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 37 

Abstract 38 

The presence of natural organic matter in water resources induces the formation of potentially 39 

harmful disinfection by-products during drinking water disinfection. However, the identification of 40 

disinfection by-product precursors from the complex natural organic matter mixture is very 41 

challenging. Therefore, many studies focused on the fractionation of natural organic matter with 42 

membranes or resins to better understand how and which organic matter fractions react during 43 

chlorination. The outcomes of these studies are rather variable, therefore, a meta-analysis was 44 

performed to compare the reactivity of the different fractions towards (un)regulated disinfection by-45 

products. In this study, we review for the first time the influence of key parameters such as 46 

chlorination time and dose, specific ultraviolet absorbance (SUVA254 = UV absorbance at 254 nm 47 

divided by the organic matter concentration) and the column capacity factor used during resin 48 

fractionation by collecting results from almost 400 water samples from more than 80 different 49 

publications. The major outcomes were: 1) hydrophobic compounds have 10-20 % higher reactivity 50 

to both trihalomethane and haloacetic acid formation compared to hydrophilic compounds in waters 51 

with high SUVA254 (>2 L/(mg∙m)), while hydrophobic and hydrophilic compounds have equal 52 

reactivity in waters with low SUVA254. On the other hand, hydrophilic compounds are 20-80 % more 53 

reactive towards emerging disinfection by-products, regardless of SUVA254; 2) chlorination time and 54 

dose seem to not change the reactivity ratio between the different fractions; 3) an increase in 55 

column capacity factor can shift this ratio from hydrophobic to hydrophilic fractions and 4) dead-end, 56 

stirred cell ultrafiltration membrane fractionation might not always produce sharply separated 57 

fractions, which is mainly due to fouling. Therefore, no clear correlation could be found between 58 

membrane fractions and all investigated disinfection by-product groups. 59 
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1 Introduction 60 

Natural organic matter, ubiquitous in sources of drinking water, negatively affects drinking water 61 

quality. It can contribute to an undesired taste, odor or color of the drinking water and to the 62 

formation of biofilms and (pathogenic) bacterial regrowth by acting as nutrients in the distribution 63 

system. Chlorine is the most commonly used disinfectant to inactivate waterborne pathogens and to 64 

maintain a disinfectant residual in the distribution network. However, chlorine reacts with natural 65 

organic matter to form various disinfection by-products and exposure to these by-products has been 66 

associated with health issues such as bladder cancer (Diana et al., 2019). More than 700 disinfection 67 

by-products have already been identified, where mainly four trihalomethanes and five haloacetic 68 

acids are regulated in different countries (Richardson et al., 2007). The USA has set maximum 69 

contaminant limits of trihalomethanes and haloacetic acids in drinking water to 80 and 60 µg/L 70 

respectively, while trihalomethane levels in the EU cannot exceed 100 µg/L. Haloacetic acid 71 

concentrations were recently limited in the EU to 60 µg/L (Council of the European Union, 2020; EPA, 72 

2010).  73 

Unregulated disinfection by-products such as haloacetonitriles, haloacetamides or haloketones are 74 

formed in lower concentrations (typically low µg/L to ng/L) (Richardson et al., 2007). Nevertheless, 75 

the toxicity of these compounds is higher than that of the regulated by-products and thus, these 76 

compounds may cause greater public health issues. The presence of bromide and/or iodide in the 77 

water matrix leads to the formation of brominated and iodinated disinfection by-products (Criquet 78 

and Allard, 2021). These compounds are even more genotoxic and cytotoxic than their chlorinated 79 

analogues, e.g. iodoacetic acid, which is the most genotoxic compound identified to date (Dong et 80 

al., 2019; Wagner and Plewa, 2017).  81 

In the past decades, many research focused on identifying natural organic matter compounds 82 

responsible for disinfection by-product formation. However, dissolved organic carbon, i.e. the 83 

fraction that passes through a 0.45 µm filter, is a very complex mixture of aromatic and aliphatic 84 

hydrocarbons. The concentration, composition and chemistry are highly variable and depend on the 85 

natural organic matter source, the season, temperature, pH and ionic strength of the water (Filella, 86 

2009; Leenheer and Croue, 2003). Therefore, dissolved organic carbon is characterized by bulk 87 

parameters such as total organic carbon and specific ultraviolet absorbance at 254 nm (SUVA254) or 88 

by more in-depth characterization techniques such as nuclear magnetic resonance spectroscopy, 89 

Fourier transform infrared spectroscopy and 3D-fluorescence excitation-emission matrices (Filella, 90 

2009; Matilainen et al., 2011). 91 

This characterization is however very difficult due to the simultaneous presence of hundreds of 92 

different molecules. Therefore, with fractionation processes, organic matter is split beforehand into 93 
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several fractions with similar physical or chemical properties. This can be done analytically by the use 94 

of chromatographic methods such as high performance-size exclusion chromatography or field flow 95 

fractionation, which both split the organic matter by size and shape (Matilainen et al., 2011; Pan et 96 

al., 2016). Huber et al. (2011) developed a method that consists of liquid chromatography coupled to 97 

both an organic carbon detector and organic nitrogen detector. This technique is capable of 98 

identifying five different fractions of organic matter; (a) biopolymers, (b) humic substances, (c) 99 

building blocks, (d) low molecular weight acids and (e) low molecular weight neutrals.  100 

With analytical fractionation, the different fractions are lost after analysis, because they are not 101 

readily available as separate extracts nor in adequate volumes to conduct further experiments. 102 

Therefore, preparative fractionation such as membrane or resin fractionation is performed to split 103 

natural organic matter into available fractions or extracts with similar physical (with membranes) or 104 

chemical (with resins) properties in sufficient quantities (Matilainen et al., 2011; Ratpukdi et al., 105 

2009). Subsequently, researchers seek to correlate these properties to certain water-related issues, 106 

such as disinfection by-product formation, bacterial regrowth or membrane fouling behavior which 107 

might be overly expressed with a certain fraction. Finally, precise solution strategies can be 108 

developed targeting this specific fraction (Krzeminski et al., 2019; Pi et al., 2021; Sambo et al., 2020; 109 

Yin et al., 2019). 110 

Membrane and resin fractionation are widely used in an attempt to identify disinfection by-product 111 

precursors. In this respect, fractionation parameters such as membrane and resin type, or 112 

chlorination parameters such as chlorination dose, reaction time, pH and temperature are key 113 

factors for the outcome and the interpretation of the results. Although research already looked into 114 

the influence of chlorination parameters on bulk samples (Hua and Reckhow, 2008; Iriarte et al., 115 

2003), no assessments are done so far on how individual fractions react on certain changes in 116 

chlorination parameters. 117 

Therefore, this review will focus for the first time on (i) all the different membrane and resin 118 

fractionation approaches used in the identification of disinfection by-product precursors and assess 119 

their advantages and drawbacks and, (ii) critically evaluate if certain fractionation and chlorination 120 

parameters can influence the formation of both regulated and unregulated disinfection by-products 121 

in these fractions and identify their precursors. 122 

2 Factors controlling fractionation and disinfection by-product 123 

formation 124 

Many research has been executed in the past to identify the most important precursors for 125 

disinfection by-product formation. However, several approaches were used in these attempts. It is 126 
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therefore important to identify the parameters that are varied among the different papers, because 127 

this can possibly affect the results and outcome. In this review, papers will be separated based on 128 

their method and the influence of different parameters will be assessed to make a clear, statistical 129 

comparison regarding disinfection by-product formation. 130 

For membrane fractionation, both the membrane material and the pressure can influence the 131 

filtration. Overall, regenerated cellulose is used and the pressure varies between 0.2 and 3.5 bar, 132 

which is believed not to change the fractionation significantly (section 3.1). Furthermore, it appeared 133 

that for resin fractionation, not the resin type, but the column capacity factor (k’) is the only 134 

parameter that differs largely between papers, having a value of 50 or 100 (Leenheer, 1981; Malcolm 135 

and Maccarthy, 1992). Kitis et al. (2002) showed a gradual increase in trihalomethane and haloacetic 136 

acid formation in a particular fraction when changing the column capacity factor from around 30 to 137 

105 (section 4.1 for further discussion).  138 

Chlorine is the principal disinfectant used in drinking water, an extensively studied reactant for 139 

disinfection by-product formation potential and therefore, the only disinfectant reviewed here. 140 

