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Abstract

This contribution introduces new frontier models to rate mutual funds that can simultaneously

handle multiple moments and multiple times. These new models are empirically applied to

hedge fund data, since this category of funds is known to be subject to non-normal return

distributions. We define a simple buy-and-hold backtesting strategy to test for the impact of

multiple moments and multiple times separately and jointly. The empirical results demonstrate

that the proposed frontier models perform better than most financial performance measures and

existing frontier models in selecting promising funds.
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1 Introduction

The foundational work of Markowitz (1952) in modern portfolio theory has learned every investor

that to gauge the performance of portfolio management one must consider risk in addition to

return. This mean-variance (MV) dual objective of maximizing returns and minimizing risks turns

performance evaluation into a controversial task involving trade-offs related to the risk preferences

of the investor. The two-dimensional nature of this nonlinear quadratic optimization problem allows

to display the efficient frontier as a Pareto-optimal subset of portfolios whereby the expected return

can only increase when also the variance increases.

A large part of modern portfolio theory continues developing variations on these bi-objective

MV optimization problems. A wide offer of alternative risk measures is available in the portfolio

literature: entropy, expected shortfall, mean absolute deviation, semi-variance and other partial

moment measures, Value-at-Risk (VaR) in all its variations, etc. (see, e.g., Bacon (2008) and

Feibel (2003) for surveys).1

This focus on the first two moments of a random variable’s distribution is only consistent with

the von Neumann-Morgenstern axioms of choice underlying expected utility (EU) theory when: (i)

asset processes follow normal distributions, or (ii) investors have quadratic utility functions.2 A

substantial empirical literature has documented that normality of asset returns can be rejected for

a variety of financial asset classes in both developed and emerging financial markets (e.g., Jondeau

and Rockinger (2003)). At least since Scott and Horvath (1980), investors have been attributed

a positive preference for skewness as well as a negative preference for kurtosis to explain financial

behavior. Meanwhile, decision-theoretic arguments exist for what has become known as the broad

class of mixed risk-aversion utility functions that are characterized by a preference for odd moments

and an aversion for even moments (see Eeckhoudt and Schlesinger (2006)). Furthermore, via surveys

and experiments traditional risk preferences like risk aversion, but also higher order risk preferences

like prudence and temperance are nowadays better understood (see Trautmann and van de Kuilen

(2018) for a review).

Over time, several alternative portfolio selection criteria based on preferences for higher-order

moments have been developed. But, so far not a single widely accepted criterion seems to have

emerged. It is possible to distinguish between primal and dual approaches to determine such higher-

order moments portfolio frontiers. One example of the primal approach is found in Lai (1991) who

determines mean-variance-skewness (MVS) optimal portfolios via a Polynomial Goal Programming

procedure. The dual approach necessitates a specification of some indirect higher-moment utility

1More rarely alternatives are proposed for the expected return: e.g., Benati (2015) focuses on the median as a
location parameter of the distribution of returns.

2Von Neumann and Morgenstern (1953) propose that under some axioms of rational behaviour (i.e, ordering,
continuity, and independence axioms), the decisions of agents under uncertainty are based on maximizing their EU.
Transposed into a portfolio context, the portfolio selection of investors should maximize the EU associated with the
uncertain return of assets.
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function and yields optimal portfolios via its parameters reflecting higher-moment preferences (e.g.,

Harvey, Liechty, Liechty, and Müller (2010)).

To our knowledge, Sengupta (1989) is the first to introduce an efficiency measure -borrowed

from production theory- into a diversified MV portfolio model. This efficiency measure relates to

the distance function that for a long time has been employed in consumer theory and especially in

production theory (e.g., Cornes (1992)). In consumer theory the distance function is dual to the

expenditure function: it serves to characterize multiple commodity and single utility choice sets.3

In production theory the input distance function is dual to the cost function: it basically serves

to characterize multiple input multiple output production possibility sets (e.g., Hackman (2008)).

This has opened up a booming research field where parametric but particularly nonparametric

specifications of production and dual (e.g., cost) frontiers are specified based on minimal maintained

axioms (e.g., constant or variable returns to scale, convexity or not, etc.). Applied to a plethora of

private and public sectors, these frontier methodologies analyse technical, scale or cost efficiency,

economies of specialization, mergers, etc. (e.g., Färe, Grosskopf, and Lovell (1994)).4

The introduction of an efficiency measure into portfolio theory allows to gauge performance over

multiple dimensions and it opens up new perspectives. On the one hand, following Briec, Kerstens,

and Lesourd (2004) who establish duality between a distance function and MV utility functions,

Briec, Kerstens, and Jokung (2007) use a general distance function (named shortage function) to

look for improvements in efficiency in MVS space by looking for simultaneous expansions in mean

return and positive skewness and reductions in risk. Furthermore, these authors provide a duality

result with a MVS utility function.5 Even more general, for the class of mixed risk-aversion utility

functions, Briec and Kerstens (2010) assess portfolio performance for the general moments case

by simultaneously looking for improvements in odd moments and reductions in even moments. In

addition, these authors establish duality with general moment utility functions.

Empirical applications of this diversified multi-moment approach are found in Adam and Branda

(2021), Branda (2013), Branda and Kopa (2014), Branda (2015), Joro and Na (2006), Jurczenko,

Maillet, and Merlin (2006), Khemchandani and Chandra (2014), Krüger (2021), Massol and Banal-

Estañol (2014), among others. Furthermore, Bacmann and Benedetti (2009), Boudt, Cornilly,

and Verdonck (2020), and Jurczenko and Yanou (2010), among others, are empirical diversified

multi-moment contributions focusing on hedge funds (HF).

On the other hand, within a standard MV framework, Morey and Morey (1999) develop a mul-

tiple time horizon assessment: in particular, these authors use either a risk contraction or a return

3This distance function has sometimes been employed to make welfare comparisons (e.g., Slesnick (1998)). More
recently, Briec, Dumas, and Mekki (2021) stress that the directional distance function is dually linked to the weighted
and indirect Rawlsian social welfare functions.

4This nonparametric approach to production is sometimes labeled Data Envelopment Analysis (DEA) because
observations are enveloped subject to some minimal set of axioms.

5Briec, Kerstens, and Van de Woestyne (2013) establish a relation between MVS portfolio optimisation using the
shortage function and the far more popular Polynomial Goal Programming method proposed by Lai (1991).
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expansion efficiency measure to evaluate MV performance over three time horizons simultaneously

(in particular, a 3, 5 and a 10-year time period). This contribution is slightly generalized in Briec

and Kerstens (2009).6 An empirical application is available in Ren, Zhou, and Xiao (2021).

To the best of our knowledge, Murthi, Choi, and Desai (1997) is the seminal article that has

been rating mutual funds (MF) by simultaneously trying to maximize the return and minimizing

standard deviation, expense ratio, load, and turnover using a nonparametric production frontier

specification that maintains convexity and constant returns to scale. Following Farrell (1957) and

Charnes, Cooper, and Rhodes (1978), nonparametric production frontiers are transposed into the

financial literature in an effort to provide alternative fund ratings. Intuitively, nonparametric

production frontiers can envelop the observations of any multi-dimensional choice set and position

each of the observations relative to the boundary of the choice set using some efficiency measure.

This has led to a growing literature that has been applied to a large variety of financial assets (e.g.,

exchange traded funds, hedge funds, pension funds, etc.). Furthermore, a wide variety of model

specifications are available in terms of some combination of ordinary moments, lower and/and

upper partial moments, as well as in terms of production frontier specifications (constant or variable

returns to scale, etc.), and the choice of efficiency measure (e.g., reducing variables for which less

is better (like inputs), or expanding variables for which more is better (like outputs), or some

combination of both). This frontier-based MF rating literature has been rather recently surveyed

in Basso and Funari (2016).

Following Heffernan (1990) and Blake (1996), among others, Kerstens, Mounir, and Van de

Woestyne (2011) interpret this funds rating literature as a transposition of the characteristics

approach in consumer theory into finance: MF are seen as fee-based financial products characterized

by distributional characteristics of the asset price distribution as summarized by some combination

of moments. Compared to the diversified portfolio models that require nonlinear programming,

these nonparametric production frontier MF rating models can normally be solved using simple

linear programming.

An open question is how the diversified portfolio models relate to the nonparametric produc-

tion frontier specifications? Recently, Liu, Zhou, Liu, and Xiao (2015) state that a convex variable

returns to scale nonparametric production frontier specification provides an inner approximation

to the traditional MV diversified portfolio model. This is certainly correct. One basic idea implicit

in their contribution is that nonparametric production frontier specifications should ideally under-

estimate the eventual performance of a diversified portfolio model. In the more general case where

we want to explore a nonconvex diversified MV (e.g., with some integer constraints) or a nonconvex

higher moment portfolio model, then one can argue that the nonconvex nonparametric production

6Note that the use of multiple time horizons within a MV framework is not particularly computationally challeng-
ing, but moving from a quadratic convex MV problem to a cubic nonconvex MVS portfolio optimization problem
is computationally harder. Evidently, the same remark applies when one moves from a cubic nonconvex MVS to
a quartic nonconvex mean-variance-skewness-kurtosis portfolio optimization problem, or beyond by including even
higher order moments.
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frontier specification with variable returns to scale already advocated by Kerstens, Mounir, and

Van de Woestyne (2011) provides a conservative underestimation of the corresponding nonconvex

diversified portfolio model within some common subspace of moments (see also Germain, Nalpas,

and Vanhems (2011)). By contrast, the more widely used convex nonparametric production frontier

specification may overestimate the corresponding nonconvex diversified portfolio model within the

common subspace of moments. The latter argument seems to have escaped attention so far: this

explains why most nonparametric production frontier MF rating models with higher moments do

impose convexity (for instance, Gregoriou, Sedzro, and Zhu (2005)).

The use of distance functions or efficiency measures in both the diversified portfolio models

and the nonparametric production frontier specifications leads to the question how these gauges

relate to traditional financial performance measures (see, e.g., the surveys in Bacon (2008), Feibel

(2003) and Caporin, Jannin, Lisi, and Maillet (2014)). While relative performance measures that

are variations on returns per unit of risk (e.g., Sharpe ratio) are useful to handle bi-objective (e.g.,

MV) optimization problems, they are of little use beyond two dimensional problems. E.g., adding

a skewness constraint to a MV diversified model weakly decreases return and weakly increases

variance inevitably yielding a weakly worse Sharpe ratio: hence, the Sharpe ratio cannot assess

higher moment portfolios. If finance wants to handle mixed risk-aversion preferences of investors,

then it must consider a multidimensional performance measure. Some performance measures try to

assess the tail risk, like VaR or the Conditional Value-at-Risk (CVaR), but they most of the time

focus on the risk component and do not include the first moment of the return distribution.

