2 basal interface obtained from µE
theory (line) and from all the DFT calculations (symbols) for the various systems (PBC, FSC1
and FSC2) as a function of the TiB2 volume fraction χ. Lattice parameters of non-deformed Al
and TiB2 are indicated in the graph.

Figure 11. Multilayers energies of configuration I4 from FSC1 systems and configuration I5
from FSC2 systems in this work for ∆µTi = −1.594 eV . In addition values obtained from the
literature [20,21] for fixed p are also indicated in the graph for the same values of ∆µTi.
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Figure 12. Total ab initio energy of deformed bulk Al as a function of the lattice parameter in
the [111]Al direction. The legend corresponding to the symbols is the same as on Figure 3.

Figure 13. Surface energy of Al(111) slabs as a function of the lattice parameter aAl
(111). The

surface energy values are converged with the total number of layers p (Figure 3).
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Appendices

A Elasticity of basal Al/TiB2 interfaces

A.1 Bulk properties

Table A.1. Lattice parameters for both phases Al and TiB2 (in Å).

aeq
TiB2

ceqTiB2
aeq
Al

Theoretical This work 3.036 3.232 4.0409
[21] 3.035 3.226 4.047
[20] - - 4.05
[49] 3.029 3.220 -

Experimental [30] 3.023-3.036 3.226-3.231 -
[50] 3.033 3.231 -
[51] - - 4.03
[31] - - 4.04145

Table A.2. Elastic constants (in GPa) of Al from DFT calculations and comparison with the
literature.

C11 C12 C44

Theoretical This work 102 65 28
[52] 104 60 28

Experimental [53](300K) 107 61 28

Table A.3. Elastic constants (in GPa) of TiB2 from DFT calculations and comparison with the
literature.

C11 C12 C13 C33 C44 C66

Theoretical This work 637 71 102 437 253 283
[54] 650 79 100 443 256 285

Experimental [55] 660 48 93 432 260 306
[56] 655 49 95 458 263 303

A.2 Stress free transformation strain (SFTS) tensor between Al and TiB2

The preliminary determination of SFTS is essential to calculate the elastic energy of multilayered
structures containing Al/TiB2 interfaces. The general expression of the SFTS tensor is related
to the matrix F of the Al→TiB2 transformation by:

εSFTS =
FT .F − I

2
(A.1)

where I stands for the identity matrix and FT is the transpose of F . To get the matrix F ,
three pairs of non-coplanar vectors, defined by the OR, are required:
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F (

1

2
[11̄0]Al) =

1

3
[112̄0]TiB2

F (
1

2
[112̄]Al) = [1̄100]TiB2

F (n
1

3
[111]Al) = m

1

2
[0001]TiB2

(A.2)

where we assume that n (111)Al planes are in correspondence with m (0001)TiB2 planes (m
is the total number of Ti and B planes). Different definitions of a perfectly coherent prismatic
interface can be proposed: one Al Plane is in correspondence with a Ti or a B plane (m = n), or
one Al plane is in correspondence with one Ti plane only (n = m/2). However, experimentally, it
is shown that prismatic interfaces are semi-coherent [2,3], which means that n 6= m and n 6= m/2.

Figure A.1. Schematic representation of n (111)Al planes and m (0001)TiB2 planes in
correspondence for a semi-coherent Al/TiB2 interface where m6=n. The dashed lines correspond
to the semi-coherent interface supercell.

In the following all the calculations will be performed in the R = ( ~x1, ~x2, ~x3) basis (Figure 1).
The non-coplanar vectors of (A.2) are expressed in this basis:

1

2
[11̄0]Al =

aeq
Al√
2
~x1

1

2
[112̄]Al =

√
3(
aeq

Al√
2

) ~x2

1

3
[111]Al = deq

Al[111] ~x3

(A.3)

with deq
Al[111] =

aeq
Al√
3
and, 

1

3
[112̄0]TiB2 = aeq

TiB2
~x1

[1̄100]TiB2 =
√

3aeq
TiB2

~x2

[0001]TiB2 = ceqTiB2
~x3

(A.4)
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The matrix F can then be deduced from:

F.