Temperature, pH, reaction time and chlorine dose are the 4 main parameters controlling disinfection 141 

by-product formation kinetics (Hua and Reckhow, 2008). Ambient temperature and neutral pH are 142 

reported in all papers collected and will therefore be assumed constant (sections 3 and 4). On the 143 

other hand, the reaction time and chlorine dose is very variable among papers. Short reaction times 144 

are mostly accompanied with low free chlorine residual (~1 mg Cl2/L), while during long exposure, 145 

chlorine is added in excess to seek reaction completion (~3 - 5 mg Cl2/L chlorine residual), as followed 146 

by different APHA standard methods for the examination of water and wastewater such as 5710B 147 

(sections 3 and 4). While the uniform formation condition test with short reaction time and low 148 

chlorine dose illustrates distribution system conditions, the formation potential test determines a 149 

maximal amount of disinfection by-products that could be formed through the complete reaction of 150 

the disinfection by-product precursors with chlorine in a sample (Kanan and Karanfil, 2020).  151 

Finally, specific ultraviolet absorbance (SUVA254) is one of the most frequently used parameters to 152 

characterize natural organic matter in a water source. SUVA254 is defined as the absorbance of UV at 153 

254 nm divided by the organic matter concentration (Ho et al., 2013). This wavelength is especially 154 

absorbed by aromatic species (Matilainen et al., 2011). In this review, the threshold between high 155 

and low SUVA254 waters is set at 2 L/(mg∙m). Since resin fractionation is mainly based on 156 

hydrophobicity, this parameter might have an important role and will be included together with the 157 

chlorination time, dose and column capacity factor when assessing the reactivity of different 158 

fractions towards disinfection by-product formation. 159 
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3 Membrane fractionation 160 

3.1 Principle of membrane fractionation 161 

Generally, a series of ultrafiltration membranes with decreasing molecular weight cut-offs are used 162 

to prepare fractions with different size-ranges (Fig. 1a). Regenerated cellulose membranes in dead-163 

end stirred cell configuration is the most frequently applied method. The molecular weight cut-off of 164 

the membranes range from 0.5 kDa up to 100 kDa or even 500 kDa (Chang et al., 2001; Goslan et al., 165 

2004; Hu et al., 2015; Hua and Reckhow, 2007b; Hua et al., 2015; Özdemr, 2014; Wei et al., 2008b; 166 

Xu et al., 2007; Zhang et al., 2020b; Zhao et al., 2009).  167 
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Generated membrane fractions are defined as a molecular weight range which is based on the 168 

molecular weight cut-off of the membranes used, e.g. molecules that pass a membrane with a 169 

molecular weight cut-off of 100 kDa, but are rejected by a membrane with one of 30 kDa are defined 170 

as the 30-100 kDa fraction. This will be further called the theoretical molecular weight range of a 171 

fraction. However, Goslan et al. (2004) and Zhao et al. (2009) characterized their generated 172 

membrane fractions with size exclusion chromatography coupled to a ultraviolet detector at 254 nm. 173 

From this, it was concluded that the chromatograms of all fractions from the respective paper are 174 

largely overlapping. Furthermore, Zhao et al. (2009) reported that the apparent mean molecular 175 

weight values of the fractions measured from the chromatography were lower than expected from 176 

the molecular weight cut-offs.  177 

This observation was also confirmed by other analytical techniques such as flow-field flow 178 

fractionation (Assemi et al., 2004). Here, the minimum, maximum and mean molecular weight value 179 

from each membrane fraction was determined. Fig. 2 shows the difference between the theoretical 180 

molecular weight range (crossed pattern bars) and the real molecular weight range of a fraction 181 

measured with flow-field flow fractionation (solid bars). Apart from the prominent overlap between 182 

the fractions, it can be seen that the 10-30 kDa and > 30 kDa fraction only contain molecules which 183 

are much smaller than 10 kDa, meaning that molecules bigger than 10 kDa were not present in the 184 

raw water. However, it is contra-intuitive that molecules smaller than 10 kDa were retained by the 185 

30 kDa membrane. For ultrafiltration membrane fractionation, most authors use a dead-end stirred 186 

cell configuration. Here, the water flow is perpendicular to the membrane resulting in accumulation 187 

of the retained compounds and thereby inducing fouling onto the membrane. This fouling layer will 188 

act as an extra barrier, possibly retaining molecules smaller than the molecular weight cut-off of the 189 

membrane. Furthermore, the pore sizes of membranes are known not to be uniform, but to have a 190 

pore size distribution (Mulder, 1991). Therefore, molecular weight cut-off is defined as the molecular 191 

weight of compounds that are retained by the membrane for only 90 %, which might explain the 192 

partial overlap between the fractions (Chow et al., 2005; Zhao et al., 2009).  193 

An alternative approach to perform a membrane fractionation was recently developed by Yin et al. 194 

(2019) (Fig. 1b). With the use of both a nanofiltration and ultrafiltration membrane in spiral wound 195 

modules, three distinct fractions from seawater were successfully obtained and characterized by 196 

liquid chromatography, namely (i) a fraction containing 95 % biopolymers, (ii) a fraction with 93% 197 

humic substances and their building blocks and (iii) a 87 % low molecular weight compound fraction 198 

(Yin et al., 2019). After pretreating a raw water sample with a 0.2 µm filter to remove the particulate 199 

matter, nanofiltration was performed to collect the low molecular weight molecules in the permeate 200 

stream. Humic substances and biopolymers are rejected by the nanofiltration membrane and are fed 201 

to a subsequent ultrafiltration membrane in which humic substances and biopolymers are separated 202 
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on respectively the permeate and the retentate side. Diafiltration is performed in each step to 203 

ensure a higher purity of the fractions (Yin et al., 2019). 204 

 205 

Fig. 1 (a) Dead-end ultrafiltration membrane fractionation of natural organic matter into five fractions (F1-5). 206 
Their molecular weight range is based on the molecular weight cut-off of the membrane (presented in the upper 207 
right corner of the rectangle) (b) Crossflow membrane fractionation by Yin et al. (2019) using consecutive nano- 208 
(NF) and ultrafiltration (UF) processes to split organic matter present in seawater into  biopolymers (F.BP), humic 209 
substances & building blocks (F.HS&BB) and low molecular weight molecules (F.LMW). Demineralized (DI) water is 210 
added during the process to increase the purity of the fractions. Reprinted from [Water Research, 159, Wenqiang 211 
Yin, Xin Li, Stanislaus Raditya Suwarno, Emile R. Cornelissen, Tzyy Haur Chong, Fouling behavior of isolated 212 
dissolved organic fractions from seawater in reverse osmosis (RO) desalination process,385-396, copyright (2019)] 213 
with permission from Elsevier 214 

 215 
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 216 

Fig. 2 Visualization of the results from Assemi et al. (2004) where organic matter in water samples from (a) Hope 217 
valley and (b) Myponga reservoir was fractionated into 5 fractions by dead-end ultrafiltration membrane 218 
fractionation and subsequently analyzed by flow-field flow fractionation (Flow-FFF). Each fraction is plotted on the 219 
x-axis and their theoretical molecular weight (MW)-range is determined by the molecular weight cut-off of each 220 
membrane. This range is visualized by cross pattern bars plotted on the y -axis. Flow-field flow fractionation (Flow-221 
FFF) was used to determine the real molecular weight-range of each fraction, which is shown by solid bars plotted 222 
on the y-axis. A magnification of (a) and (b) between 0 and 10 kDa is given on the right side of these graphs.  It is 223 
clear that the real molecular weight range of a fraction can differ substantially from its theoretical range. 224 
Furthermore, the real molecular weight range of the fractions are largely overlapping, meaning that the 225 
separation of organic matter based on size was unsuccessful. 226 
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Although membrane fractionation is a relatively fast and cheap method through the use of 227 

commercially available membranes, it seems to lack the ability to produce sharply separated 228 

fractions. The two main causes could be (i) the molecular weight cut-off of a membrane is not strict 229 

and (ii) dead-end cell operation causing fouling can influence the retention of all compounds. 230 