One exception is the Omega ratio that we include in our analysis. Caporin, Jannin, Lisi, and

Maillet (2014) classify the distance (shortage) function approach correctly among the absolute

performance measures: these performance measures are based on rewards when compared to those

of a reference portfolio on a portfolio frontier. The choice for distance (shortage) function brings

finance and portfolio analysis in line with consumer and production analysis where these micro-

economic tools have a proven track record in representing multidimensional choice sets.7

The first major objective of this contribution is to define new distance functions or efficiency

measures that can simultaneously handle both multiple moments and multiple times (instead of

either multiple moments or multiple times separately) compatible with general mixed risk-aversion

investor preferences. To the best of our knowledge, the existing literature on traditional financial

performance indicators as well as the literature on nonparametric frontiers to gauge MF perfor-

mance have so far produced less general efficiency measures. The application of the shortage

function also guarantees the possibility of dealing with negative data for the output-like variables

in MF performance assessment. This performance measure offers a simple and powerful tool for

assessing MF performance based on the moment characteristics over all time periods. To the best

of our knowledge, this basic idea is new and unavailable in the literature. This performance mea-

7Tammer and Zălinescu (2010) show that the shortage function is linked to the scalarization function that is used
in vector optimization problems, of which multi-objective optimization problem is a special case.
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sure thus aims not only to evaluate to which extent a MF performs well in the several moments

following mixed risk-aversion preferences, but it simultaneously is assessing to which extent a MF

performs well in all these moments over different times. This is important given the concern in the

financial literature that traditional performance measures may exhibit limited stability over time

(e.g., Bodson, Coen, and Hubner (2008), Menardi and Lisi (2012) and Grau-Carles, Doncel, and

Sainz (2019), among others).

As a second major objective, by positioning ourselves into a nondiversified nonparametric

frontier-based approach, our contribution avoids computational limitations. The presence of mul-

tiple moments besides mean and variance leads to diversified portfolio models that are nonconvex

and nonsmooth. On the one hand, diversified portfolio models with higher-order moments suffer

from enormous computational costs even for moderate MF universes.8 On the other hand, it is

difficult to guarantee global optima when solving nonconvex and nonsmooth diversified portfolio

models. These computational drawbacks are exacerbated when accounting for the performance of

MF over different times in a diversified portfolio model. By contrast, the nondiversified nonpara-

metric frontier models are simply solved by a linear programming (LP) problem or an implicit

enumeration algorithm for the binary mixed integer linear programming (BMILP). Thus, the non-

diversified models are computationally superior over the diversified models when handling multiple

moments and multiple times separately and jointly.

This new performance measure is applied to HFs, a fund accessible only to institutional investors

and high net worth individuals. Among MFs, HFs have a unique compensation structure. The

most widespread fee structure is the so-called 2/20, i.e., 2% of assets under management for annual

management fees and 20% of any profits made as a performance incentive fee. Consequently,

HFs are marked by their heterogeneity and unusual (i.e., non-normal) statistical properties, as

compared to more traditional MFs. Indeed, HFs tend to exhibit some more strongly asymmetric

and fat tailed return characteristics compared to other MFs (see Gregoriou (2003), Darolles and

Gourieroux (2010), Eling and Faust (2010), among others, and especially El Kalak, Azevedo, and

Hudson (2016) for a survey). Furthermore, Racicot and Théoret (2018, 2019) develop time-varying

measures of co-skewness and co-kurtosis: their work reveals that the behavior of HFs tends to trade

off return for higher moments when building optimal portfolios, and this behavior is asymmetric

in relation to the phase of the economic cycle. They are globally viewed as riskier but are also

associated with higher rewards. This is why our empirical study specifically focuses on HFs since

these are most likely to be affected by higher order moments.

The traditional financial performance measures (e.g., Sharpe ratio, Sortino ratio, etc.) used

for HF rating have been subject to some criticism, because they basically follow the theoretical

assumptions of the Capital Asset Pricing Model (CAPM) that the capital market is efficient and

8For a given financial universe containing n MFs, the co-variances, co-skewnesses and co-kurtosises of the MFs
are n× n, n× n× n, and n× n× n× n tensors, respectively. Furthermore, a simple case is provided in Appendix A
to explain the computational costs of the diversified models with multiple moments.
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financial asset returns are normally, independently and identically distributed, among others. When

asset returns do not obey the normal distribution, then the mean and variance no longer suffice to

effectively summarize its return distribution. Several studies extend the conventional two-moment

CAPM by incorporating the effects of systematic skewness and kurtosis. In the four-moment

CAPM, in addition to systematic variance also systematic kurtosis and skewness contribute to

the risk premium of an asset (e.g., Fang and Lai (1997), Friend and Westerfield (1980) and Sears

(1985), among others).9 While the four-moment CAPM to some extent refines the conventional

CAPM, it still makes stronger assumptions on the return distribution of assets compared to the

nonparametric frontier models when applied to HF appraisal. Given the complexities to assess

the performance of HFs using traditional performance measures (e.g., see Smith (2017)), we think

that our new performance measure may provide a suitable framework to evaluate both persistence

across moments and across times.

In a HF context, the need for multiple moments is apparent in a multitude of nonparametric

production frontier studies: examples include, e.g., Gregoriou, Sedzro, and Zhu (2005), Kumar,

Roy, Saranga, and Singal (2010), Germain, Nalpas, and Vanhems (2011), among others. However,

to the best of our knowledge none of these studies appeal to the characteristics approach as proposed

by Kerstens, Mounir, and Van de Woestyne (2011). Furthermore, all these existing nonparametric

production frontier studies are single time: this contribution is the first to develop a multi-time

evaluation framework. Therefore, as a third major objective, we focus on the impact of multiple

moments and multiple times separately and jointly surrounding the application of nonparametric

frontiers when assessing the performance of HFs. We employ a Li-test statistic (initially proposed in

Li (1996)) to empirically test the necessity of multiple moments and multiple times in HF appraisal.

Thereafter, by means of a backtesting approach in a buy-and-hold setting, the potential benefits

and superiority of the multi-moment and multi-time frontier ratings compared to most existing

traditional and frontier MF ratings are empirically illustrated.

The remainder of this contribution is organized as follows. The next Section 2 introduces

the nonparametric production frontiers that serve to approximate the diversified portfolio models:

we first discuss single-time multi-moment models, then we introduce the new multi-time multi-

moment models. In Section 3, we develop the buy-and-hold backtesting strategy in detail. Section

4 describes the hedge fund data in detail and comments upon the empirical results. Finally, Section

5 concludes.

9Consistent with the co-variance definition, the measures of co-skewness and co-kurtosis are proposed based on an
four-moment CAPM model. Back (2014) provides a systematic discussion of the properties of these two measures.
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2 Nonparametric Frontier Rating Models: Methodology

2.1 Single-Time and Multi-Moment Rating Framework

The nonparametric frontier rating methods gauge the financial performance of MF, and these

evaluations are done mostly using frontier-based models which originate from production theory.

In this section, we only introduce the basic definitions and properties needed for applications

within finance. Assume that there are n MFs under evaluation over a given time horizon. At

time t in this time horizon, the j-th MF (j ∈ {1, . . . , n}) is characterized by m input-like values

xtij (i ∈ {1, . . . ,m}) and s output-like values ytrj (r ∈ {1, . . . , s}). Input-like variables need to be

minimized and output-like variables need to be maximized.

We introduce one widely used production frontier-based model with variable returns to scale

(VRS).10 Following Briec, Kerstens, and Vanden Eeckaut (2004), a unified algebraic representation

of convex and nonconvex production possibility sets (PPS) under the VRS assumption for a sample

of n MFs at time t is:

P t
Λ =

{
(xt, yt) ∈ Rm × Rs | ∀i ∈ {1, . . . ,m} : xti ≥

n∑
j=1

λjx
t
ij ,

∀r ∈ {1, . . . , s} : ytr ≤
n∑

j=1

λjy
t
rj , λ ∈ Λ

}
, (1)

where:

Λ ≡ ΛC = {λ ∈ Rn |
∑n

j=1 λj = 1 and ∀j ∈ {1, . . . , n} : λj ≥ 0} if convexity is assumed, and

Λ ≡ ΛNC = {λ ∈ Rn |
∑n

j=1 λj = 1 and ∀j ∈ {1, . . . , n} : λj ∈ {0, 1}} if nonconvexity is assumed.

At time t, if there exists an input-output combination (
∑n

j=1 λjx
t
ij ,

∑n
j=1 λjy

t
ij) in the convex

or nonconvex PPS using less inputs and producing more outputs than the observed MF, then this

MF is considered inefficient since it can improve its inputs and/or outputs. MFs are efficient if

no improved input-output combinations can be found. The input-output combinations of these

efficient MFs are all located at the boundary of P t
Λ which is called the convex or nonconvex VRS

(VRSc and VRSnc for short hereafter) nonparametric frontier.

Using the nonparametric PPS defined in (1), the shortage function of any observed MF at time

t is now defined as follows:

Definition 2.1. At time t, let gt = (−gtx, g
t
y) ∈ Rm

− × Rs
+ and gt ̸= 0. For any observation

zt = (xt, yt) ∈ Rm × Rs, the shortage function St
Λ at time t in the direction of vector gt is defined

as:

St
Λ(z

t; gt) = sup{β ∈ R | zt + βgt ∈ P t
Λ}.

10Remark that a VRS frontier model is the most general representation of a technology allowing for increasing,
constant, or decreasing returns to scale at different points on the production frontier.
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This shortage function simultaneously permits the enhancement of output-like variables and the

reduction of input-like variables. If the shortage function value St
Λ(z

t; gt) > 0 for the input-output

combination zt = (xt, yt) of a specific MF at time t, then zt is not located on the frontier of P t
Λ.

Hence, its inputs and/or outputs can be improved to catch up with the VRS nonparametric frontier.

By contrast, if the shortage function value St
Λ(z

t; gt) = 0, then zt is located on the frontier.

Consider a MF with index o ∈ {1, . . . , n} in need of assessment at time t by means of the

shortage function with direction vector gto = (−gtxo, g
t
yo) ∈ Rm

− ×Rs
+. Combining (1) and Definition

2.1, the efficiency status of this MF at time t can be determined by solving the following model:

max β

s.t.

n∑
j=1

λjx
t
ij ≤ xtio − βgtio, i = 1, . . . ,m,

n∑
j=1

λjy
t
rj ≥ ytro + βgtro, r = 1, . . . , s,

n∑
j=1

λj = 1, β ≥ 0,

∀j = 1, . . . , n :

{
λj ≥ 0, under convexity,

λj ∈ {0, 1}, under nonconvexity.

(2)

Note that model (2) results in a LP problem under convexity and a BMILP problem un-

der nonconvexity. In the empirical application, the direction vector is in general set as gto =

(−xt1o, . . . ,−xtmo, |yt1o|, . . . , |ytso|) to accommodate eventual negative values of return and skewness,

whereby all input-like values xtio, (i = 1, . . . ,m) and output-like values ytro, (r = 1, . . . , s) are

simultaneously increased and decreased in proportion to their initial values, respectively. The opti-

mal value β∗ measures the resulting proportional amount of inefficiency representing the shortage

function.