aeq
Al√
2

0 0

0
√

3(
aeq
Al√
2
) 0

0 0 deq
Al[111]

 =

aeq
TiB2

0 0

0
√

3aeq
TiB2

0

0 0 m
n

1
2c

eq
TiB2

 (A.5)

it follows that:

F =


√

2(
aeq
TiB2
aeq
Al

) 0 0

0
√

2(
aeq
TiB2
aeq
Al

) 0

0 0 1
2
m
n

ceqTiB2
deqAl[111]


R

(A.6)

and from (A.1):

εSFTS =


(
aeq
TiB2
aeq
Al

)
2

− 1
2 0 0

0 (
aeq
TiB2
aeq
Al

)
2

0

0 0 1
2((12

m
n

ceqTiB2
deqAl[111]

)
2

− 1)


R

(A.7)

By reporting in equation (A.7) the values of the lattice parameters of both Al and TiB2
calculated in this work (Table A.1), we obtain εSFTS11 =εSFTS22 =6.447%. The value of the ratio
m/n can be estimated by assuming it cancels εSFTS33 in order to minimize the elastic energy:

1
2((12

m
n

ceqTiB2
deqAl[111]

)
2

− 1) = 0⇒ m
n =

2deqAl[111]
ceqTiB2

≈ 1.45

Under the constraint that m must be even by definition, the smallest values of m and n
fulfilling this condition is m = 6 and n = 4 (4 Al planes in correspondence with 3 Ti and 3 B
planes). This ratio is indeed the one obtained experimentally [2, 3].

A.3 Elastic energy density eel

In the following εφ is the elastic strain tensor of phase φ in epitaxial relation with the other phase.
Due to the symmetrical properties of Al and TiB2, it can be shown that εφ has the following
form in R when a basal interface is present between both phases:

εφ =

ε
φ
11 0 0

0 εφ11 0

0 0 εφ33


R

with φ = Al or TiB2 (A.8)

The epitaxial relation at the interface ( ~x1, ~x2) implies:

εAl
ii = εSFTSii + εTiB2

ii with i=1,2 (A.9)

Elastic energy density eφel of phase φ is defined as:

eφel =
1

2
cφijklε

φ
ijε

φ
kl (A.10)

where cφijkl are the elastic constants of phase φ. Al phase belongs to crystallographic group F
m -3 m. Due to the cubic symmetry, the tensor of the elastic constants can be written as follows:
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Cc,Al =



Cc,Al
11 Cc,Al

12 Cc,Al
12 0 0 0

Cc,Al
12 Cc,Al

11 Cc,Al
12 0 0 0

Cc,Al
12 Cc,Al

12 Cc,Al
11 0 0 0

0 0 0 Cc,Al
44 0 0

0 0 0 0 Cc,Al
44 0

0 0 0 0 0 Cc,Al
44


Rc

(A.11)

where Rc = ( ~a1, ~a2, ~a3) with ~a1//[100], ~a2//[010], ~a3//[001]. Since all the calculations are
made in R this tensor must be expressed in the same basis. Through a change of bases (Rc → R)
it can be shown that:

CAl =



CAl
11 CAl

12 CAl
13 CAl

14 0 0
CAl
12 CAl

11 CAl
13 −CAl

14 0 0
CAl
13 CAl

13 CAl
33 0 0 0

CAl
14 −CAl

14 0 CAl
44 0 0

0 0 0 0 CAl
44 CAl

14

0 0 0 0 CAl
14 CAl

66


R

(A.12)

with



CAl
11 =

1

2
(Cc,Al

11 + Cc,Al
12 + 2Cc,Al

44 )

CAl
12 =

1

6
(Cc,Al

11 + 5Cc,Al
12 − 2Cc,Al

44 )

CAl
13 =

1

3
(Cc,Al

11 + 2Cc,Al
12 − 2Cc,Al

44 )

CAl
33 =

1

3
(Cc,Al

11 + 2Cc,Al
12 + 4Cc,Al

44 )

CAl
14 =

Cc,Al
11 − Cc,Al

12 − 2Cc,Al
44

3
√

2

CAl
44 =

1

3
(Cc,Al

11 − Cc,Al
12 + Cc,Al

44 )