Therefore, care should be taken when interpreting the results of different studies using ultrafiltration 231 

fractionation, since it is not guaranteed that the fractions really contain the molecular weight range 232 

as defined by the molecular weight cut-offs of the ultrafiltration membranes. A crossflow filtration 233 

seems more reliable, since it reduces fouling and has the ability to pass the feedwater several times 234 

over the membrane, allowing the gradual removal of the desired compounds with diafiltration. This 235 

will however dilute the final concentrations in the membrane fractions. The relationship between 236 

membrane fractions and disinfection by-product formation is extensively studied and will be 237 

discussed in the next section. 238 

3.2 Identification of membrane fractions involved in disinfection by-product 239 

formation 240 

Fig. 3 represents the specific trihalomethane formation potential after different chlorination times 241 

and different specific ultraviolet absorbance (SUVA254) values in several membrane fractions (section 242 

6 for Methods). SUVA254 is defined as the absorbance of ultraviolet light at 254 nm divided by the 243 

organic matter concentration (Ho et al., 2013). From this, it appears that the reactivity for 244 

trihalomethane formation increases when the molecular weight of organic material decreases, 245 

although the correlation remains weak. After 48 h with low chlorine dose or after 7 days with high 246 

chlorine dose, there is a clear difference between the highest and lowest membrane fractions. Here, 247 

the < 1 kDa fraction has significantly higher specific formation potential compared to the > 10 kDa 248 

fraction. On the other hand, only a small, non-significative discrepancy is seen between the highest 249 

(> 10 kDa) and lowest (< 1 kDa) membrane fractions after 24 h (low chlorine dose) or 72 h (high 250 

chlorine dose). It seems that SUVA254 has no influence on the results, since fractionated waters with 251 

either high or low SUVA254 give a same trend in specific trihalomethane formation potential (Fig. 252 

3a,c).  253 
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 254 

Fig. 3 Specific trihalomethane formation potential (%) in different membrane fractions after (a) 24h, high or not 255 
available (NA) specific ultraviolet absorbance at 254 nm (SUVA254), low chlorine dose (5 water samples)  (b) 48h, 256 
high and low SUVA254, low chlorine dose (6 water samples) (c) 72h, low SUVA254 or not available, high chlorine 257 
dose (5 water samples) and (d) 7 days, SUVA254 is high, low or not available, high chlorine dose (29 water 258 
samples). * = statistical difference, ° = outlier. The specific trihalomethane formation potential slightly increases 259 
towards smaller molecular weight fractions. SUVA254 or chlorine dose seem not to have an influence on this trend.  260 

Moreover, di-halogenated acetic acid formation follows the same relationship as trihalomethanes 261 

between molecular weight and formation potential, since the < 1 kDa fraction has significantly higher 262 

formation potential compared to 3-10 kDa and > 10 kDa fraction (Fig. 4a). This trend is not visible at 263 

all for tri-halogenated acetic acid formation, where all 4 fractions have the same formation potential 264 

behavior (Fig. 4b). When overall specific haloacetic acid formation potential is measured, a small 265 

increase in reaction potential is seen after 7 days of reaction for lower molecular weight fractions, 266 

although it was not significant (Fig. 4d). However, after 72 h, an opposite trend is noticeable with a 267 

maximum formation potential in the 5-10 kDa fraction (Fig. 4c). No assessment of the effect of 268 

SUVA254 could be made due to a lack of data. Table S1 provides the data collected for emerging 269 

disinfection by-products, but this dataset is too limited to draw any conclusion (Ge et al., 2020; Hua 270 

et al., 2015; Hua et al., 2020; Lin et al., 2014; Zhang et al., 2021; Zhang et al., 2020b).  271 
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 272 

Fig. 4 Specific haloacetic acid formation potential  (%) in different membrane fractions after (a) 48h, di-273 
halogenated acetic acids (di-HAA), high and low specific ultraviolet absorbance at 254 nm (SUVA254), low chlorine 274 
dose (6 water samples) (b) 48h, tri-halogenated acetic acids (tri-HAA), high and low SUVA254, low chlorine dose (6 275 
water samples) (c) 72h, low SUVA254 or not available (NA), high chlorine dose (6 water samples) and (d) 7 days, 276 
SUVA254 is high, low or not available, high chlorine dose (14 water samples). * = statistical difference, ° = outlier. 277 
Specific di-halogenated acetic acid formation is higher towards lower molecular weight fractions, while all 278 
fractions have the same formation potential for tri -halogenated acetic acids. No correlation was established when 279 
all haloacetic acids are included. 280 

Also in literature, conflicting trends between specific trihalomethane formation potential and 281 

molecular weight range are stated. For example, the specific formation potential is reported to 282 

increase when the molecular weight of the fractions decreases, while on the other hand authors 283 

have reported a peak in specific formation potential in medium molecular weight fractions. In 284 

contradiction to the above findings, increasing formation potential with increasing molecular weight 285 

have also been reported and some studies show no correlation at all between the formation 286 

potential and molecular weight. Conflicting conclusions exist as well for both specific di-halogenated 287 

and tri-halogenated acetic acid formation potentials and emerging disinfection by-products (An et al., 288 

2017; Avsar et al., 2015; Chang et al., 2001; Chiang et al., 2002; Gang et al., 2003; Ge et al., 2020; 289 

Goslan et al., 2004; Hu et al., 2015; Hua and Reckhow, 2007b; Hua et al., 2015; Hua et al., 2020; 290 

Karapinar et al., 2014; Kitis et al., 2002; Lin et al., 2014; Liu et al., 2011; Özdemr, 2014; Pi et al., 2021; 291 

Pramanik et al., 2015; Wei et al., 2008a; Wei et al., 2008b; Xu et al., 2007; Xu et al., 2011; Zhang et 292 

al., 2021; Zhang et al., 2020b; Zhang et al., 2010; Zhang et al., 2018; Zhao et al., 2006; Zhao et al., 293 

2009). 294 

In addition, Hua et al. (2020) analyzed waters with both high and low SUVA254 values, including 295 

commercial humic acid as high SUVA254 source and a surface water as low SUVA254 source. Here, high 296 
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molecular weight compounds (> 30 kDa) contributed the most to specific regulated and unregulated 297 

disinfection by-product formation potential. Precursors from high SUVA254 waters showed a clear 298 

humic-acid like signal with high molecular weight, while precursors from low SUVA254 waters showed 299 

a high molecular weight protein-like signal. On the other hand, both high and low molecular weight 300 

fractions have been indicated as having high regulated and unregulated disinfection formation 301 

potential consisting of humic acid-like and/or soluble microbial by-product-like compounds (Hua et 302 

al., 2007; Zhang et al., 2020b). The latter ones cover a wide range of molecular weight (0.5-50 kDa) 303 

(Barker and Stuckey, 1999). Furthermore, Zhang et al. (2016) showed with commercial humic acids 304 

that the formation of iodinated trihalomethanes increases with molecular weight.  305 

The aforementioned SUVA254 or molecular weight correlations were however not visible when data 306 

from all papers were taken together. Regarding the previous discussion on overlapping fractions in 307 

membrane fractionation (section 3.1), this could be an important drawback in the studies which 308 

intended to discriminate disinfection by-product formation on molecular weight. It would be 309 

beneficial to optimize the membrane fractionation approach. A possible starting point for this could 310 

be the fractionation protocol developed by Yin et al. (2019) (section 3.1). Analyzing trihalomethanes 311 

and haloacetic acid formation potentials on well-defined fractions might clarify the most important 312 

natural organic matter precursors.  313 

Another observation made in literature is that the lowest molecular weight fractions produce 314 

relatively more brominated disinfection by-products and therefore, it has been stated that low 315 

molecular weight compounds are more reactive towards bromine (Hu et al., 2015; Xu et al., 2007). 316 