Note that the value of inefficiency β∗ determined by model (2) in the nonconvex case is always

less than that determined in the convex case. Naturally, the number of efficient MFs obtained

using the nonconvex case is also larger than the ones obtained using the convex case when assessing

a set of MFs to be evaluated. Mathematically, these properties are a direct consequence of the

restrictions of weights λj (j = 1, . . . , n) in model (2) under convexity and nonconvexity. Clearly,

the nonconvex model is more restrictive on the weights λj than the convex model. In terms of

efficient frontiers, the VRSnc nonparametric frontier is always located below the VRSc one (see

Kerstens, Mounir, and Van de Woestyne (2011)), since the latter imposes the convexity axiom that

allows to linearly combine MFs.11

11Convexity is not always useful for guiding investors in terms of selecting MFs whenever there are nonconvexities
at stake (e.g., higher moments of the asset returns, cardinality constraints on the number of assets, etc.).
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The setting defined in the previous section is general and flexible and can thus handle a large

choice of inputs and outputs. We now particularize the above formulation to characterize the

efficient frontier in the MVS and the mean-variance-skewness-kurtosis (MVSK) spaces. Suppose

that there are n MFs under evaluation. At time t, let Rt
1, . . . , R

t
n denote the raw returns of

the n funds, which are characterized by their expected return E(Rt
j), variance V (Rt

j), skewness

S(Rt
j) and kurtosis K(Rt

j) for j ∈ {1, . . . , n}. Here, the calculations of variance, skewness and

kurtosis are expressed as follows: V (Rt
j) = E[(Rt

j − E(Rt
j))

2], S(Rt
j) = E[(Rt

j − E(Rt
j))

3], and

K(Rt
j) = E[(Rt

j − E(Rt
j))

4].12 To obtain a detailed specification of the PPS, as defined in (1),

we need to classify the different goals of the investor in terms of either inputs (i.e., objectives

to minimize), or outputs (i.e., objectives to maximize). As discussed in the previous section,

the need for multiple moments is apparent to assess MFs (and most particularly HFs) whose

return distributions may exhibit strong asymmetry and fat tails. Given mixed risk-aversion utility

functions, investors express a preference for odd moments and a dislike for even moments of the

distribution of asset returns. Therefore, when the MVSK framework is considered, we can define

the first and second inputs of MFs as xt1j = V (Rt
j) and xt2j = K(Rt

j), and the first and second

outputs as yt1j = E(Rt
j) and yt2j = S(Rt

j) for j ∈ {1, . . . , n}. Obviously, for the MVS case only the

first input is considered.

For a MF o under evaluation at time t, denote Eo = E(Rt
o), Vo = V (Rt

o), So = S(Rt
o) and

Ko = K(Rt
o). Then both models, either with convexity or nonconvexity, allow to project the input-

output combination (Vo,Ko, Eo, So) of this MF in such a way that inputs (i.e., variance and kurtosis)

are decreased and outputs (i.e., expected return and skewness) are increased in the direction gto.

The optimal solution β∗ of model (2) measures how many times the direction vector gto fits in the

line segment from the input-output combination of the MF o to the efficient frontier in the direction

of gto.

In model (2) under convexity, the left-hand sides of the constraints are all linear. All possible

linear combinations of inputs and outputs of the observed MFs are used to construct a convex VRS

frontier for evaluation. For the MF o, if β∗ = 0, the corresponding input-output combination is on

the convex frontier and efficient at time t. If β∗ > 0, there exist input-output combinations yielding

a higher or equal return and skewness together with a lower or equal variance and kurtosis. When

nonconvexity is assumed in model (2), evaluation is done with respect to a nonconvex VRS frontier

determined by all efficient MFs (excluding the convex input-output combinations of these).

2.2 Multi-Time and Multi-Moment Rating Framework

Differing from MF ratings in a single-time framework, MF ratings in a multi-time framework

consider performance over a time horizon consisting of multiple discrete time periods. In this

12Note that the four moments of the return distribution are computed based on the historical returns observed in
an estimation time window of a given length.
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respect, Morey and Morey (1999) and Briec and Kerstens (2009) emphasize the importance of the

multiple period assessment to find out the maximum improvements possible for a MV portfolio

over a multi-period time horizon. Inspired by this multi-time perspective, the objective of our

methodological extension is to offer a generalized efficiency measure for evaluating MF performance

based on the multiple moment characteristics over all time periods simultaneously. The multi-time

and multi-moment ratings thereby developed potentially identify promising MFs that have both

persistence across moments and across times. To develop the nonparametric frontier rating models

in this multi-time framework, some definitions and properties are presented.

The fundamental idea of multi-time rating is to combine the static evaluation based on non-

parametric multi-moment frontiers with the concept of a temporal shortage function proposed in

Briec, Comes, and Kerstens (2006). This temporal efficiency measure is developed based on the

assumption of time separability: there are no temporal linkages between each of the estimated

technologies in each sub-period. In an investment context, the typical investor attempts to select

MFs by their performances over multiple periods (e.g., 1 year, 3 years, and 5 years) starting from

a certain initial time in which he decides on an investment. Therefore, an explicit temporal linkage

between multiple time periods is not needed in this context, since only a given investment in the

initial time period is at stake and not some optimal investment trajectory. Therefore, our multi-

time MF rating is based on the idea of the temporal efficiency measurement that explicitly aims to

provide an overall weighting scheme for MF performance of a given initial investment over multiple

time periods. Thus, it is only dynamic in a limited sense.

By contrast, if one would be interested to analyse the overall performance of MFs based on

a series of adjacent periods throughout the whole investment process in which investments are

made in some optimal way throughout the whole investment horizon, then this involves a dynamic

structure accounting for the intermediate connections between adjacent periods for the dynamic

portfolio assessment. Therefore, for cases in which the temporal separability does not hold, one

ideally needs truly dynamic portfolio models in either continuous or discrete time: see, e.g., Lin,

Chen, Hu, and Li (2017) for an example.

Consider n MFs under evaluation. Let T denote the number of consecutive times in a time

horizon of interest. In addition, define a multi-time path of inputs and outputs as Zj = (xtj , y
t
j)

T
t=1

for MF j, (j = 1, . . . , n), where xtj = (xt1j , . . . , x
t
mj) and ytj = (yt1j , . . . , y

t
sj) represent m inputs

and s outputs at time t, respectively. Assuming VRS for all times t ∈ {1, . . . , T} and strong free

disposability of all inputs and outputs, the multi-time PPS with convexity and nonconvexity can

be defined as:

PT
Λ = P 1

Λ × · · · × P T
Λ ⊂ (Rm × Rs)T ∼= Rm×T × Rs×T , (3)

where P t
Λ, (t = 1, . . . , T ), is the PPS at time t mentioned previously in (1).
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The idea is now for each MF to simultaneously expand its multiple outputs and decrease its

multiple inputs over all discrete times in a given time horizon by means of the multi-time shortage

function. To allow a general definition, we first introduce some abbreviating notations.

The time dependent direction vector denoted by G = (g1, . . . , gT ) ∈ (Rm
−×Rs

+)
T ∼= Rm×T

− ×Rs×T
+

represents a given multi-time direction path, where gt = (−gtx, g
t
y) ∈ Rm

− × Rs
+ represents the

direction vector at time t ∈ {1, . . . , T}. In addition, we denote Θ = (β1, . . . , βT ) ∈ RT and

Θ · G = (β1g
1, . . . , βT g

T ) ∈ (Rm × Rs)T ∼= Rm×T × Rs×T . Considering the time preference of

an investor in a portfolio context, we introduce a time discounting factor denoted ξ (0 < ξ < 1)

to weight the efficiency measures over the time horizon. Then, the time discounted multi-time

shortage function assuming convexity or nonconvexity is defined as follows:

Definition 2.2. With the notations introduced above, for any observation Z ∈ (Rm × Rs)T ∼=
Rm×T ×Rs×T , the time discounted multi-time shortage function ST

Λ in the direction of G is defined

as:

ST
Λ (Z;G) = sup

{ 1

T

T∑
t=1

ξT−tβt | Z +Θ ·G ∈ PT
Λ

}
.

For a given time horizon T , this amounts to looking for the largest arithmetic mean of time

discounted distances over all times in a given time horizon of the input-output combinations of an

observed MF to boundary of PT
Λ. This definition adapts a weighted (discounted) temporal efficiency

measure, whereby the weights decline as one moves away from the present into the past.13 If the

time discounted multi-time shortage function value ST
Λ (Z;G) > 0 for the input-output path Z of

the MF being evaluated, then it means that its inputs and outputs can be reduced and improved

simultaneously in one or more time periods.

Based on Definition 2.2, we are now in the position to determine the nonparametric frontier

rating models in a general formulation. Suppose there are n MFs under evaluation. Let T denote

the number of consecutive times in a time horizon under consideration. In particular, the multi-

time rating methods used in Section 3 focus on 3 distinct time periods: 1, 3 and 5 years. For a

given multi-time direction path G = (gt)Tt=1 ∈ Rm×T
− × Rs×T

+ , the efficiency of the MF o under

evaluation can be determined by the time discounted multi-time shortage function value resulting

13For retrospective benchmarking based on observed past behavior when assessing performance, the distant past
is less valuable than the nearby present (as indicated by Briec and Kerstens (2009)). In that sense, the distant past
contributes less weight to efficiency gains than the nearby past.
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from the following program:

max
1

T

T∑
t=1

ξT−tβt

s.t.
n∑

j=1

λt
jx

t
ij ≤ xtio − βtg

t
io, i = 1, . . . ,m,

n∑
j=1

λt
jy

t
rj ≥ ytro + βtg

t
ro, r = 1, . . . , s,

n∑
j=1

λt
j = 1, βt ≥ 0, t = 1, . . . , T,

∀j = 1, . . . , n :

{
λt
j ≥ 0, t = 1, . . . , T, under convexity,

λt
j ∈ {0, 1}, t = 1, . . . , T, under nonconvexity.

(4)

In the multi-time framework, we select variance and kurtosis of each time t, (t = 1, . . . , T ), as

inputs and expected return and skewness as outputs, whereas for the MVS case only variance for

each t is considered as inputs. With the help of the time discounted multi-time shortage function,

the observed MF with index o can improve its multiple return and skewness dimensions and reduce

its multiple variance and kurtosis dimensions along a given direction path G over all time periods.

The value of the objective function of model (4) indicates the amount of (in)efficiency of the MF o

representing the multi-time shortage function. A value greater than zero indicates that the inputs

and outputs of the evaluated MF can be improved in one or more time periods. The path of

input-output combinations is thus situated below the boundary of the multi-time PPS, and thus is

inefficient from a multi-time perspective.14

Again, it is trivial to prove that the value of the multi-time shortage function computed by

model (4) with nonconvexity is always less than the one computed by this model with convexity.

Furthermore, the number of efficient MFs determined by the multi-time shortage function in the

nonconvex context is larger than that determined by the multi-time shortage function in the convex

context for MF assessments.