CAl
66 =

1

6
(Cc,Al

11 − Cc,Al
12 + 4Cc,Al

44 )

(A.13)

From (A.10), it follows that:

2eAl
el = CAl

11 ((εAl
11)2 + (εAl

22)2) + 2CAl
12 ε

Al
22ε

Al
11 + CAl

13 (2εAl
33ε

Al
11 + 2εAl

33ε
Al
22) + CAl

33 (εAl
33)2+

CAl
14 (4εAl

23ε
Al
11 − 4εAl

23ε
Al
22 + 4εAl

12ε
Al
31) + CAl

44 (4(εAl
23)2 + 4(εAl

31)2) + 4CAl
66 (εAl

12)2
(A.14)

According to (A.8), εAl
11 = εAl

22 and εAl
ij = 0 if i 6= j. Therefore (A.14) becomes:

eAl
el = (CAl

11 + CAl
12 )(εAl

11)2 + 2CAl
13 ε

Al
11ε

Al
33 +

1

2
CAl
33 (εAl

33)2 (A.15)

Phase TiB2 belongs to crystallographic space group P6/mmm and possesses an hexagonal
symmetry. The elastic constants tensor can be written as a function of 5 elastic constants and
has the same form as (A.12) in R with CTiB2

14 = 0, CTiB2
66 = 1

2(CTiB2
11 − CTiB2

12 ), therefore:

eTiB2
el = (CTiB2

11 + CTiB2
12 )(εTiB2

11 )2 + 2CTiB2
13 εTiB2

11 εTiB2
33 +

1

2
CTiB2
33 (εTiB2

33 )2 (A.16)

At this stage in order to calculate eφel given by (A.15) and (A.16), we need to calculate εφ11
and εφ33 in each phase φ. For this purpose, a two-step procedure is applied. First, in each phase
φ, for a given value of εφ11, we determine εφ33 which minimizes eφel:
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∂eφel

∂εφ33
= 0⇒ 2Cφ13ε

φ
11 + Cφ33ε

φ
33 = 0

⇒ εφ33 = −2Cφ13

Cφ33
εφ11

(A.17)

by reporting (A.17) in (A.15) and (A.16) eφel can be expressed as:

eφel = Aφ(εφ11)
2 with Aφ = Cφ11 + Cφ12 − 2

Cφ13.C
φ
13

Cφ33
(A.18)

If VAl and VTiB2 are respectively the volumes of the Al and TiB2 phases, the total elastic
energy of the multilayer is VAlA

AlεAl
11

2
+ VTiB2A

TiB2εTiB2
11

2
. The associated elastic energy density

is then is:

eel =
VAlA

Al(εAl
11)2 + VTiB2A

TiB2(εTiB2
11 )2

VAl + VTiB2

= (1− χ)AAl(εAl
11)2 + χATiB2(εTiB2

11 )2

= (1− χ)AAl(εAl
11)2 + χATiB2(εAl

11 − εSFTS11 )
2 (A.19)

with χ= VTiB2
VAl+VTiB2

. In a second step, εAl
11 is determined by minimizing eel:

∂eel

∂εAl
11

= 0⇒ εAl
11 =

χATiB2εSFTS11

χATiB2 + (1− χ)AAl (A.20)

by reporting equation (A.20) in equation (A.19), we obtain a new expression of the elastic
energy density only as a function of χ, the elastic constants of Al and TiB2, and εSFTS11 :

eel =
χ(1− χ)ATiB2AAl(εSFTS11 )2

χATiB2 + (1− χ)AAl (A.21)

A.4 Determination of the interface lattice parameter

In order to get the lattice parameter of the Al/TiB2 interface aint, the relationship between aAl
and the elastic strain εAl

11 must be obtained. To do so, we determine the strain tensor for the
deformation of Al AlFCC → Aldeformed with the following non-coplanar vectors:

F (
1

2
[11̄0]Al) =

1

2
[11̄0]deformed

Al

F (
1

2
[112̄]Al) =

1

2
[112̄]deformed

Al

F (
1

3
[111]Al) =

1

3
[111]deformed

Al

(A.22)

those vectors can be written in R: 