Nonetheless, the bromide-to-total organic carbon ratio in the different fractions will change 317 

depending on the retention of both organics and bromide during membrane filtration. When the 318 

concentration of bromide is adjusted to the initial concentration for all fractions, either the previous 319 

statement is confirmed or no specific trend is seen in bromide incorporation for the different 320 

fractions (Hua and Reckhow, 2007b; Kitis et al., 2002).  321 

In summary, the relationship between molecular weight and disinfection by-product formation 322 

appeared to be very weak. Alternatively, natural organic matter is split based on hydrophobicity 323 

instead of size by the usage of resins. These different techniques will be elaborated in the next 324 

section. 325 

4 Resin fractionation 326 

4.1 Principle of resin fractionation 327 

In resin fractionation, a liquid sample is fed to a polymeric resin adsorbing organic matter which is 328 

subsequently eluted using a solvent of suitable polarity (Minor et al., 2014). Aiken et al. (1979) 329 

introduced this technique for the first time using commercially available non-polar XAD–resins. The 330 
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resins can be composed of styrene-divinylbenzene or methyl-methacrylate polymers (Daignault et 331 

al., 1988; Kim and Yu, 2005). Several modifications have been made over the years to optimize this 332 

method (Matilainen et al., 2011). XAD-8 and XAD-4 are the main resins used in the different 333 

fractionation methods. Since XAD-8 is no longer commercially available, XAD-7HP, DAX-8 or C18 silica 334 

resins have been used as alternatives. XAD-8 and DAX-8 show very comparable physical and chemical 335 

properties and their comparability for aquatic use has been proven (Chow, 2006). XAD-7HP has the 336 

same chemical structure as XAD-8 (polymethyl-methacrylate), but XAD-7HP has a larger surface area 337 

and is more porous (Pan et al., 2016). XAD-4 is composed of non-ionic styrene divinylbenzene 338 

polymer and C18 resins are composed of hydrocarbons bonded to a silica matrix and have generally 339 

higher recoveries than XAD-resins (Minor et al., 2014). 340 

The simplest resin fractionation method generates a hydrophobic and hydrophilic fraction using a 341 

single XAD-8 resin at pH 2 (Fig. 5a). Adsorption onto XAD-resins occurs through aromatic π- electron 342 

and hydrophobic interactions (Bond et al., 2009). Therefore, compounds that are not retained are 343 

defined as hydrophilic compounds. The less hydrophilic compounds are adsorbed on the XAD-8 resin 344 

and defined as the hydrophobic fraction (Aiken et al., 1979; Jung and Son, 2008; Kim and Yu, 2005; 345 

Kim et al., 2006b; Kitis et al., 2002; Liang and Singer, 2003; Thurman and Malcolm, 1981). They are 346 

eluted with sodiumhydroxide at pH 11. Increasing the pH will ionize carboxyl and phenolic hydroxyl 347 

groups and desorb the hydrophobic compounds (Aiken et al., 1979). 348 

An additional step has been added to this method by passing the hydrophilic fraction over a XAD-4 349 

resin at pH 2 (Fig. 5b). The fraction that is not retained, is the hydrophilic (non-acid) fraction. The 350 

fraction that is retained by XAD-4 and eluted at pH 13 with sodiumhydroxide or acetonitrile is called 351 

the transphilic or hydrophilic acid fraction (Aiken et al., 1992; Croué, 2004; Golea et al., 2017; Hu et 352 

al., 2015; Hua and Reckhow, 2007b; Hua et al., 2015; Leenheer et al., 1999; Li et al., 2014; Malcolm 353 

and Maccarthy, 1992; Rho et al., 2019; Song et al., 2009; Tubić et al., 2013; Xu et al., 2007). The 354 

hydrophobic fraction is retained in a similar way as in the previous method with XAD-8, only the pH 355 

used to desorb the fraction is different (pH 11 vs. 13). A 100% effective elution at pH 13 is obtained 356 

due to the (complete) ionization of carboxyl and phenolic hydroxyl groups and a near 100% carbon 357 

recovery is obtained by co-current elution of a 75/25 acetonitrile/water mixture (Aiken et al., 1979; 358 

Croué, 2004). 359 
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  360 

Fig. 5 Resin fractionation schemes to split natural organic matter (NOM) based on hydrophobicity. The numbers 361 
on the pumps represent the sequence of adsorption-desorption. HPO = hydrophobic, HPI = hydrophilic, TPI = 362 
transphilic. A = acid, B = base, N = neutral. Yellow = XAD-8, XAD-7HP or DAX-8 resin; black = XAD-4 resin; orange = 363 
Duolite A7, IRA 93 or WA10 resin; grey = AG-MP-50, Dowex MSC resin (a) HPO-HPI fractionation, (b) HPO-TPI-HPI 364 
fractionation. Acetonitrile can also be used as desorbent instead of sodiumhydroxide, (c) HPO(A+B+N)-HPI(A+B+N) 365 
fractionation. The water solution is acidified to pH =2 after the first run 366 

A very elaborate resin fractionation splits natural organic matter into six fractions: hydrophobic acids, 367 

bases, neutrals and hydrophilic acids, bases and neutrals (Fig. 5c). More detailed information on 368 

organic species present in the water is obtained with this fractionation, which can facilitate 369 

subsequent analysis in different research fields, such as disinfection by-product formation. The most 370 

common method is to pass the sample through the XAD-8 resin twice. After the first run at pH 10 or 371 

without pH adjustment, hydrophobic bases are recovered by desorption with hydrochloric acid, 372 

which protonates the basic compounds. The second run is performed at pH 2, after which 373 

hydrophobic acids are eluted with sodiumhydroxide. This is the same approach as in the previous 374 

methods to obtain the overall hydrophobic fraction. The hydrophobic neutral fraction is obtained by 375 

(freeze-) drying the XAD-8 resin and extracting the compounds from the resin with methanol. DAX-8 376 

and Bond Elute ENV cartridges (styrene-divinyl benzene) are also used for this purpose.  377 

Subsequently, the hydrophilic compounds are split into acids, bases and neutrals by the use of ion 378 

exchange resins. The water sample at pH 2 is introduced to a cation exchange resin (AG-MP-379 

50/Dowex MSC/Strata X-C) which retains the hydrophilic base compounds (Chang et al., 2000; Chang 380 

et al., 2001; Chen et al., 2008; Goss and Gorczyca, 2013; Kanokkantapong et al., 2006b; Lamsal et al., 381 

2012; Leenheer, 1981; Marhaba et al., 2003; Ratpukdi et al., 2009; Zhang et al., 2009; Zhang et al., 382 

2008). These are all strong acid, sulfonated resins with different backbone structures. AG-MP-50 383 

consists of a polystyrene backbone, while Dowex MSC has a styrene-divinylbenzene structure 384 

(Leenheer, 1981; Meyer et al., 2020; Ratpukdi et al., 2009). A weak anion exchange resin 385 

(WA10/Duolite A7/IRA 93/Strata X-AW) retains the hydrophilic acid fraction at pH 2, while the 386 
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hydrophilic neutral compounds are not retained. The anion exchange resins all consist of amine 387 

functionality (primary, secondary or tertiary) with different backbones, going from polystyrene, to 388 

acrylic polymers and even phenol-formaldehyde condensation matrices. Duolite A7 suffers from 389 

severe resin bleeding (Kananpanah et al., 2009; Leenheer, 1981; Marhaba et al., 2003; Miyazaki and 390 

Nakai, 2011; Ratpukdi et al., 2009). Ammoniumhydroxide or sodiumhydroxide are used to desorb 391 

both fractions. Ammoniumhydroxide returns the resins in their hydrogen (cation exchange resin) or 392 

free-base form (anion exchange resin) (Chang et al., 2000; Chang et al., 2001; Chen et al., 2008; Goss 393 

and Gorczyca, 2013; Kanokkantapong et al., 2006b; Lamsal et al., 2012; Leenheer, 1981; Marhaba et 394 

al., 2003; Ratpukdi et al., 2009; Zhang et al., 2009; Zhang et al., 2008). 395 

Resin fractionation is a very common, relatively cheap and widely applied technique with the use of 396 

commercially available resins. The method can be either fast (into hydrophobic-hydrophilic) or time-397 

consuming (into their respective acids, bases and neutrals). It simultaneously concentrates and 398 

fractionates organic matter, but there have been some doubts about possible changes in the 399 

chemical and/or physical nature of the water matrix due to the extreme pH-alterations (Matilainen 400 

et al., 2011; Swietlik et al., 2004). Furthermore, different column capacity factors are used among 401 

different authors. This factor is defined as  402 

    
                                  

                                 
 

and is directly proportional to the volume of water applied on a certain resin volume (Leenheer, 403 

1981). The higher the value, the lower the percentage of hydrophobic compounds that is retained on 404 

a XAD-8 column for one water sample which can influence further assessments (Song et al., 2009). 405 