Due to the time separability assumption mentioned above, the mathematical program (4) is a

block-diagonal LP or BMILP, since there are no temporal linkages among the MF assessments for

each time period. Mathematically, one can solve the static mathematical program (2) for each time

period separately and compute the objective function of model (4) based on the optimal solutions

14Practically speaking, our frontier rating methods are remarkably flexible in terms of the inclusion of either multiple
moments or multiple times. For instance, we can specify only including expect return and variance to measure the
performance of MFs in case a normal return distribution is valid. Also, the desired times to be included depend
on the actual needs of investors involved in the MFs assessment and selection process. While using frontier-based
methods, it is recommended that one employs Li-test statistics to assess these key methodological choices in terms
of moments and times to include. In our empirical study, the HFs sample database has been tested in terms of the
necessity of multiple moments (skewness and kurtosis) and multiple times separately and jointly.
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of these T sub-problems (see Briec, Comes, and Kerstens (2006) and Briec and Kerstens (2009)).

In the following Sections 4 and 5, we employ MF data to compare the proposed multi-time

and multi-moment measures with traditional financial measures, as well as with single-time MV

measures. These comparisons are aimed not only to illustrate the impact of multiple moments and

multiple times on MF performance evaluation, but more importantly to further explore the potential

benefits of the newly proposed performance measures for MF selection by means of backtesting.

We now turn to explain the backtesting framework in Section 3.

3 Backtesting Framework

Our main objective in this contribution is to test that the multi-time and multi-moment performance

measures can be expected to perform well for MF ratings and selection. To this end, a comparative

approach based on a backtesting methodology is adopted. Backtesting refers to executing fictitious

investment strategies using historical data to simulate how these strategies would have performed

if they had actually been adopted by MF managers in the past.15

It is powerful for evaluating and comparing the performance of different investment strategies

without using real capital. Some examples of a backtesting approach are found in DeMiguel,

Garlappi, and Uppal (2009), Tu and Zhou (2011), Brandouy, Kerstens, and Van de Woestyne

(2015), Zhou, Xiao, Jin, and Liu (2018) and Lin and Li (2020), among others.

For comparison, there are 15 fund rating methods in total being collected in our work. On the

one hand, we test some popular traditional financial indicators: Sharpe ratio, Sortino ratio and

Omega ratio. The exact definition for the Sharpe, Sortino and Omega ratios can be found in Feibel

(2003, p. 187 and p. 200) and Eling and Schuhmacher (2007, p. 2635), respectively. Based on

these definitions and notations introduced in Section 2, these three traditional financial ratios for

MF j, (j ∈ {1, . . . , n}) at time t are presented as follows:

Sharpetj =
E(Rt

j)− rf

σ(Rt
j)

, (5)

Sortinotj =
E(Rt

j)− rf

σ−(Rt
j)

, (6)

Omegatj =
E(Rt

j)− L

E[max(L−Rt
j , 0)]

+ 1, (7)

where E(Rt
j) and rf represent the expected return and the risk-free rate, respectively; σ(Rt

j) and

σ−(R
t
j) denote the standard and lower semi-standard deviations, respectively; L is the loss thresh-

15The use of a backtesting approach is implicitly linked to the hypothesis of efficient markets whereby participants
in the financial market have no effect on prices: thus, a given investment strategy of one individual investor does not
affect the observed results of the financial market in which he/she is operating.
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old, in particular, above this threshold returns are considered gains, while below this threshold

these are regarded as losses. Using the above three ratios, we obtain the financial indexes for the

above n MFs, which can be use to measure their performance at time t, and the higher the value,

the better the performance. The risk-free rate rf and the loss threshold L are here specified as

zero. Furthermore, in line with the properties of the shortage function used in the nonparametric

frontier-based methods, we define the following traditional finance-based efficiency measures that

bound the values between zero and unity and that make sure that the zero indicates full efficiency:

Eff(Sharpetj) =
max{Sharpetj | j = 1, . . . , n} − Sharpetj

max{Sharpetj | j = 1, . . . , n} −min{Sharpetj | j = 1, . . . , n}
, (8)

Eff(Sortinotj) =
max{Sortinotj | j = 1, . . . , n} − Sortinotj

max{Sortinotj | j = 1, . . . , n} −min{Sortinotj | j = 1, . . . , n}
, (9)

Eff(Omegatj) =
max{Omegatj | j = 1, . . . , n} −Omegatj

max{Omegatj | j = 1, . . . , n} −min{Omegatj | j = 1, . . . , n}
. (10)

On the other hand, we include convex and nonconvex nonparametric frontier-based ratings in

different frameworks. All these 15 rating methods (3 traditional financial rating methods plus 12

frontier-based rating methods) are listed in Table 1.

Table 1: List of various rating models compared

Classification Methods

Traditional financial measures

Eff(Sharpe)

Eff(Sortino)

Eff(Omega)

Convex frontier rating methods

Single-time and MV framework

Single-time and MVS framework

Single-time and MVSK framework

Multi-time and MV framework

Multi-time and MVS framework

Multi-time and MVSK framework

Nonconvex frontier rating methods

Single-time and MV framework

Single-time and MVS framework

Single-time and MVSK framework

Multi-time and MV framework

Multi-time and MVS framework

Multi-time and MVSK framework

To simplify names of the frontier-based methods, some notation indicates which frontier rating
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method is used for ranking MFs. This can be done in both single-time (ST) and multiple-time

(MT) frameworks, using a convex (subscript ‘c’) or a non-convex (subscript ‘nc’) frontier rating

methods, and focusing on the first two (MV), three (MVS), or four moments (MVSK), respectively.

For instance, MTMVSKc refers to the convex frontier model with the mean, variance, skewness

and kurtosis over multiple times. Note that all the empirical results concerning these 15 rating

methods are reported using these simplified notations.

We consider a simple buy-and-hold backtesting strategy consisting of buying in each time the

10, 20 and 30 best performing MFs ranked by rating method, respectively. Our work now is

to empirically test the out-of-sample performance of these 15 buy-and-hold strategies. Since the

Sharpe ratio and other relative performance measures are only suitable for the MV world, we opt

for the shortage function as an absolute performance measure that is capable to assess the perfor-

mance of these strategies in multiple dimensions simultaneously (i.e., mean, variance, skewness and

kurtosis). Hence, the 15 buy-and-hold backtesting strategies are compared based on the MVSK

performance of their holding values evaluated by combining shortage functions with the single-time

and multi-moment frontiers (with convexity and nonconvexity).

Based on the fundamental logic of backtesting summarized so far, we design a backtesting

analysis in detail for the buy-and-hold strategies constructed by the 15 rating methods. Our

backtesting analysis is performed multiple times by rolling the time window. We first collect

a sample of HFs with monthly return data starting from October 2006 till October 2020. The

detailed description of this sample funds is presented in the following section (Section 4). Then,

we split the period from the beginning of the sample period to the end of October 2015 in time

windows of a given length, where the 5 years before the end of the sample period are kept apart

to test the long-term holding performance of these strategies in the last backtesting period. Since

the longest time period considered in our work is 5 years, it is appropriate to set the length of

the rolling time window at 5 years. Therefore, the backtesting analysis is developed starting from

November 2011, and is repeated 48 times (each time another month) with the rolling time window

of 5 years till October 2015.

Using the first 5 year time window of data (from November 2006 to October 2011) to obtain the

rankings for different rating methods, we determine the first buy-and-hold backtesting strategies in

November 2011. These strategies are held for four holding scenarios: the end of October 2012 (for

1 year); the end of October 2014 (for 3 years); the end of October 2016 (for 5 years); and until the

end of October 2020 (the end of the whole sample period). The process of the first backtesting is

represented in Figure 1.16

16In contrast to a rebalancing portfolio strategy, the buy-and-hold strategy is a long-term passive investment
strategy whereby investors maintain a relatively stable portfolio over time. For this reason, our backtesting analysis
sets up several fairly long holding windows to test the performance of these buy-and-hold backtesting strategies.
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Figure 1: Process of the first backtesting window

Then, the time window is shifted with a step of a single month to develop the next backtesting

analysis. For each time window or each backtesting event, the steps can be detailed as follows:

(1) Adopt the 5-year time window of data to compute the single-time frontier rankings, as well as

the traditional financial rankings. In combination with the other two time periods (i.e., 1-year

and 3-year) of data from this time window, the multi-time frontier ratings are computed.

(2) Depending on the ranking computed by this time window of data for each rating method, the

10, 20 or 30 best performing HFs are selected for the backtesting exercise, and then one holds

these selected HFs for 1 year, for 3 years, for 5 years, and till the end of the whole sample

period, respectively.17

(3) In each of the above four holding period scenarios, we compute and store the complete his-

torical track record of the holding value per buy-and-hold backtesting strategy, and then we

calculate the mean, variance, skewness and kurtosis of these holding value series.

The above steps for backtesting are repeated over 48 time windows in total. For each of the four

holding period scenarios, the performance of these MVSK observations (15 times 48 observations)

that are generated by the 15 strategies over 48 backtesting exercises are all evaluated by the shortage

functions in the single-time and multi-moment frameworks (with convexity and nonconvexity). In

particular, we first establish the VRSc and VRSnc nonparametric frontiers in the single-time and

multi-moment framework for these MVSK observations, and then measure their efficiency scores

using the shortage functions. Clearly, each buy-and-hold strategy yields the efficiency scores of

48 MVSK observations. The average efficiency score and the number of efficient units, as well as

the distribution of inefficiency scores across these 48 observations, are adopted to evaluate the 15

17Appendix C discusses the empirical results pertaining to the performance of 15 buy-and-hold backtesting strate-
gies held for 1 year, for 3 years, for 5 years, respectively.
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strategies. For the four holding scenarios, the same pattern is used to compare the 15 strategies

based on the different rating methods.

4 Empirical Backtesting Results

As previously mentioned, the purpose of the empirical analysis is twofold. First, we examine

whether the consideration of multiple moments and multiple times has an impact on both the

efficiencies and the rankings of HFs. Second, we aim to further illustrate the eventual superiority

of the proposed multi-time and multi-moment frontier rating methods by the backtesting analysis.

4.1 Sample Description

Considering the use of backtesting in the newly proposed multi-time and multi-moment ratings,

the sample data collected requires the availability of continuous data for at least 14 years. Hence,

we choose 187 HFs with monthly returns from October 2006 to October 2020 to test the 15 rating

methods.18 The data is all downloaded from Lipper for Investment Management made available

by Hedge Funds database. According to the Lipper classification regarding HFs strategies, our

sample database includes twelve different strategies.19 Indeed, HFs with different strategies tend

to have different trade-offs between risk and return when building their optimal portfolios (see

Racicot and Théoret (2018, 2019)). In our buy-and-hold backtesting analysis, we do not account

for this variation since most individual investors are normally free to select a number of HFs across

strategies from the universe of HFs to invest in. It needs to be stated that we initially specify

these nonparametric frontier rating methods following the idea of Kerstens, Mounir, and Van de

Woestyne (2011) that higher order moments and cost components are included. But, since HF cost

data is unavailable in this database, our empirical analysis is limited to focus on the characteristics

of the return distributions for these HFs without considering cost factors.20 In the following, we

make a basic analysis of the monthly return characteristics of the 187 HF sample over the whole

18As introduced in Section 3, each backtesting exercise needs the return data of the 5 previous years to calculate the
statistics of HFs for computing the finance-based and frontier-based ratings, and at least the return data of 5 years
ahead to evaluate the out-of-sample performance of these fund ratings. This process is repeated for 48 successive
months. Therefore, this requires that the selected sample of HFs contains at least 14 (= 5 + 5 + 4) years of monthly
return data. Thus, our sample runs from October 2006 to October 2020 for a total of 187 HFs in Lipper that are
available over the sample period.