1

2
[11̄0]Al =

aeq
Al√
2
~x1

1

2
[112̄]Al =

√
3(
aeq

Al√
2

) ~x2

1

3
[111]Al = deq

Al[111] ~x3

(A.23)
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1

2
[11̄0]deformed

Al =
adeformed

Al√
2

~x1

1

2
[112̄]deformed

Al =
√

3(
adeformed

Al√
2

) ~x2

1

3
[111]deformed

Al = ddeformed
Al[111] ~x3

(A.24)

from (A.22) and with aint =
adeformed
Al√

2
:

F =


aint
aeq
Al

√
2 0 0

0 aint
aeq
Al

√
2 0

0 0
ddeformed
Al[111]
deqAl[111]


R

(A.25)

and from (A.1):

εAl =



1
2

a2int

(
a
eq
Al√
2
)2
− 1

2 0 0

0 1
2

a2int

(
a
eq
Al√
2
)2
− 1

2 0

0 0 1
2(
ddeformed
Al[111]
deqAl[111]

)
2

− 1
2


R

(A.26)

therefore:

aint =
aeq

Al√
2

√
(2εAl

11 + 1) (A.27)

εAl
11 being given by (A.20).
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B Chemical potentials in Al-Ti-B systems

To calculate ∆Emulti in the previous equations (8), (9) and (10), chemical potentials of each
species are needed beforehand. The main difficulty consists in determining Ti and B chemical
potentials in the TiB2 phase. Because these quantities are unknown, the approach that overcomes
this issue is to use a chemical potential range of interest in which TiB2 exists as in previous
studies [20, 21, 32, 57]. However, some uncertainties remain on the methodology used in [20, 21]
and the present work aims at bringing some clarifications. Indeed, from the reactions that lead
to the formation of TiB2 from Al-Ti-B system, other phases can potentially form such as Al3Ti
and AlB2. Moreover, those former phases are not identified in the work of Ma et al. [2,3] which
emphasizes the necessity to avoid the formation of Al3Ti and AlB2 phases in the present work.

Avoiding α−Ti and α−B12 formation from TiB2

Figure B.1 represents the free energies of α−Ti and TiB2 phases as a function of the composition
of B in the binary Ti-B system. TiB2 and α − Ti phases are in thermodynamic equilibrium for
a composition xeq (≈ 2/3) of TiB2. For x1 ≤ xeq, the free energy of the TiB2 phase G1

(=GTiB2(x1) on Figure B.1) would be greater than the free energy G2 (given by the common
tangent) of the biphasic system TiB2 +α-Ti at their equilibrium compositions, making more
favorable the formation of α − Ti from the TiB2 phase. Therefore, to avoid α − Ti formation,
the condition G1 ≤ G2 must be fulfilled, resulting in x1 ≥ xeq and µTiB2

Ti ≤ µTiB2�α−Ti
Ti , where

µTiB2�α−Ti
Ti is the chemical potential of Ti in TiB2 in equilibrium with α-Ti (≈ Eα-Ti

Ref ). In the
same way, from Figure B.2, for a composition x2 ≥ xeq, the free energy of the TiB2 phase
G3 (GTiB2(x2)) would be greater than the free energy G4 of the biphasic system TiB2 +α-B12
at equilibrium, promoting the formation of α − B12 from the TiB2 phase. To overcome this,
G3 ≤ G4 which leads to Hf (TiB2) + Eα-Ti

Ref ≤ µTiB2
Ti . Hence, the condition to avoid α − Ti and

α− B12 formation at the expense of TiB2 is given by the following inequality:

Hf (TiB2) ≤ µTiB2
Ti − Eα-Ti

Ref ≤ 0 (B.1)

Avoiding Al3Ti formation from TiB2

Figure B.3 represents the free energies of Al and Al3Ti phases as a function of the composition of
Ti in the binary Al-Ti system. The thermodynamic equilibrium between Al and Al3Ti phases is
reached for a Ti composition in Al3Ti noted xeq (≈ 0.25). If the chemical potential of Ti in TiB2
is greater than the chemical potential of Ti in Al3Ti in equilibrium with Al noted µAl3Ti�Al