Also, flow rate and bed height of the column influence the adsorption equilibrium as both 406 

parameters change the contact time between adsorbate and adsorbent (Patel, 2019). These 407 

parameters are, however, very often lacking in the method sections. 408 

In general, studies investigating disinfection by-product precursors with resin fractionation use one 409 

of the abovementioned resins and fractionation techniques. The only parameter that varies 410 

substantially is the column capacity factor which will therefore be considered in the next section 411 

when comparing the results of these studies.  412 

4.2 Resin fractions involved in disinfection by-product formation 413 

4.2.1 Trihalomethanes 414 
When looking at the simplest fractionation technique, namely splitting natural organic matter into a 415 

hydrophobic and hydrophilic fraction, results are quite consistent (Fig. 6, section 6 for Methods). The 416 

hydrophobic fraction produces the highest specific trihalomethane formation potential regardless of 417 

chlorination time and SUVA254 (k’ = 100 or undefined). Specific ultraviolet absorbance (SUVA254) is 418 
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defined as the absorbance of ultra violet light at 254 nm divided by the organic matter concentration 419 

(Ho et al., 2013). Up to 72 h and low chlorine dose, hydrophobic moieties have 20 % higher specific 420 

formation potential compared to the hydrophilic fraction (Fig. 6a). After 7 days, the difference 421 

between the medians even increases to 60 %, although the boxplots themselves show more 422 

variability (Fig. 6b). After 7 days reaction time with high chlorine dose, both fast and slow reacting 423 

compounds will form trihalomethanes, thereby scattering the data (Chang et al., 2001; Chiang et al., 424 

2002; Chiang et al., 2009; Galapate et al., 2001; Goss et al., 2017; Hyung Kim and Yu, 2005; Imai et al., 425 

2003; Jung and Son, 2008; Kim et al., 2006a; Kim and Yu, 2005; Kitis et al., 2002; Kueseng et al., 2011; 426 

Liang and Singer, 2003; Musikavong et al., 2013). The hydrophobic fraction has previously been 427 

implicated as the primary source of trihalomethane precursors with some exceptions (Chow et al., 428 

2005). The discrepancies have been allocated to differences in chlorination methods, but no 429 

thorough assessment was made. 430 

 431 

Fig. 6 Specific trihalomethane formation potential  (%) in the hydrophobic (HPO) and hydrophilic (HPI) fraction 432 
after (a) 24h-48h-72h, high and low specific ultraviolet absorbance at 254 nm (SUVA254), the column capacity 433 
factor (k’) is between 0-100, but in most cases 100, low chlorine dose (25 water samples) (b) 7 days, SUVA254 and 434 
k’ in general not available (NA), high chlorine dose (SUVA254 is 3x high, 1x low and k’ is 2x 50 and 1x 100) (16 water 435 
samples). * = statistical difference. Hydrophobic compounds clearly have a higher specific trihalomethane 436 
formation potential compared to hydrophilic compounds irrespective of SUVA 254 or k’. 437 

When the hydrophilic fraction is passed over the XAD-4 resin to generate the transphilic (or 438 

hydrophilic acid) fraction and the hydrophilic non-acid fraction, the situation becomes more 439 

complex, because the SUVA254 value of the raw water influences the specific trihalomethane 440 

formation potential of the different fractions (Fig. 7). When SUVA254 of the raw water is high 441 

(> 2 L/(mg∙m)), the hydrophobic and transphilic fraction have a similar reaction potential (~30 %) to 442 

trihalomethane formation at short reaction times and low chlorine dose, while hydrophobic 443 

compounds have significantly higher specific trihalomethane formation potential compared to the 444 

transphilic and hydrophilic fraction at long reaction times with high chlorine dosage (Fig. 7a,c). 445 

Conversely, when the SUVA254 level is below 2 L/(mg∙m), hydrophilic organics have equally important 446 
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trihalomethane formation potential as hydrophobic organics at short reaction times (~40 %), while 447 

transphilic organic matter seems slightly more reactive after 7 days of reaction and high chlorine 448 

dose (Fig. 7b,d) (Agbaba et al., 2014; Chowdhury et al., 2008; Fang et al., 2021; Goslan et al., 2002; 449 

Goslan et al., 2004; Hanigan et al., 2013; Hu et al., 2015; Hua and Reckhow, 2007b; Hua et al., 2015; 450 

Li et al., 2014; Lin and Wang, 2011; Lin et al., 2014; Liu et al., 2011; Molnar et al., 2012a; Molnar et 451 

al., 2013; Molnar et al., 2012b; Musikavong et al., 2016; Niu et al., 2015; Phetrak et al., 2016; Pi et al., 452 

2021; Roccaro et al., 2014; Smith and Al Qabany, 2009; Tubić et al., 2013; Wang et al., 2013; Wei et 453 

al., 2008a; Wei et al., 2008b; Xu et al., 2007; Xue et al., 2010; Zhang et al., 2021; Zhao et al., 2013; 454 

Zhi-sheng et al., 2009).  455 

Overall, the hydrophobic fraction is an important contributor to trihalomethane formation at high 456 

SUVA254, especially at long reaction times with high chlorine dosage, while both hydrophobic and 457 

hydrophilic compounds are important at low SUVA254. This observation could not be verified in the 458 

previous fractionation, since only 5 water samples were found to have low SUVA254 values. From 459 

these 5 samples, 4 of them were chlorinated with a low dose between 24 and 72 h. Here, the ratio of 460 

60 % trihalomethane formation from the hydrophobic fraction and 40 % from the hydrophilic 461 

fraction was valid, except for one sample that had a ratio of 53 % versus 47 %. The only water sample 462 

analyzed after 7 days and high chlorine dose showed a ratio of only 37 % trihalomethane formation 463 

from hydrophobic compounds and 63 % from hydrophilic compounds (Chiang et al., 2009; Hyung Kim 464 

and Yu, 2005; Imai et al., 2003; Kim et al., 2006a; Kim and Yu, 2005). 465 

Disinfection by-product formation investigated with natural organic matter surrogates has shown 466 

that activated aromatic moieties in the presence of an electron-donating and ortho-para directing 467 

group have high rate constants towards chlorine reactivity, because hypochlorous acid (an 468 

electrophile) preferentially reacts with electron-rich functionalities in organic molecules. These 469 

moieties will also contribute to high SUVA254 values and reside in the hydrophobic fraction (Bond et 470 

al., 2012a; Bond et al., 2009). When the SUVA254 value is low, other chemical functionalities with 471 

lower reactivities, such as amino acids or carbohydrates (hydrophilic compounds), will become 472 

important especially after longer reaction time and high chlorine dose (Bond et al., 2012a). 473 

Nonetheless, the behavior of the transphilic fraction for both high and low SUVA254 conditions is less 474 

clear. This fraction has been characterized as having greater heteroatom and carboxyl content than 475 

the hydrophobic fraction, but also as having a number of similar properties with the hydrophobic 476 

fraction (Aiken et al., 1992). The C/O, C/H and C/N atomic ratios gradually decrease from 477 

hydrophobic to transphilic to hydrophilic (Croué, 2004). Furthermore, fractionation of surrogates 478 

with different polarities could not identify molecules having clear transphilic character. Surrogates 479 

ending up in the transphilic fraction were evenly distributed in either the hydrophobic or hydrophilic 480 

fraction (Bond et al., 2009). This implies that depending on the natural organic matter composition of 481 
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the water source, the transphilic fraction can have more hydrophobic or hydrophilic character, which 482 

will influence its specific trihalomethane formation potential. 483 

Within the hydrophobic fraction in both resin fractionation methods, humic acids are the most 484 

important precursors. Humic acids precipitate when acidifying the hydrophobic fraction to pH = 1, 485 

while fulvic acids remain dissolved (Agbaba et al., 2014; Goslan et al., 2002; Goslan et al., 2004; Jung 486 

and Son, 2008; Molnar et al., 2012a; Molnar et al., 2012b; Tubić et al., 2013; Zhi-sheng et al., 2009). 487 

  488 

Fig. 7 Specific trihalomethane formation potential (%) in the hydrophobic (HPO), transphilic (TPI) and hydrophilic 489 
(HPI) fraction after (a) 24h-48h, high specific ultraviolet absorbance at 254 nm (SUVA254), the column capacity 490 
factor k’ is 50 (1x 100) or not available (NA), low chlorine dose (13 water samples) (b) 24h-48h, low SUVA254, k’ is 491 
50 or not available, low chlorine dose (7 water samples) (c) 7 days, high SUVA254, k’ is 50 or not available, high 492 
chlorine dose (39 water samples) and (d) 7 days, low SUVA254, k’ is 50 or not available, high chlorine dose (11 493 
water samples). * = statistical difference, ° = outlier. When the SUVA254 of the raw water is greater than 2 494 
L/(mg∙m), the HPO fraction contributes the most to trihalomethane formation, especially at long chlorination time 495 
with high chlorine dose. When the SUVA254 is below 2, the hydrophobic and hydrophilic fraction have equal 496 
trihalomethane formation potential. The contribution of the transphilic fraction is very variable 497 