19In detail: Long/Short Equity (71 obs.), Managed Futures/CTAs (41 obs.), Multi Strategies (20 obs.), Event
Driven (18 obs.), Emerging Markets (16 obs.), Global Macro (7 obs.), Credit Focus (5 obs.), Long Bias (4 obs.),
Convertible Arbitrage (1 obs.), Equity Market Neutral (1 obs.), Fixed Income Arbitrage (1 obs.), and Other Hedge
(2 obs.).

20Kerstens, Mounir, and Van de Woestyne (2011) argue that MF can be trivially interpreted as a cost-based (loads)
financial product that is identified by the characteristics of the return distribution, as summarized by some common
subspace of moments. For example, when two MFs are identical in terms of the return distribution as summarized
by the four moments, then the rational investor chooses for the MF with the lowest cost components. In the absence
of data on the cost characteristics of MF, there is an implicit assumption that these costs are identical across the
sample: therefore, their effect on the evaluation of the rating methods in our work can be ignored.
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sample period. Table 2 reports descriptive statistics on the first four moments in columns 2 to 5

as well as on the scaled versions of skewness and kurtosis in columns 6 and 7 for the sample.21

Table 2: Descriptive statistics for all 187 HFs over the whole sample period

Mean Variance Skewness Kurtosis Scaled

skewness

Scaled

kurtosis

Min. -0.328 0.633 -621.506 3.866 -5.989 2.469

Q1 0.306 8.764 -43.341 481.584 -0.785 3.874

Median 0.447 14.971 -10.294 1293.516 -0.320 5.385

Mean 0.480 26.810 210.182 34145.995 -0.510 7.283

Q3 0.601 27.018 1.468 4267.635 0.077 7.417

Max. 1.733 521.156 22732.909 2655540.333 1.913 59.538

Several studies mention that both scaled skewness and scaled kurtosis are not independent

of one another for asymmetric distributions. Wilkins (1944) proves a lower statistical bound for

scaled kurtosis which links it to the squared value of scaled skewness (i.e., kurtosis ≥ 1+skewness2).

More recent theoretical and empirical research discussing the relation between these two measures

is found in Schopflocher and Sullivan (2005) and Racicot and Théoret (2018, 2019). Clearly, the

descriptive statistics for the scaled versions of skewness and kurtosis in Table 2 differ from those of

the unscaled versions of skewness and kurtosis (i.e., the third and fourth central moments of the

asset return distribution).

While several streams in the financial literature do use scaled skewness and kurtosis, we adapt

the third and fourth central moments as the input-like and output-like variables in the proposed

rating methods. The main concerns are twofold. First, using the third and fourth central moments

as output and input allows performance gauging of HFs consistent with general mixed risk-aversion

investor preferences, i.e., a preference for odd moments and an aversion for even moments. Second,

the association between the third and fourth central moments of the return distribution with the

Taylor approximation of the expected utility function for a mixed risk-averse investor have been

argued in the literature (see, e.g., Briec, Kerstens, and Jokung (2007), and Krüger (2021)). The

use of ratios in the scaled skewness and kurtosis imposes a proportionality between moments that

is not present in the above investor preferences. For instance, when using the scaled kurtosis, while

we know that investors want a reduction in kurtosis and variance separately, we do not know their

preference for the ratio of both. Therefore, all discussions and computations hereafter make use of

central moments.

From the descriptive statistics of the monthly returns reported in Table 2, we see that some

21In finance, the scaled versions of skewness and kurtosis are often used to characterize the asymmetry of return
distributions. Consistent with the notations in Section 2, the scaled skewness and scaled kurtosis can be computed

as: E[(Rt
j − E(Rt

j))
3]/(E[(Rt

j − E(Rt
j))

2])
3
2 , and E[(Rt

j − E(Rt
j))

4]/(E[(Rt
j − E(Rt

j))
2])2, respectively.
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HFs are characterised by negative return and/or negative skewness. Such HFs are handled by

taking absolute values of the output-like variables. Furthermore, we find that the series consisting

of 187 HFs’skewness present positive mean and negative median, while the dispersion is quite large.

Furthermore, all 187 HFs display positive kurtosis and also have a high dispersion. It is evident

that some HFs do not perform well in terms of skewness and kurtosis. Therefore, for investors

seeking non-negative skewness with small positive kurtosis, the multi-moment rating methods can

be of great importance to select well-performing HFs from a large and heterogeneous HF universe.

To assess the stability and persistence of these return characteristics over time, we further report

the first four moments of the sample over three time periods: a 1-year, a 3-year and a 5-year time

periods, respectively, is presented in Table B.1 in Appendix B. Fundamentally, the same results

regarding the return characteristics are available for these three time periods.

4.2 Evaluation Results

For the first aim of the empirical analysis, we compare both the efficiency distributions and the

rankings of the 187 HFs calculated by the 15 rating methods. In the single-time rating framework,

we extract the monthly returns of these samples for the past 5 years to date to calculate the

efficiency and ranking. While in the multi-time rating framework, the monthly returns for the past

1 year, 3 years and 5 years to date are integrated and applied to evaluate the performance of these

funds.

First, the efficiency distributions computed for the 15 rating methods are compared by means

of nonparametric tests comparing two entire distributions initially developed by Li (1996) and

refined by Fan and Ullah (1999) and most recently by Li, Maasoumi, and Racine (2009). It tests

for the eventual statistical significance of differences between two kernel-based estimates of density

functions f and g of a random variable x. The null hypothesis maintains the equality of both density

functions almost everywhere: H0 : f(x) = g(x) for all x; while the alternative hypothesis negates

this equality of both density functions: H1 : f(x) ̸= g(x) for some x.22 Table 3 provides Li-test

statistics using 2000 bootstrap replications for all rating methods considered in this contribution:

in total, we report 105 relevant rating methods comparisons.

Several observations can be made regarding the results in Table 3. First, it is clear that the

efficiency distributions computed by traditional financial performance measures and those computed

by frontier-based rating methods are significantly different at the 1 % significance level.

22Matlab code developed by P.J. Kerstens based on Li, Maasoumi, and Racine (2009) is found at:
https://github.com/kepiej/DEAUtils. In fact, we use the so-called Simar-Zelenyuk adaptation of this test statistic
for nonparametric frontier estimators to circumvent the problem of spurious mass at the boundary by considering
two algorithms: Algorithm I ignores the boundary estimates and Algorithm II smooths these estimates by adding
a uniform noise of order of magnitude less than the order of magnitude of the noise added by the nonparametric
frontier estimator. The Monte Carlo evidence indicates that Algorithm II is more robust when the dimensions of the
specification are increased. Therefore, we employ the Li-test version of Li, Maasoumi, and Racine (2009) amended
with Algorithm II.
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Second, in both c and nc frontier ratings, the single-time and multi-time rating methods yield

significantly different efficiency distributions. This implies that the consideration of multiple times

has a significant impact on the efficiency distributions.

Third, the effect of adding multiple moments on the efficiency distributions are somewhat

different in single-time and multi-time ratings. For instance, in the case of convexity, adding

skewness and kurtosis jointly has a significant effect on the efficiency distributions at the 1 %

significance level in multi-time ratings. In single-time ratings, adding higher moments does not

contribute in a significant way. Furthermore, the nonconvex frontier rating methods are more

discriminatory in the impact of adding multiple moments. Compared to the above results in the

case of convexity, in the case of nonconvexity, both adding skewness in itself and adding skewness

and kurtosis jointly have significant effects on the efficiency distributions at 1 % significance level

in multi-time ratings, and adding these jointly has a significant impact at 5 % significance level in

single-time ratings.

Fourth, for multi-time ratings, imposing convexity always has a significant impact on the effi-

ciency distributions. The efficiency distributions obtained by convex and nonconvex frontier ratings

in MV, MVS and MVSK cases all yield differences at 1 % significance level, respectively. For the

single-time ratings, the efficiency distributions of the convex and the nonconvex models are different

at the 1 % and 10 % significance level in MVS and MVSK cases, respectively.

We further determine the Kendall rank correlations to test the degree of concordance in rankings

determined by these performance measures. Table 4 shows the rank correlation between different

HF ratings. In this table, *** indicates that the correlation coefficient between the rankings is

significantly different from zero at 1 % significance level. The following key findings are revealed

from Table 4. First, it is clear that the traditional financial ratings present a consistently low

correlation (around 0.39-0.43) with the multi-time and multi-moment (MVS & MVSK) frontier

ratings, but a high correlation (more than 0.8) with the single-time MV ratings. Second, turning

to the comparisons between frontier ratings in single-time and multi-time frameworks, the single-

time frontier rating and multi-time frontier rating show a low correlation overall. Third, the MV

frontier rating exhibits a lower correlation with the multi-moment (MVS & MVSK) frontier ratings

in multi-time framework compared in single-time framework. Moreover, the MV frontier rating

has a lower correlation with the MVSK frontier rating compared with the MVS frontier rating.

Finally, regarding comparisons between the rating models with convexity and nonconvexity, both

the second and third findings tend to be more pronounced in the nonconvex case compared to the

convex case.

From these analyses, we can conclude that the multiple moments and multiple times both

separately and jointly have an impact on the HF efficiency and ranking for our data, and this

impact is more significant when the two factors are considered jointly. Furthermore, nonconvexity

may prove to be a more modest hypothesis in the proposed multi-time and multi-moment ratings
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since it exhibits a stronger discriminatory power with respect to the effect of adding multiple

moments. This confirms earlier comparative results between the convex and nonconvex models

with higher order moments in the contribution of Kerstens, Mounir, and Van de Woestyne (2011).

4.3 Backtesting Results

We analyze the backtesting scenarios with a selection of the 10, 20 or 30 best performing HFs,

respectively.23 As stated previously, the 15 buy-and-hold strategies are compared in terms of the

MVSK performances of their holding value series that are evaluated by the shortage functions

based on the VRSc and VRSnc frontiers in single-time and multi-moment frameworks. Table 5

presents an overall analysis with respect to the performances of the MVSK observations generated

per strategy held until the end of the whole sample period. This table is structured as follows: the

first series of four columns list the results with regard to the 10 best HFs selected for the backtesting

exercise, and the second and third series of four columns present the results for selecting 20 and 30

best HFs, respectively. Within each selecting (buying) scenario, the first two columns report the

average inefficiency scores and the number of efficient units for each strategy when evaluated using

the VRSc frontier in single-time and multi-moment framework, while the last two columns report

these results in the VRSnc case.

Table 5: Performance results for 15 buy-and-hold backtesting strategies: Descriptive statistics of
the values of shortage function

Methods

HF(10) HF(20) HF(30)

VRSc VRSnc VRSc VRSnc VRSc VRSnc

Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs.