Ti ,
then there will be a thermodynamic driving force to form the Al3Ti phase from the Al and TiB2
phases. From Figure B.3, it is easy to demonstrate that µAl3Ti�Al

Ti = Hf (Al3Ti) + Eα-Ti
Ref . Thus

the condition to avoid the formation of Al3Ti phase from TiB2 phase is:

µTiB2
Ti − Eα-Ti

Ref ≤ Hf (Al3Ti) (B.2)

Avoiding AlB2 formation from TiB2

Figure B.4 represents the free energies of Al and AlB2 phases in the binary Al-B system as
a function of the B composition. The composition of the AlB2 phase in equilibrium with Al
is noted xeq in Figure B.4 (≈ 2/3). To prevent the formation of AlB2, µTiB2

B ≤ µAl�AlB2
B ,

where µAl�AlB2
B is the chemical potential of B in AlB2 in equilibrium with Al. From Figure

B.4a), µAl�AlB2
B = 1

2Hf (AlB2) +Eα-B12
Ref . From Figure B.4b), this inequality is also equivalent to

µTiB2
Ti ≥ Hf (AlB2) + Eα-Ti

Ref + Hf (TiB2). Lastly, avoiding the formation of AlB2 phase leads to
the following inequality:

Hf (TiB2)−Hf (AlB2) ≤ µTiB2
Ti − Eα-Ti

Ref (B.3)
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Finally, the range of interest leading to the existence of TiB2 without the formation of any
other phases is :

Hf (TiB2)−Hf (AlB2) ≤ µTiB2
Ti − Eα-Ti

Ref ≤ Hf (Al3Ti) (B.4)

and numerically:

− 3.043eV ≤ µTiB2
Ti − Eα-Ti

Ref ≤ −1.594eV (B.5)

31



Figure B.1. Gibbs free energies G (in eV/atom) of α-Ti and TiB2 phases as a function of the boron
composition in the Ti-B system. The green line stands for the common tangent. Its intersections
with the axes xB = 0 and xB = 1 give respectively the equilibrium chemical potentials of Ti
and B noted µTiB2�α−Ti

Ti and µTiB2�α−Ti
B . The Gibbs free energy of TiB2 at composition x1 is

noted G1. For the same composition, the common tangent gives the Gibbs free energy G2 of the
mixture of α-Ti and TiB2 at equilibrium. Since G2 < G1, the formation of α-Ti from TiB2 is
promoted. the dotted line stands for the tangent to GTiB2 at composition x1. Its intersections
with the axes xB = 0 and xB = 1 give respectively the chemical potentials µTiB2

Ti and µTiB2
B in

TiB2 at this composition. It can be seen that µTiB2
Ti > µTiB2�α−Ti

Ti for x1, which is also equivalent
to the condition G2 < G1 (formation of α-Ti).
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Figure B.2. Gibbs free energies G (in eV/atom) of α-B12 and TiB2 phases as a function of the
boron composition in the Ti-B system. The equilibrium chemical potentials of Ti and B noted
µTiB2�α−B12

Ti and µTiB2�α−B12
B are given by the common tangent (green line). The Gibbs free

energy of TiB2 at composition x2 is noted G3. For the same composition, the common tangent
gives the Gibbs free energy G4 of the mixture of α-B12 and TiB2 at equilibrium. G4 < G3 implies
the formation of α-B12 from TiB2. The tangent to GTiB2 at composition x2 (dotted line) gives
the chemical potentials µTiB2

Ti and µTiB2
B in TiB2 at this composition. It can be seen that µTiB2

Ti
< µTiB2�α−B12

Ti for x2, which is also equivalent to the condition G4 < G3 (formation of α-B12).
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Figure B.3. Gibbs free energies G (in eV/atom) of the solid solution (Al) and Al3Ti as a function
of the Ti composition in the Al-Ti system. The green line stands for the common tangent.
Its intersections with the axes xTi = 0 and xTi = 1 give respectively the equilibrium chemical
potentials of Al and Ti noted µ(Al)�Al3Ti

Al and µ(Al)�Al3Ti
Ti . The Gibbs free energy of Al3Ti at its

equilibrium composition xeq with (Al) is noted G6. For the same composition, the dotted line
gives the energy G5 of a mixture of Al and Ti atoms present respectively in the (Al) and TiB2

phases at the chemical potentials µ(Al)�Al3Ti
Al and µTiB2

Ti . Since G6 < G5, the formation of Al3Ti
from (Al) and TiB2 is promoted. It is equivalent to the condition µ(Al)�Al3Ti

Ti < µTiB2
Ti .