Limited data was found for specific trihalomethane formation potential after fractionation of natural 498 

organic matter into hydrophobic and hydrophilic acids, bases and neutrals (Fig. S1). At short reaction 499 

times, the hydrophobic acid fraction seems equivalent to the hydrophilic base fraction, although the 500 

dataset was too small to find statistical differences. The SUVA254 was low, so it confirms the 501 

statement that both hydrophobic and hydrophilic fractions are important in low SUVA254 waters, and 502 

possibly, in more detail the hydrophobic acid and hydrophilic base fraction. At long chlorination 503 

times, however, it is the hydrophobic and hydrophilic base fraction and to a lesser extent the 504 

hydrophobic neutral fraction that have the highest specific trihalomethane formation potential, 505 

especially compared to hydrophilic neutrals (Chang et al., 2000; Chen et al., 2008; Fan et al., 2013; 506 
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Goss and Gorczyca, 2013; Lamsal et al., 2012; Lin et al., 2010; Marhaba and Van, 2000; 507 

Panyapinyopol et al., 2005a; Panyapinyopol et al., 2005b; Rakruam and Wattanachira, 2014; Sharma 508 

et al., 2021; Włodyka-Bergier and Bergier, 2011; Yee et al., 2009; Yee et al., 2006). Bases are defined 509 

as electron donors, thereby promoting the reaction with the electron poor hypochlorous acid (Bond 510 

et al., 2012a). Furthermore, hydrophilic bases have been characterized as amide-like compounds, 511 

while the hydrophilic neutral fraction mainly contains lignin and lipids (Wang et al., 2019). From Fig. 512 

S1, there is thus an indication that lignin and lipids are recalcitrant to the formation of 513 

trihalomethanes, while amide-like compounds might be important precursors. The occurrence of the 514 

hydrophobic acid fraction is less straightforward, however, this is only based on 3 water samples. 515 

The column capacity factor k’ seems to have no influence on the results. Where the factor k’ is 100 in 516 

the hydrophobic-hydrophilic fractionation, it is 50 in the hydrophobic-transphilic-hydrophilic 517 

fractionation. However, in the latter resin technique, data was found where both values have been 518 

used during a 72h chlorination time with high chlorine dose (Fig. S2). Changing k’ from 50 to 100 will 519 

result in less adsorption of hydrophobic and transphilic compounds on XAD-8 and XAD-4 respectively 520 

and this results into a changing trend in specific trihalomethane formation potential from the 521 

hydrophobic fraction as most important precursor (Fig. S2a) to the hydrophilic fraction (Fig. S2b) (Liu 522 

et al., 2011; Pi et al., 2021; Roccaro et al., 2014; Song et al., 2009; Zhang et al., 2021). So, although 523 

the column capacity factor k’ value did not affect the comparison between two fractionation 524 

techniques, it stays important to be aware of this value at all times. 525 

Finally, the hydrophilic fraction seems more sensitive to the formation of brominated 526 

trihalomethanes (Agbaba et al., 2014; Chiang et al., 2009; Goss and Gorczyca, 2013; Hu et al., 2015; 527 

Hua and Reckhow, 2007b; Kitis et al., 2002; Li et al., 2014; Liang and Singer, 2003; Molnar et al., 528 

2013; Molnar et al., 2012b; Musikavong et al., 2013; Musikavong et al., 2016; Niu et al., 2015; 529 

Panyapinyopol et al., 2005a; Panyapinyopol et al., 2005b; Tubić et al., 2013; Włodyka-Bergier and 530 

Bergier, 2011; Xu et al., 2007). In this regard, it is important to keep the same bromide-to-total 531 

organic carbon ratio in all fractions. XAD-resins are non-ionic resins thereby not retaining ions (Aiken 532 

et al., 1979; Daignault et al., 1988). Most of the bromide ions will therefore elute with the hydrophilic 533 

fraction. These bromide ions will compete with organic carbon in the reaction with chlorine (rate 534 

constant k (HOCl/Br-) = 1550∙1/Ms) to produce bromine, which subsequently reacts with the total 535 

organic carbon to produce brominated disinfection by-products (Criquet and Allard, 2021). Bromine 536 

reactions towards phenolic moieties, which are important constituents of natural organic matter, are 537 

up to three orders of magnitude greater than for chlorine. This higher reactivity explains the 538 

tendency of brominated disinfection by-product formation even for a low bromide concentration 539 

(Criquet et al., 2015; Heeb et al., 2014). When the bromide-to-total organic carbon ratio is adjusted 540 

in all fractions, hydrophilic moieties are still more reactive towards bromine. This implies that 541 
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bromination occurs with aliphatic precursors while chlorination is more related to aromatic 542 

precursors (Hua and Reckhow, 2007b; Kitis et al., 2002; Liang and Singer, 2003). 543 

In summary, hydrophobic compounds produce the highest specific trihalomethane formation 544 

potential, regardless of SUVA254 or chlorination time, while hydrophilic compounds cannot be 545 

ignored when the SUVA254 of the raw water is low. Finally, base compounds are identified as one of 546 

the most important precursors for trihalomethane formation. Haloacetic acids, as the second 547 

regulated disinfection by-product family, have also been the focal point in research with resin 548 

fractionation and results from these studies will be discussed in the next section. 549 

4.2.2 Haloacetic acids 550 
Fig. 8 shows the results from the hydrophobic-hydrophilic fractionation. As for the trihalomethanes, 551 

the hydrophobic fraction has 60 % contribution to the total specific haloacetic acid formation 552 

potential, while this is 40 % for the hydrophilic fraction at shorter reaction times, low chlorine dose 553 

and high specific ultraviolet absorbance (SUVA254) (Fig. 8a, section 6 for Methods) (Jung and Son, 554 

2008; Kitis et al., 2002; Liang and Singer, 2003). SUVA254 is defined as the absorbance of ultraviolet 555 

light at 254 nm divided by the organic matter concentration (Ho et al., 2013). Two water samples 556 

analyzed after 7 days and high chlorine concentrations also showed around 89% specific formation 557 

potential from the hydrophobic fraction compared to only 11% from the hydrophilic fraction (Chang 558 

et al., 2001; Chiang et al., 2002). On the contrary, three water samples with low SUVA254 showed that 559 

hydrophilic compounds have by far the highest reaction potential at short reaction times and low 560 

chlorine dose (Fig. 8b) (Hyung Kim and Yu, 2005; Kim et al., 2006a; Kim and Yu, 2005).  561 

Furthermore, in the hydrophobic-transphilic-hydrophilic fractionation, the hydrophobic and 562 

hydrophilic fraction are significantly different from the transphilic fraction, but not significantly 563 

different with each other at low SUVA254, especially after 7 days of chlorination time with high 564 

chlorine dose (Fig. 9). Where the hydrophilic fraction has almost 30% higher specific haloacetic acid 565 

formation potential compared to the hydrophobic fraction when organic matter is split into 566 

hydrophobic-hydrophilic only (Fig. 8b), hydrophobic and hydrophilic compounds contribute both to 567 

30-40% of the total specific haloacetic acid formation potential when the fractionation is done into 568 

hydrophobic-transphilic-hydrophilic (Fig. 9b,d) (Fang et al., 2021; Li et al., 2014; Niu et al., 2015). This 569 

might be explained by the different column capacity factors k’ used between the 2 fractionation 570 

techniques (k’=100 vs. k’=50). Limited data after 72h chlorination time with high chlorine dose shows 571 

that the contribution of the hydrophilic fraction becomes higher when this k’-factor changes from 50 572 

to 100 which is in agreement with the higher reaction potential seen for hydrophilic compounds in 573 

the hydrophobic-hydrophilic fractionation (Fig. S3) (Liu et al., 2011; Pi et al., 2021; Roccaro et al., 574 

2014; Zhang et al., 2021).  575 
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Waters fractionated into hydrophobic-transphilic-hydrophilic moieties with high SUVA254 shows that 576 

the hydrophobic fraction has a higher formation potential to some degree when comparing the 577 

medians, although not significant (Fig. 9a,c). The transphilic fraction is in general the least important 578 

fraction to specific haloacetic acid formation potential (Chowdhury et al., 2008; Fang et al., 2021; 579 