Eff(Sharpe) 0.064 0 0.040 9 0.081 2 0.047 10 0.078 0 0.034 9

Eff(Sortino) 0.063 1 0.034 10 0.084 2 0.055 7 0.077 1 0.037 9

Eff(Omega) 0.064 0 0.031 10 0.084 1 0.059 4 0.077 0 0.040 7

STMVc 0.077 0 0.045 17 0.101 1 0.064 5 0.096 0 0.047 11

STMVSc 0.059 7 0.027 28 0.090 2 0.055 14 0.076 4 0.033 16

STMVSKc 0.044 6 0.014 31 0.070 4 0.039 17 0.059 1 0.031 15

MTMVc 0.061 1 0.020 22 0.075 1 0.038 14 0.078 2 0.032 11

MTMVSc 0.063 4 0.025 22 0.078 2 0.044 14 0.065 2 0.028 16

MTMVSKc 0.041 9 0.008 30 0.065 1 0.033 17 0.053 1 0.020 17

STMVnc 0.068 2 0.031 20 0.100 0 0.062 8 0.090 0 0.038 11

STMVSnc 0.042 5 0.023 16 0.054 4 0.029 19 0.039 5 0.014 25

STMVSKnc 0.042 4 0.026 13 0.040 6 0.022 27 0.035 7 0.012 26

MTMVnc 0.047 3 0.013 26 0.075 0 0.035 18 0.074 0 0.030 15

MTMVSnc 0.034 9 0.010 27 0.049 9 0.024 19 0.039 6 0.013 28

MTMVSKnc 0.039 5 0.012 31 0.047 7 0.021 21 0.032 7 0.009 28

We first analyze the main findings in the context of buying and holding until the end of the

whole sample period, as presented in Table 5. From these results, there are four main conclusions.

The first key finding is that all the frontier-based strategies outperform the strategies based on

traditional financial indicators, except the strategies constructed by the single-time MV frontier

rating methods. From the average inefficient scores reported in Table 5, it is easy to see that

23All HFs with an efficiency of 0 are ranked as 1 in our calculations. As a consequence, when we have to take
a certain amount of funds among these ties then we take these randomly among the tied units (as in Brandouy,
Kerstens, and Van de Woestyne (2015)).
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the average inefficiency scores of all strategies based on the multi-moment and/or the multi-time

frontier ratings are lower than those of Sharpe-, Sortino- and Omega-driven strategies. This result

is valid when buying the 10, 20 and 30 best HFs. Combining the numbers of efficient units given

in Table 5, the frontier-based strategies clearly yield more efficient units compared to those based

on traditional indicators.

The second key result is that the buy-and-hold strategies according to the multi-moment ratings

present superior results compared to those based on the MV ratings. Again, this result is confirmed

when buying the 10, 20 and 30 best HFs. Both in the single-time and multi-time rating frameworks,

we find that the strategies driven by the multi-moment ratings yield lower average inefficiency scores

and a higher number of efficient units over strategies driven by the MV ratings.

Third, combining the two evaluation indicators of average inefficiency scores and the number

of efficient units, it is found that in the majority of cases the buy-and-hold strategies consisting of

the HFs selected by the multi-time rating methods perform better than strategies consisting of the

HFs selected by the single-time rating methods. This result remains valid when buying the 10, 20

and 30 best HFs.

A last key finding is that strategies determined by the nonconvex frontier-based ratings always

outperform those determined by the convex frontier-based ratings. Moreover, by comparing the

average inefficiency scores and the number of efficient units between the two in MVS and MVSK

frameworks, it can be seen that when multiple moments are considered, the strategies based on

the nonconvex frontier-based ratings usually display a more significant advantage. The reason for

this finding is that skewness and kurtosis imply nonconvexities in diversified portfolio optimisation.

As stated above, nonconvex production frontier models used for fund rating underestimate the

nonconvex diversified portfolio models, while the convex production frontier models may tend to

overestimate these same nonconvex diversified portfolio models.

Thus, this backtesting analysis shows that the buy-and-hold strategies constructed by our pro-

posed multi-moment and multi-time rating methods exhibit superior performance in most scenarios.

We therefore believe that the joint consideration of multi-moments and multi-times provides addi-

tional useful information for HF selection in practice.

As a sensitivity analysis, we test the performance of the 15 buy-and-hold backtesting strategies

held for 1 year, 3 years and 5 years, which can be regarded as their short-, medium- and long-term

holding performance. Table C.1 in Appendix C summarizes the performance results of the 15 strate-

gies held for these three alternative holding periods. The above four findings are also evidenced in

most cases for these three holding period scenarios. Moreover, the buy-and-hold backtesting strate-

gies consisting of the best HFs rated by the multi-moment and multi-time performance measure

tend to show a consistent performance over the different holding periods. We basically conclude

that the buy-and-hold strategies driven by the multi-moment and multi-time ratings exhibit favor-

able and consistent short-, medium- and long-term holding performance, somewhat implying that
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the performance of the best-performing HFs rated by the proposed multi-moment and multi-time

performance measure would be sustained over time. A more detailed discussion on the sensitivity

analysis is provide in Appendix C.

Furthermore, we also report the performance of the 15 buy-and-hold backtesting strategies

held during the COVID-19 period which for our purpose ranges from February 2020 to February

2022 to explore whether the proposed multi-time and multi-moment frontier ratings perform well

in such a holding phase with high market volatility. To add this very harsh holding period, we

complement our initial sample with data from November 2020 till February 2022.24 This question

pertains to the more general issue that the behavior of HF strategies are linked to the phases of the

economic cycle, i.e., economic expansion or crisis (see, e.g., Racicot and Théoret (2018, 2019)). The

performance results of the 15 strategies held during the COVID-19 crisis are presented in Table D.1

of Appendix D. Overall, one finds that the buy-and-hold strategies determined by the multi-time

and multi-moment frontier ratings maintain a mild advantage over those determined by the other

existing ratings, though this advantage is not so pronounced as in other holding scenarios with

lower market volatility. To save space, the details are presented and discussed in Appendix D.

Figure 2: Distributions of inefficiency scores for 15 buy-and-hold backtesting strategies.eps

Besides evaluating strategies based on the two summarized indicators reported in Table 5,

we further provide the entire distribution of the inefficiency scores per strategy to compare these

intuitively. Figure 2 presents a graphical overview of the performance of all strategies by integrating

the box-plot per strategy held to end in the buying scenarios with 10, 20 and 30 HFs selected. In

this figure, the sub-figures (a) to (c) correspond to the performance results of these three buying

24Note that if certain HFs are liquidated during this extended period, then the corresponding return data are all
set to zero.
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scenarios. The box-plots for the performance of strategies based on the VRSc frontier are in

blue, and those based on the VRSnc frontier are in red. In these box-plots, the box indicates

the interquartile range where the small vertical lines reporting the location of the median. Their

locations closer to the left suggests that the entire distribution of inefficiency scores for the strategy

is at a lower level, which implies that the strategy has a better performance in backtesting analysis.

As we can observe from Figure 2, comparing the performance of these strategies in each buying

(backtesting) scenario, the buy-and-hold strategies constructed by the multi-moment and multi-

time frontier rating methods are superior to strategies constructed by the existing rating methods

in most cases.

Equally so, the entire distributions of the inefficiency scores for the 15 strategies held for 1, 3 and

5 years are presented in Figures C.1, C.2 and C.3 in Appendix C, respectively. From Figures C.1,

C.2 and C.3, one can observe that the dominance of the strategies driven by the multi-moment and

multi-time ratings over other strategies remains valid and that this relation is strengthened as the

holding period increases. It is therefore clear that the good performance of the strategies driven

by the proposed frontier-based performance measures including multiple moments and multiple

times exhibits good stability (see Appendix C for details). In addition, we also report the entire

distribution of the inefficiency scores per strategy held during the COVID-19 period in Figure D.1

provided in Appendix D. From Figure D.1, it can be observed that the multi-time and multi-

moment ratings somewhat do better than the traditional financial ratings and several existing

frontier ratings in general during the holding period when market volatility is relatively high.

Finally, we provide some minimal sensitivity analysis with respect to one popular alternative

risk measure: CVaR. VaR is defined as the maximum loss that investors may suffer over a given

time horizon at a specified confidence level. CVaR (one popular variation on VaR) corresponds

to the expected loss conditional on the loss exceeding VaR. CVaR risk measures are coherent

(see Branda (2015)): this leads to a convex mean-CVaR portfolio optimization problem. Thus,

the nonparametric production frontier specifications have the potential to provide a conservative

approximation for this diversified mean–CVaR frontier. Therefore, we first opt to add another 4

buy-and-hold strategies consisting of the HFs selected by on the one hand the convex and nonconvex

and on the other hand the single time and multiple time nonparametric mean-CVaR frontier ratings.

In addition, Branda (2015, p. 75, equation (18)) proposes an equivalent linearized version of the

diversified mean-CVaR model, which refines the computation of the diversified mean-CVaR model

(see also Branda (2013) and see Mansini, Ogryczak, and Speranza (2014) for a survey of linear

programming approaches to diversified portfolio models). Hence, we also opt to add another 2

buy-and-hold strategies determined by the diversified mean-CVaR models in both single-time and

multi-time frameworks.

The four nondiversified mean-CVaR ratings are obtained by solving model (2) and model (4)

with CVaR as the input-like variable and return as the output-like variable (denoted as STMCVaRc,

STMCVaRnc, MTMCVaRc and MTMCVaRnc, respectively). The two diversified mean-CVaR

25



ratings are based on solving the equivalent linearized model of the diversified mean-CVaR portfolio

proposed by Branda (2015), and the multi-time one is an extension of this diversified mean-CVaR

model in our multi-time framework (denoted as STMCVaRdiv and MTMCVaRdiv, respectively).25

The performance results of these 21 buy-and-hold backtesting strategies held until the end of the

whole sample period are presented in Table E.1 and Figure E.1 of Appendix E. Overall, it can be

concluded that the proposed multi-time and multi-moment ratings in this contribution have a clear

dominance over both nondiversified and diversified mean-CVaR ratings.26

5 Conclusion

Inspired by recent nonparametric frontier rating methods contributing to assessing MF performance

(e.g., Kerstens, Mounir, and Van de Woestyne (2011)), this contribution has aimed to define a new

shortage function or performance measure for rating MFs that can simultaneously handle both

multiple moments and multiple times. Furthermore, we have explored the potential benefits of

this new performance measure for selecting the best performing MF. We are now in a position to

summarize the main contributions.

First, we establish a series of nonparametric convex and nonconvex frontier rating methods with

multi-moments and multi-times. The proposed rating methods are capable of not only assessing to

which extent a MF performs well in the several moments following mixed risk-aversion preferences,

but it simultaneously measures to which extent a MF performs well in all these moments in different

times as well. These new multi-time and multi-moment performance measures are suitable for

handling mixed risk-aversion preferences of investors which aim at time persistence.

Second, the proposed rating methods are empirically applied to HFs, given that HFs tend to

exhibit strong asymmetric and long-tail return characteristics compared to other MFs. Using Li-

test and Kendall rank correlation, the multi-time and multi-moment ratings are compared with

traditional financial indicators and basic single-time MV rating methods to examine the impact

of multiple moments and multiple times. From the comparison among 15 various rating methods,

we find that in both convex and nonconvex cases, the multiple moments and multiple times both

separately and jointly have an impact on the HF efficiency and ranking, and this impact is more

significant when the two factors are considered jointly. Furthermore, the nonconvex rating models

have stronger discriminatory power with respect to the effect of adding multiple moments over the

convex rating models. This confirms earlier comparative results between convex and nonconvex

models with higher order moments in Kerstens, Mounir, and Van de Woestyne (2011).