34



Figure B.4. Gibbs free energies G (in eV/atom) of the solid solution (Al) and AlB2 as a function
of the Al composition in the B-Al system. The green line stands for the common tangent. Its
intersections with the axes xAl = 0 and xAl = 1 give respectively the equilibrium chemical
potentials of B and Al noted µ(Al)�AlB2

B and µ(Al)�AlB2
Al . The Gibbs free energy of AlB2 at its

equilibrium composition xeq with (Al) is noted G8. For the same composition, the dotted line
gives the energy G7 of a mixture of Al and B atoms present respectively in the (Al) and TiB2

phases at the chemical potentials µ(Al)�AlB2
Al and µTiB2

B . Since G8 < G7, the formation of AlB2

from (Al) and TiB2 is promoted. It is equivalent to the condition µ(Al)�AlB2
B < µTiB2

B .
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C Effect of Al deformation on surface energies and interface energies

Table C.1. Interface energies σ (in mJ/m2) in Ti-rich conditions (∆µTi = −1.594 eV ) obtained
for the different configurations by considering the surface energy of the deformed Al slab due to
the coherent interface.

Configuration PBC FSC1 FSC2
I1 2374 ± 37a 2550 ± 30 2284
I2 785 ± 17 835 ± 44 (1450 [20]) 739 ± 173 (1000 [21])
I3 794 ± 18 800 ± 70 774 ± 34
I4 1838 ± 23 1943 ± 50 (3000 [20]) 1836 ± 41
I5 2028 ± 19 2081 ± 11 2050 ± 102 (2860 [21])
I6 2155 ± 14 2213 ± 41 2163 ± 52

MT Ti 793 ± 13 834 ±244 754 ± 8
MT B1 1845 ± 26 1899 ±16 1902 ± 7
MT B2 2151 ± 34 2281 ± 76 2023 ± 271

a. Uncertainty obtained from linear regression

Table C.2. Interface energies σ (in mJ/m2) in B-rich conditions (∆µTi = −3.043 eV ) obtained
for the different configurations by considering the surface energy of the deformed Al slab due to
the coherent interface.

Configuration PBC FSC1 FSC2
I1 3669 ± 40a 3920 ± 34 3572
I2 2065 ± 17 2165 ± 50 (3228 [20]) 2049 ± 189 (2826 [21])
I3 2086 ± 20 2150 ± 76 2080 ± 37
I4 547 ± 21 598 ± 50 (1030 [20]) 522 ± 44
I5 749 ± 17 765 ± 11 746 ± 87 (1780 [21])
I6 864 ± 14 881 ± 39 865 ± 50

MT Ti 2085 ± 15 2183 ±256 2044 ± 14
MT B1 555 ± 24 561 ±17 618 ± 2
MT B2 863 ± 34 946 ± 69 745 ± 271

a. Uncertainty obtained from linear regression
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D Dispersion of χ values in the simulations
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E Work of adhesion

According to [20, 21], the stability of the Al/TiB2 interfaces can be deduced from the work of
adhesion. In [20], it is defined as follows:

WFSC1
ad (χ, p) =

1

A
(EAl

tot + ETiB2
tot − EAl/TiB2

tot ) (E.1)

whereas in [21]:

WFSC2
ad (χ, p) =

1

2A
(2EAl

tot + ETiB2
tot − EAl/TiB2

tot ) (E.2)

Its definition then depends on the choice of the FSC1 or FSC2 systems used to calculate it.
By injecting equations (6) and (11) in equation (E.1), WFSC1

ad becomes:

AWFSC1
ad (χ, p) = (2AγAl +nAlµAl)+(2AγTiB2 +nTiµ

TiB2
Ti +nBµ

TiB2
B )− (∆Emulti(p, χ)+

∑
i

niµi)

(E.3)
By reporting equation (9) in equation (E.3) and after simplification of the chemical potential

terms, the following relation between WFSC1
ad and σFSC1 is obtained:

WFSC1
ad (χ, p) = (γAl + γTiB2)− σFSC1 − 1

A
eel(χ)Vlp (E.4)

Similar expression can be established for the work of adhesion in FSC2 systems:

WFSC2
ad (χ, p) = (γAl + γTiB2)− σFSC2 − 1

2A
eel(χ)Vlp (E.5)

In principles equations (E.4) and (E.5) show that for the same values of p, χ, γTiB2 and γAl,
it is equivalent to determine the most stable configuration by searching for the minimum of σ
(interface energy criterion) or the maximum ofWad (work of adhesion criterion). Namely between
two configurations for a given Ti or B termination the following equality holds ∆Wad = −∆σ.
The values of WFSC1

ad and WFSC2
ad are calculated in this work with the same number of Al and

TiB2 layers as in [20, 21] and reported in Tables E.1 and E.2 for all the configurations. Values
of σ are recalled in these tables in order to compare the results given by the different criteria.
Moreover, WFSC1

ad and WFSC2
ad obtained respectively in [20] and [21] are indicated for discussion.
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Table E.1. Relative stabilities of Ti and B-terminated configurations for FSC1 systems predicted
by the interface energy and work of adhesion criteria. Top (respectively down) configurations of
the table correspond to the most (respectively least) stable ones. Interface energies σ are given
for ∆µTi =-1.594 eV. All values in brackets are in J/m2.

This work Han et al. [20]

σFSC1 WFSC1
ad (χ = 0.52, p = 12) WFSC1

ad + 1
Aeel(χ)Vlp WFSC1

ad (χ = 0.52, p = 12)

T
i-t

er
m
in
at
ed MT Ti (0.83) I3 (2.70) MT Ti (3.20) I2,I3,MT Ti

I3 (0.85) I2 (2.68) I3 (3.18) (3.18)
I2 (0.90) MT Ti (2.46) I2 (3.13)
I1 (2.58) I1 (1.13) I1 (1.44) I1 (3.17)

B
-t
er
m
in
at
ed MT B1 (1.96) I4 (2.34) MT B1 (2.74) I4 (2.77)

I4 (1.99) MT B1 (2.20) I4 (2.71) MT B1 (2.44)
I5 (2.16) I5 (2.11) I5 (2.54) I5,I6 (2.43)
I6 (2.28) MT B2 (2.03) I6 (2.42)

MT B2 (2.34) I6 (2.03) MT B2 (2.36)

Table E.2. Relative stabilities of Ti-terminated configurations for FSC2 systems with the
interface energy and work of adhesion criteria. Top (respectively down) configurations of the
table correspond to the most (respectively least) stable ones. Interface energies σ are given for
∆µTi =-1.594 eV. All values in brackets are in J/m2.

This work Deng et al. [21]

σFSC2 WFSC2
ad (χ = 0.58, p = 19) WFSC2

ad + 1
2Aeel(χ)Vlp WFSC2

ad (χ = 0.58, p = 19)

T
i-t

er
m
in
at
ed I2 (0.78) MT Ti (2.72) I2 (3.22) I2 (3.39)

I3 (0.82) I3 (2.45) MT Ti,I3 (3.18) MT Ti (3.38)
MT Ti (0.83) I2 (2.40) I1 (3.24)

I1 (2.36) I1 (1.00) I1 (1.64) I3 (3.1)

B
-t
er
m
in
at
ed I4 (1.88) I4 (2.25) I4 (2.79) MT B2,I5 (2.24)

MT B1 (1.99) MT B1 (2.18) MT B1 (2.66)
I5 (2.10) MT B2 (2.05) I5 (2.55)

MT B2 (2.12) I6 (1.83) MT B2 (2.53) I4 (2.11)
I6 (2.23) I5 (1.82) I6 (2.43) I6 (1.87)
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