Hanigan et al., 2013; Karapinar et al., 2014; Li et al., 2014; Molnar et al., 2012a; Qadafi et al., 2021; 580 

Roccaro et al., 2014; Tubić et al., 2013; Wang et al., 2013; Zhao et al., 2013). 581 

 582 

Fig. 8 Specific haloacetic acid formation potential  (%) in the hydrophobic (HPO) and hydrophilic (HPI) fraction after 583 
(a) 24h-72h, high specific ultraviolet absorbance at 254 nm (SUVA254), column capacity factor k’ is between 0-100, 584 
but in most cases 100, low chlorine dose (15 water samples) (b) 48h-72h, low SUVA254, k’ is 100, low chlorine dose 585 
(3 water samples). * = statistical difference. The hydrophobic fraction has significantly higher specific haloacetic 586 
acid formation potential compared to the hydrophilic fraction when SUVA 254 is high, while the opposite is seen 587 
when SUVA254 of the raw water is low 588 

Data for the fractionation of the hydrophobic and hydrophilic fraction into their acids, bases and 589 

neutrals is limited to 72 h and 7 days of chlorination, high chlorine dose and 7 water samples (Fig. 590 

S4). The bases seem to have a slightly higher influence in specific haloacetic acid formation potential 591 

compared to the other fractions which is in agreement with the preference of the electrophilic 592 

hypochlorous acid to react with bases (Bond et al., 2012a; Chen et al., 2008; Fan et al., 2013; 593 

Kanokkantapong et al., 2006a; Kanokkantapong et al., 2006b; Kanokkantapong et al., 2006c; Lamsal 594 

et al., 2012; Marhaba and Van, 2000). 595 

Some research evaluated the formation of di-halogenated and tri-halogenated acetic acids 596 

separately (Fig. S5). The formation potential of the hydrophobic fraction for tri-halogenated acetic 597 

acids is significantly (~20 %) higher compared to the hydrophilic and transphilic fraction independent 598 

from the column capacity value (Fig. S5c,d). On the other hand, di-halogenated acetic acid formation 599 

potential is 20% higher in the hydrophobic fraction at high SUVA254 and column capacity factor k’ of 600 

100, while the hydrophilic fraction has the highest reaction potential at high and low SUVA254 and k’-601 

factor of 50 (Fig. S5a,b). It has been stated that dichloroacetic acid and trichloroacetic acid follow a 602 

different reaction pathway and that trichloroacetic acid and trihalomethanes are generated by 603 
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common intermediates. This has been concluded by surrogate analysis, where trichloroacetic acid 604 

precursors tend to be more hydrophobic and dichloroacetic acid precursors have more aliphatic 605 

structures (Bond et al., 2012a). These statements could not be completely confirmed with the 606 

collected data. However, it should be noted that these data were drawn from three different papers 607 

only and more research should be done to clarify these assumptions (Hua and Reckhow, 2007b; Hua 608 

et al., 2015; Liang and Singer, 2003). 609 

 610 

Fig. 9 Specific haloacetic acid formation potential (%) in the hydrophobic (HPO), transphilic (TPI) and hydrophilic 611 
(HPI) fraction after (a) 24h, high specific ultraviolet absorbance at 254 nm (SUVA254), column capacity factor k’ is 612 
50 (1x 100) or not available (NA), low chlorine dose (5 water samples) (b) 24h, low SUVA254, k’ is 50 or not 613 
available, low chlorine dose (5 water samples) (c) 7 days, high SUVA254, k’ is 50 or not available, high chlorine dose 614 
(12 water samples) and (d) 7 days, low SUVA254, k’ is not available, high chlorine dose (5 water samples). * = 615 
statistical difference, ° = outlier. Data from (c) suggest that hydrophobic moieties have slightly higher tendency to 616 
form haloacetic acids when the SUVA254 of the raw water is high (>2 L/(mg∙m)). Conversely, at low SUVA254 values, 617 
both hydrophobic and hydrophilic moieties have equal and consistently higher specific haloacetic acid formation 618 
potential compared to the transphilic fraction. 619 

Furthermore, some data on bromide incorporation show a higher reactivity of hydrophilic fractions 620 

to produce brominated haloacetic acids (Hua and Reckhow, 2007b; Kitis et al., 2002; Li et al., 2014; 621 

Liang and Singer, 2003; Molnar et al., 2012a; Niu et al., 2015; Qadafi et al., 2021; Tubić et al., 2013; 622 

Włodyka-Bergier and Bergier, 2011).  623 

To summarize, the precursors of haloacetic acids are found to be very similar to the precursors of 624 

trihalomethanes. They have hydrophobic character when SUVA254 is high, although less pronounced 625 

than for the trihalomethanes, but have both hydrophobic and hydrophilic origin with SUVA254 is low. 626 

While chlorination time does not affect the outcome, there is an indication that the column capacity 627 

factor does change the formation potential behavior in the different fractions. Besides the studies on 628 
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regulated disinfection by-products, more attention arose in the last years to assess the precursors of 629 

emerging disinfection by-products and the results of these studies will be presented in the final 630 

section. 631 

4.2.3 Emerging disinfection by-products 632 
Emerging or unregulated disinfection by-products, such as haloacetamides, haloacetonitriles, 633 

nitrosamines or haloketones, have received increased attention due to their higher toxicity 634 

compared to regulated disinfection by-products (Wagner and Plewa, 2017). However, studies on the 635 

formation of these by-products in different membrane or resin fractions with chlorine are nowadays 636 

still limited. Most research focused on the formation of emerging disinfection by-products after 637 

chloramination. Chloramine can significantly reduce the formation of trihalomethanes and tri-638 

halogenated acetic acids, but will greatly increase the formation of emerging nitrogenous 639 

disinfection by-products such as N-nitrosodimethylamine (Chu et al., 2010; Hua and Reckhow, 2007a; 640 

Lin et al., 2014; Wang et al., 2013). 641 

A small number of studies focused on the formation of emerging disinfection by-products in resin 642 

fractions disinfected with chlorine, i.e. haloacetamides, haloacetonitriles, halonitromethanes, halo-643 

aldehydes and haloketones. Insufficient data was collected for the last family to discuss a trend. 644 

Studies on emerging disinfection by-products are most often executed with high chlorine dose even 645 

at short reaction times, possibly because they are formed in very low concentrations during drinking 646 

water disinfection (Richardson et al., 2007).  647 

Despite chlorination time, dose or specific ultra violet absorbance (SUVA254), hydrophilic compounds 648 

clearly have a higher tendency to form emerging disinfection by-products (section 6 for Methods) 649 

(Ho et al., 2013). SUVA254 is calculated by dividing the ultraviolet absorbance at 254 nm by the 650 

organic matter concentration. Fig. 10 and Figure S6 show a specific formation potential that is 20-651 

80 % higher for the hydrophilic fraction compared to the hydrophobic or transphilic fraction for most 652 

families included (Fang et al., 2021; Ge et al., 2020; Hu et al., 2015; Hu et al., 2010; Hua et al., 2015; 653 

Lin et al., 2014; Molnar et al., 2013; Molnar et al., 2012b; Roccaro et al., 2014; Tan et al., 2017; Zhang 654 

et al., 2020a; Zhang et al., 2021). Halonitromethanes show no significant difference between the 655 

formation potentials of all 3 fractions, despite the aspect of the graph (Fig. 10c). This is supported by 656 

studies performing disinfection by-product formation tests on surrogates. Proteinaceous material 657 

together with amino acids have been identified as haloacetonitrile precursors, while haloacetamides 658 

can also be formed through the hydrolysis of haloacetonitriles. However, studies on hydrophilic 659 

surrogates showed very low yield for trichloronitromethane, except for glycine (Bond et al., 2012b).  660 

The influence of the column capacity factor k’ stays inconclusive, because either a k’-factor of 50 is 661 

used or the value is missing in the studied papers. There is a small indication that the value is less 662 

important in the analysis of emerging disinfection by-products, since hydrophilic compounds also had 663 
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the highest contribution in a water sample with a k’ of 100 for haloacetonitriles and 2 water samples 664 

with a k’ of 15 for halonitromethane (Hu et al., 2010; Roccaro et al., 2014).  Furthermore, elaborate 665 

resin fractionation in acids, bases and neutrals is hardly executed for emerging disinfection by-666 

products. The results for haloacetonitrile, halo-aldehyde and trichloronitromethane are presented in 667 