Third, having the impact of the multi-moments and multi-times in mind, we develop a simple

25We simply set the confidence level as 95% as is commonly used to calculate the CVaR measure and the mean-
CVaR diversified model, while Branda (2015) sets a whole range of confidence levels in his computations.

26In Appendix E the 21 buy-and-hold strategies driven by both VRSc and VRSnc nonparametric as well as diver-
sified mean-CVaR frontier ratings in single-time and multi-time frameworks are included in our backtesting exercise.

26



buy-and-hold backtesting strategy to test whether the new ratings perform any better than more

traditional financial ratings and single-time MV ratings in HF selection. In most backtesting

exercises, the buy-and-hold strategies based on the multi-time and multi-moment ratings exhibit

a superiority over those based on traditional financial ratings and single-time MV ratings. This

superiority is clearly confirmed by comparing the MVSK performance of holding values with respect

to various buy-and-hold backtesting strategies. The multi-time and multi-moment strategies tend

to exhibit more stable and favorable short-, medium- and long-term holding performance than the

other strategies. Equally so, we focus on the comparison of these multi-time and multi-moment

strategies in the convex and nonconvex cases. The strategies based on the nonconvex frontier

ratings usually display a more significant advantage over the convex frontier ratings probably for

reasons of a closer fit with the nonconvex skewness and kurtosis in diversified portfolio optimisation.

Overall, the proposed multi-time and multi-moment performance measures provide a novel

idea into the important topic of rating and selecting MF. From the basic backtesting setup in our

empirical analysis, further extensive backtesting studies can be developed to exploit the potential of

the new performance measures in constructing a fund of funds. Another desirable avenue for future

research is to transfer the current methodological framework and to perform a backtesting analysis

using diversified portfolio models. It is worthwhile to compare the performance in MF selection

between the backtesting strategies driven by diversified and convex and nonconvex nondiversified

frontier rating methods. But, this in principle calls for overcoming the computational difficulties of

extending the diversified models to the multi-moment and multi-time framework. Furthermore, one

can account for other popular risk measures that assess tail risk as an alternative to variance (i.e.,

the second moment of the return distribution): e.g., VaR or CVaR. While mean-CVaR models are

common, their extension to include in addition higher moments is a bit unusual. The fundamental

methodologies developed in this work can be extended to the mean-CVaR (or VaR)-skewness-

kurtosis framework. Also the eventual use of alternative risk measures in conjunction with higher

moments is left for future work. Due to certain regulatory and strategic limitations, fund managers

may only be able to construct portfolios among several specific categories (e.g., strategies) of HFs.

It could be intriguing to develop HFs rating across categories by incorporating the current efforts

with the so-called nonparametric metatechnology (e.g., Kerstens, O’Donnell, and Van de Woestyne

(2019)). Clearly, it is also useful to apply the current methodology and the further extensions for

tackling the evaluation and comparison across categories for other traditional MFs (e.g., equity

MFs, bond MFs, and mixed asset MFs, etc.).
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Massol, O., and A. Banal-Estañol (2014): “Export Diversification through Resource-Based

Industrialization: The Case of Natural Gas,” European Journal of Operational Research, 237(3),

1067–1082.

Menardi, G., and F. Lisi (2012): “Are Performance Measures Equally Stable?,” Annals of

Finance, 8(4), 553–570.

Morey, M., and R. Morey (1999): “Mutual Fund Performance Appraisals: A Multi-Horizon

Perspective With Endogenous Benchmarking,” Omega, 27(2), 241–258.

Murthi, B., Y. Choi, and P. Desai (1997): “Efficiency of Mutual Funds and Portfolio Perfor-

mance Measurement: A Non-Parametric Approach,” European Journal of Operational Research,

98(2), 408–418.
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Appendices: Supplementary Material

A Computational Cost Comparison: Nondiversified vs. Diversi-

fied Models

We provide a simple comparison between the computational time of a convex VRS nonparametric

frontier model versus a diversified model for dealing with the MV/MVS/MVSK cases. We randomly

generate 20 sets of time series representing the raw returns of 20 artificial assets. From these 20

assets, we consider the first 5, 6, . . . , 20 assets as the main products in the corresponding financial

universes, respectively, for which efficiencies (both using the convex VRS nonparametric frontier

model and the diversified model) are computed. The average time for optimizing one asset is

recorded and is depicted in Figure A.1.

Figure A.1: Average CPU time for optimizing one observation

From Figure A.1, it can be seen that the diversified portfolio models tend to have a prohibitive

computational cost in the MVS and MVSK settings, especially for large asset universes. Therefore,

combing the multi-time and multi-moment rating frameworks with the diversified models is subject

to serious computational drawbacks.
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B Sample Description: Further Details

The descriptive statistics on the first four moments of the 187 HF sample over 1-year time period

(sample period: Nov 2019 to Oct 2020), 3-year time period (sample period: Nov 2017 to Oct 2020)

and 5-year time period (sample period: Nov 2015 to Oct 2020) are provided in Table B.1.

Table B.1: Descriptive statistics for all 187 HFs over 1-, 3- and 5-year time periods

1 year monthly return: From Nov 2019 to Oct 2020

Mean Variance Skewness Kurtosis

Min. −3.913 0.241 −4765.126 0.305

Q1 −0.467 8.580 −135.113 259.251

Median 0.356 18.270 −12.409 1277.641

Mean 0.423 45.237 414.608 71518.803

Q3 0.930 45.155 14.606 6685.385

Max. 10.857 937.351 60038.381 5381641.258

3 year monthly return: From Nov 2017 to Oct 2020

Mean Variance Skewness Kurtosis

Min. −2.836 0.258 −1820.695 0.217

Q1 −0.134 7.925 −65.187 344.122

Median 0.175 14.259 −17.723 945.365

Mean 0.248 27.364 240.996 36348.550

Q3 0.463 28.983 2.409 3974.036

Max. 4.623 533.743 30000.036 2865464.753

5 year monthly return: From Nov 2015 to Oct 2020

Mean Variance Skewness Kurtosis

Min. −1.618 0.228 −1142.152 0.196

Q1 −0.005 7.290 −45.376 275.106

Median 0.254 12.959 −12.149 715.167

Mean 0.345 26.036 243.423 39749.791

Q3 0.609 25.073 0.299 3002.459

Max. 3.943 705.232 27466.851 3289535.317

As observed from column 4 in Table B.1, we find that for each time, the series composed by the

skewness of 187 HFs shows positive mean and negative median, as well as a large dispersion. From

column 5, it can be seen that all 187 HFs have positive kurtosis in each time, and also exhibit a

high dispersion. These results are in line with the ones reported in the main body of the text. This

partly indicates that the stability and persistence of these return characteristics for the HF sample
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is maintained over different times. In addition, there are certain differences among the 1-year,

3-year and 5-year MVSK of this HF sample. To some extent, the addition of multiple moments

and multiple times may provide a more accurate picture to describe HF’s return characteristics

compared to only considering the mean and variance at a single time.

C Sensitivity Analysis Backtesting Results: Holding Period

To develop a sensitivity analysis with respect of the holding period, this Appendix focuses on

testing the short-, medium- and long-term holding performance of the buy-and-hold backtesting

strategies based on the proposed multi-moment and multi-time rating methods. The performance

of strategies held for only 1 year is regarded as a short-term holding performance, for 3 years as a

medium-term holding performance, and for 5 years as a long-term holding performance. For each

of the three holding scenarios, the 15 strategies are compared in terms of the MVSK performances

of their holding values that are always evaluated by the shortage function based on the convex and

nonconvex VRS (VRSc and VRSnc for short) frontiers in single-time and multi-moment frame-

work. Table C.1 reports the summarized results with respect to the performance per buy-and-hold

backtesting strategy held for 1, 3 and 5 years.

Table C.1 is organized as follows: the three series consisting of four columns list the performance

results for holding the selected HFs over 1, 3 and 5 years, respectively. Within each holding

period scenario, the first two columns report the average inefficiency scores and the number of

efficient units for each method when evaluated using the VRSc frontier in single-time and multi-

moment framework, while the last two columns report these results in the VRSnc case. Horizontally,

each block of rows contains the results of the selection of the 10, 20 or 30 best performing HFs,

respectively.

We now analyze the results on the three holding scenarios presented in Table C.1, following

the same basic logic of analysing the 15 strategies in the main text. Thus, the performance of

strategies generated by two family of ratings (frontier vs. finance) is compared first, and then the

comparison between the frontier families of ratings is developed separately (i.e., multi-moments vs.

MV; multi-times vs. single time; convexity vs. nonconvexity).

We first discuss the short-term holding performance of the 15 buy-and-hold strategies, as shown

in columns 2-6 of Table C.1. First, it can be observed that minor difference on the short-term holding

performance is observed between the strategies depending on the multi-time frontier ratings and

those depending on traditional financial ratings, and both their performances are superior over

other frontier-based strategies. Second, in most cases, the strategies based on the multi-moment

ratings do not show superiority compared to those based on the MV ratings when these strategies

are held for only 1 year. This result is somewhat at odds with the one reported in the main

text. Third, combining average inefficiency scores and the number of efficient units, the strategies
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constructed in the multi-time rating framework perform better over those in the single-time rating

framework under the 1-year holding scenario. Finally, in terms of short-term holding performance,

the strategies determined by the nonconvex frontier-based ratings outperform those determined by

the convex frontier-based ratings in the majority of cases. The latter finding is in line with the

one shown in the main text. It needs to be mentioned that some of the findings may be somewhat

unstable with respect to the 1-year holding period due to the limited data for testing the short-term

holding performance of the 15 buy-and-hold strategies.

Looking at columns 7-10 of Table C.1 for the medium-term holding performance of the 15

strategies, one can draw the following observations. The frontier-based strategies with consideration

of multi-moments and multi-times (separately or jointly) largely outperform the finance-based

strategies. It is easy to observe that the strategies driven by the multi-moment and multi-time

frontier ratings generally yield lower average inefficiency scores and more efficient units compared

to Sharpe-, Sortino- and Omega-driven strategies. Turning to the comparisons between various

frontier-based rating methods, the buy-and-hold strategies based on the multi-moment ratings

(MVS & MVSK) perform better than those based on the basic MV ratings. This is confirmed

in both single-time and multi-time rating frameworks. Moreover, consistent with the finding on

considering multiple times in the 1-year holding scenario (see the third finding), the multi-time

frontier-based strategies outperform the single-time frontier-based strategies in most cases in the

3-year holding scenario. Again, when comparing convex and nonconvex frontier-based strategies in

the medium-term holding scenario, the same coherent finding emerges as in the short-term holding

scenario (see the final finding analyzed in the 1-year holding context).

Following up the results regarding the 5-year holding scenario as reported in columns 11-14

of Table C.1, the above four findings emerging in the 3-year holding period are also evidenced in

this holding scenario. These results in the medium- and long-term holding scenarios are rather

in line with the ones reported in the main body. We basically conclude that the buy-and-hold

backtesting strategies based on the proposed multi-time and multi-moment models show a superior

performance in different holding period scenarios.

Apart from comparing the performance of the 15 buy-and-hold strategies vertically for each of

three holding scenarios, we have also run a horizontal analysis on the consistency and stability of

the performance per strategy over different holding periods. Looking at the evolution of the average

inefficiency scores and the number of efficient units per strategy held for 1, 3 and 5 years allows to

infer two new and interesting observations. First, the strategies consisting of the best HFs selected

by financial indicators and basic MV frontier rating methods tend to exhibit worse performance

in medium- and long-term holding periods compared to their performances in a short-term hold-

ing period. By contrast, the strategies with the consideration of multiple moments and multiple

times usually exhibit favorable and consistent short-, medium- and long-term holding performance.

Second, focusing on the MVS and MVSK settings in the multi-moment rating framework, it can

be noticed that compared to the strategies based on the multi-time ratings adding skewness only,
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the ones based on the ratings adding both skewness and kurtosis show better and more consistent

short-, medium-, and long-term holding performance. This finding reveals the necessity for the ad-

dition of kurtosis in HF rating and selection. Indeed, including the kurtosis reduces the disturbance

of certain extreme values to the fund ratings, and therefore the funds selected tend to present both

better and more stable returns. These results somewhat suggest that the performance persistence

of the best-performing HFs rated by the multi-moment and multi-time performance measure is well

maintained over time.

Figure C.1: Distributions of inefficiency scores for 15 buy-and-hold backtesting strategies held for

1 year
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Figure C.2: Distributions of inefficiency scores for 15 buy-and-hold backtesting strategies held for

3 years

Figure C.3: Distributions of inefficiency scores for 15 buy-and-hold backtesting strategies held for

5 years

To compare the 15 buy-and-hold strategies intuitively, Figures C.1, C.2 and C.3 offer box-plots

to describe the entire distributions of the inefficiency scores per strategy held for 1, 3 and 5 years,

respectively. In each figure, the sub-figures (a) to (c) correspond to the performance results of the

buying scenarios with 10, 20 and 30 best HFs selected, whereby the performance of strategies based

on the VRSc frontier are depicted in blue, and those based on the VRSnc frontier are displayed
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in red. As introduced in the main text, the box of these box-plots indicates the interquartile

range where the small vertical line reports the location of the median. Straightforwardly, the

location of the median closer to the left indicates that the entire distribution of inefficiency scores

for one strategy is somewhat skewed to the left, which signals that the strategy performs better

in the backtesting analysis because the probability mass of the inefficiency is closer to zero. Two

major observations can be made with regard to these results in Figures C.1, C.2 and C.3. First,

although the buy-and-hold strategies constructed by the multi-moment and multi-time frontier

rating methods do not exhibit a significant superiority in the 1-year holding scenario, they establish

a clear dominance over the other strategies in both the 3- and 5-year holding scenarios (see sub-

figures (a) and (b) of Figures C.1, C.2 and C.3). Second, concentrating on Figures C.1, C.2 and C.3

individually, the good performance of the buy-and-hold strategies depending on the multi-moment

and multi-time ratings tends to be consistent and stable over time.

D Sensitivity Analysis Backtesting Results: COVID-19

We now analyse the performance of the 15 buy-and-hold backtesting strategies held during the pe-

riod of the COVID-19 pandemic from February 2020 to February 2022. Equally so, the 15 strategies

are gauged by the inefficiency scores of their MVSK performance held during the COVID-19 pe-

riod, which is determined by the single-time and multi-moment shortage functions based on VRSc

and VRSnc frontiers, respectively. Table D.1 contains the two performance indicators summarizing

their MVSK performance across 48 months of backtesting for each backtesting strategies (i.e., the

average inefficiency scores and the number of efficient units). Figure D.1 presents the distributions

of the inefficiency scores of the MVSK performance across 48 months of backtesting exercise for

each strategy held during the COVID-19 period.

Table D.1: Performance results for 15 buy-and-hold backtesting strategies: Descriptive statistics
of the values of shortage function

HF(10) HF(20) HF(30)

VRSc VRSnc VRSc VRSnc VRSc VRSnc

Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs.

Eff(Sharpe) 0.318 0 0.271 0 0.218 0 0.172 1 0.174 0 0.150 2

Eff(Sortino) 0.316 0 0.260 0 0.230 1 0.187 2 0.176 0 0.150 1

Eff(Omega) 0.330 0 0.285 0 0.239 0 0.200 0 0.210 0 0.188 0

STMVc 0.333 0 0.268 0 0.260 0 0.224 0 0.222 0 0.210 0

STMVSc 0.303 1 0.253 8 0.258 1 0.227 2 0.204 0 0.190 1

STMVSKc 0.291 1 0.254 4 0.266 0 0.227 0 0.236 0 0.215 1

MTMVc 0.288 1 0.245 1 0.230 0 0.189 1 0.198 0 0.186 1

MTMVSc 0.293 0 0.253 2 0.219 0 0.187 1 0.196 0 0.184 0

MTMVSKc 0.296 4 0.236 6 0.240 1 0.201 2 0.193 1 0.171 3

STMVnc 0.325 1 0.273 2 0.258 0 0.220 0 0.226 0 0.212 0

STMVSnc 0.467 0 0.408 2 0.313 0 0.279 0 0.200 1 0.186 4

STMVSKnc 0.376 1 0.319 5 0.279 1 0.235 3 0.197 2 0.175 2

MTMVnc 0.273 0 0.235 0 0.241 0 0.196 0 0.203 0 0.188 0

MTMVSnc 0.307 2 0.241 6 0.240 2 0.203 4 0.178 4 0.158 6

MTMVSKnc 0.292 4 0.217 12 0.229 4 0.190 6 0.189 2 0.166 6
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Figure D.1: Distributions of inefficiency scores for 15 buy-and-hold backtesting strategies held for

5 years

In general, it can be observed that the multi-time and multi-moment frontier-based strategies

show a modest superiority compared to the finance-based strategies and the single-time MV frontier-

based strategies during the COVID-19 crisis on average. Specifically, the traditional financial

measures and the other frontier rating methods are dominated by the multi-time and multi-moment

frontier rating methods when selecting the 10 best rated HFs. For the selection of 20 and 30 best

HFs, the multi-time and multi-moment frontier ratings exhibit a comparable performance to those

based on the financial ratings, but remain clearly superior to the other traditional frontier ratings

excluding multiple moments or multiple times.

Compared to the results among the 15 buy-and-hold strategies in the period with low market

volatility (Table 5 and Figure 2 in the main text), the dominance of the proposed multi-time and

multi-moment ratings over the other existing ratings is not so significant in the period with high

market volatility, especially when the selection of HFs is large. This comparison somewhat reveals

that the proposed multi-time and multi-moment rating methods seem to do better than traditional

financial performance gauges when the number of HFs to be selected is small during an economic

crisis.
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E Sensitivity Analysis Backtesting Results: CVaR Risk Measure

We develop a sensitivity analysis with regard to one alternative risk measure. In particular, we

focus on the comparison between the buy-and-hold backtesting strategies based on the proposed

multi-time and multi-moment rating frontier methods and those based on the frontier method with

return and Conditional Value-at-Risk (CVaR) risk measure. In total, there are now 21 instead

of 15 buy-and-hold strategies considered in our backtesting exercise. Following the backtesting

framework as introduced in Section 3, the performance results of these 21 strategies held until the

end of the whole sample period are summarized in Table E.1: the 6 new buy-and-hold strategies are

positioned in the last six rows of this table. Furthermore, Figure E.1 provides the entire distribution

of the inefficiency scores per strategy held until the end of the whole sample period in order to

compare these intuitively.

Table E.1: Performance results for 21 buy-and-hold backtesting strategies: Descriptive statistics of

the values of shortage function

Methods

HF(10) HF(20) HF(30)

VRSc VRSnc VRSc VRSnc VRSc VRSnc

Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs.

Eff(Sharpe) 0.064 0 0.040 9 0.081 2 0.047 10 0.078 0 0.036 8

Eff(Sortino) 0.065 1 0.035 10 0.084 2 0.055 7 0.077 1 0.037 9

Eff(Omega) 0.065 0 0.032 10 0.084 1 0.059 4 0.077 0 0.042 6

STMVc 0.077 0 0.045 17 0.102 0 0.066 3 0.096 0 0.048 10

STMVSc 0.060 5 0.027 28 0.090 2 0.055 14 0.076 4 0.034 16

STMVSKc 0.045 6 0.014 31 0.072 3 0.039 17 0.059 1 0.031 15

MHMVc 0.062 1 0.022 17 0.077 0 0.038 13 0.078 2 0.035 11

MHMVSc 0.065 4 0.028 19 0.079 2 0.044 14 0.065 2 0.028 15

MHMVSKc 0.043 9 0.009 29 0.068 1 0.034 17 0.053 1 0.021 16

STMVnc 0.068 2 0.033 20 0.100 0 0.063 7 0.090 0 0.040 10

STMVSnc 0.042 5 0.023 16 0.056 2 0.029 19 0.040 5 0.014 25

STMVSKnc 0.042 4 0.026 13 0.040 6 0.022 27 0.035 7 0.012 26

MHMVnc 0.048 3 0.014 24 0.076 0 0.036 18 0.074 0 0.032 14

MHMVSnc 0.036 8 0.012 26 0.052 6 0.025 19 0.039 6 0.013 28

MHMVSKnc 0.041 5 0.012 31 0.051 7 0.022 21 0.032 7 0.009 28

STMCVaRc 0.073 2 0.041 17 0.097 0 0.059 2 0.093 1 0.044 7

STMCVaRnc 0.071 0 0.035 11 0.098 0 0.065 3 0.084 0 0.039 9

MTMCVaRc 0.045 3 0.016 25 0.078 1 0.041 15 0.075 0 0.034 10

MTMCVaRnc 0.051 2 0.016 23 0.071 3 0.032 16 0.072 0 0.033 14

STMCVaRdiv 0.084 1 0.045 14 0.104 0 0.063 7 0.102 0 0.046 13

MTMCVaRdiv 0.062 1 0.029 20 0.089 1 0.043 14 0.077 0 0.037 16
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Figure E.1: Distributions of inefficiency scores for 21 buy-and-hold backtesting strategies

From Table E.1 and Figure E.1, we briefly deduce the following observations. First, in both

single-time and multi-time frameworks, the strategies driven by the nondiversified mean-CVaR

ratings (with either convexity or nonconvexity) perform better than those driven by the diversified

mean-CVaR ratings. Second, the strategies depending on the multi-time mean-CVaR ratings do

better than those depending on the single-time mean-CVaR ratings for both nondiversified and

diversified cases. Third, the strategies determined by the multi-moment ratings outperform those

determined by the nondiversified and diversified mean-CVaR ratings in both single-time and multi-

time frameworks. Overall, the proposed multi-time and multi-moment ratings in this contribution

have a clear dominance over both nondiversified and diversified mean-CVaR ratings.

A11