Fig. S7, but no statistical differences or trends could be highlighted (Chu et al., 2010; Fan et al., 2013; 668 

Włodyka-Bergier and Bergier, 2011). In synopsis, emerging disinfection by-products clearly have 669 

hydrophilic precursors regardless of SUVA254, chlorination time or dose. 670 

 671 

 672 

Fig. 10 Specific disinfection by-product formation potential (%) in the hydrophobic (HPO), transphilic (TPI) and 673 
hydrophilic (HPI) fraction after 24h and both high and low specific ultraviolet absorbance at 254 nm (SUVA254) 674 
values of (a) halo-aldehydes (HAL), column capacity factor k’ is not available (NA), low chlorine dose (5 water 675 
samples) (b) haloacetonitriles (HAN), k’ is not available (1x 100), low chlorine dose (6 water samples) and (c) 676 
halonitromethanes (HNM), k’ is not available (2x 15), low chlorine dose (7 water samples). * = statistical 677 
difference. From the data, it is clear that all families are preferentially formed in the hydrophilic fraction, although 678 
this was not statistically significant for the halonitromethanes  679 

This meta-analysis determined the parameters affecting the identification of disinfection by-product 680 

precursors, because no assessments were done so far in the past. This review identified hydrophobic 681 

compounds as having high trihalomethane and haloacetic acid formation potential especially for high 682 

SUVA254 and low k’- factor values. Hydrophilic moieties are overall the most important precursors for 683 

the formation of emerging disinfection by-products, but can also not be neglected as trihalomethane 684 

and haloacetic acid precursor when SUVA254 of the raw water is low and high column capacity factors 685 

are used. Furthermore, this study could not identify the disinfection by-product precursors based on 686 
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molecular weight, which might be explained by an unsharp separation of natural organic matter 687 

during membrane fractionation. A graphical summary of all results can be found in Fig. 11. 688 

 689 

 690 

Fig. 11 Overview scheme of the conclusions drawn in this meta-analysis. NOM = natural organic matter. There is 691 
an indication that ultrafiltration membrane fractionation cannot produce sharply separated fractions. Therefore, 692 
no correlation was found between disinfection by-product formation and molecular weight. During resin 693 
fractionation, chlorination time and dose do not affect the ratio of disinfection by -product formation between the 694 
different fractions, while the specific ultraviolet absorbance at 254 nm (SUVA254) and the column capacity factor k’ 695 
do have an effect on this ratio.  696 
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5 Conclusions and Outlook 697 

This review critically evaluated different natural organic matter fractionation techniques with regard 698 

to disinfection by-product formation. The formation of trihalomethanes, haloacetic acids and 699 

emerging disinfection by-products from the different fractions obtained by both membrane and resin 700 

fractionation after chlorination was assessed. The general conclusions are: 701 

 Dead-end, ultrafiltration, membrane fractionation allows the production of fractions in large 702 

volumes, but there is an indication that it lacks the ability to perform a sharp separation of 703 

the different fractions. Therefore, no relationship was found between molecular weight and 704 

disinfection by-product formation potentials. 705 

 Resin fractionation splits natural organic matter based on polarity. Despite being a generally 706 

accepted method of fractionation, the potential of changing the organic matter composition 707 

due to the pH changes is often underestimated. The most important observations of this 708 

study are: 709 

o Chlorination time and dose do not influence the proportion of specific disinfection 710 

by-product formation potential between different fractions. 711 

o Hydrophobic compounds are the most important contributors with 10-20 % higher 712 

reactivity to both trihalomethane and haloacetic acid formation in waters with high 713 

specific ultraviolet absorbance (SUVA254), while hydrophobic and hydrophilic 714 

compounds are equally important in water with low SUVA254. However, hydrophilic 715 

compounds have 20-80 % higher reactivity towards emerging disinfection by-716 

products, regardless of SUVA254. 717 

o Increasing the column capacity factor k’ i.e. the amount of hydrophobic compounds 718 

retained on XAD-resins can shift the highest specific formation potential from 719 

hydrophobic to hydrophilic fractions. 720 

Future research should focus on the development of an alternative membrane fractionation method 721 

to have sharply, defined and separated size-based fractions. This allows to clearly mark the effect of 722 

a certain physical property to disinfection by-product formation. Furthermore, it is important to 723 

report the k’ value used in resin fractionation, because it can influence the disinfection by-product 724 

formation in the different fractions. In addition, fraction analysis for disinfection by-product 725 

formation with chlorine is currently limited to regulated disinfection by-product, with only minor 726 

research done in this field for emerging disinfection by-product. These groups of disinfection by-727 

product are formed in lower concentrations, but could exhibit a higher toxicity, and therefore, may 728 

cause greater public health problems. Therefore, further research should focus on the formation of a 729 
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broader group of disinfection by-product in different membrane and resin fractions to increase 730 

knowledge on natural organic matter precursors and therefore provide safer drinking water now and 731 

in the future. 732 

6 Methods 733 

6.1 Data collection 734 

The Scopus library was used to collect papers from the last 2 decades as a continuation of the review 735 

paper of Chow et al. (2005) which was at that time only focused on trihalomethanes. The criteria for 736 

selecting a paper were water source (i.e. fresh water), disinfectant (i.e. chlorine) and the use of 737 

preparative fractionation. Natural waters were selected from all over the world, since it is believed 738 

that this natural organic matter pool is universal due to the natural processes of synthesis and 739 

degradation (Zark and Dittmar, 2018). Since treatment processes can influence the organic matter 740 

composition, e.g. leakage of soluble microbial products from biological activated carbon, only raw 741 

water sources were included (Hong et al., 2018). With all these criteria, 83 papers were selected, 742 

resulting in data collection from 396 water samples from all over the world with a high number of 743 

publications in the United States and Asia (Fig. S8). 744 

6.2 Data processing 745 

The data was uniformized to be able to compare all papers with each other. First, the specific 746 

disinfection by-product formation potential from each fraction was collected or calculated, if not 747 

readily available. This is a normalization parameter defined as the amount of a certain by-product 748 

compound or family formed per unit dissolved organic carbon (generally expressed as µg/mgC). In 749 

some cases, especially for membrane fractionation, the specific formation potential of different 750 

fractions were merged to one single value to obtain a better comparison, e.g. < 0.5 kDa and 0.5-751 

1 kDa fraction were merged to < 1 kDa. This was done using the following formula (Kitis et al., 2002): 752 

               
  

   
 
   

          

 

   

 

With n the number of fractions to merge in one water sample, mi the mass of fraction i and sDBPFP 753 

the specific disinfection by-product formation potential. 754 

These values were converted into percentages for each fraction in the following way: 755 
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With n the number of fractions collected from a certain water sample and sDBPFP the specific 756 

disinfection by-product formation potential.  757 

With this conversion, the relative difference in the specific reaction potential of different fractions 758 

towards disinfection by-product formation can be visualized. Therefore, these data were plotted into 759 

boxplots to examine the overall relative difference between distinct fractions to a certain disinfection 760 

by-product formation deduced from all studied papers. The box itself is ranged within the 1st and 3rd 761 

quartile (25th and 75th percentile) with a horizontal line for the 2nd quartile (median). This is also 762 

called the interquartile range. The whiskers represent the data that lie within 1.5 times the 763 

interquartile range above and below the box. Data exceeding this range were identified as outliers 764 

and are represented as dots. The outliers were not removed from the dataset before the statistical 765 

analysis.  766 

A two-tailed t-test (2 datasets) or a one-way ANOVA (> 2 datasets) were executed when the 767 

assumptions for normality and equal variances were valid. The Shapiro-Wilk test was used to see if 768 

the data was normally distributed. The F-test (2 datasets) or the Bartlett-test (> 2 datasets) were 769 

used to check if all datasets had equal variances. Not-normally distributed data was first transformed 770 

in an attempt to make them normally distributed. If these transformations were not successful, non-771 

parametric tests such as the Mann-Whitney U test (2 datasets) or the Kruskall-Wallis test (> 2 772 

datasets) were executed. For all tests included, the null hypothesis was rejected when the p-value 773 

was smaller than 0.05. 774 
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