Impact of hydrogen as a fuel additive on the formation of soot precursors and particles in atmospheric laminar premixed flames of methane
Hong-Quan Do, Alessandro Faccinetto, Luc-Sy Tran, Laurent Gasnot, Abderrahman El Bakali, Xavier Mercier

To cite this version:
Hong-Quan Do, Alessandro Faccinetto, Luc-Sy Tran, Laurent Gasnot, Abderrahman El Bakali, et al.. Impact of hydrogen as a fuel additive on the formation of soot precursors and particles in atmospheric laminar premixed flames of methane. IFRF TOTeM – Hydrogen for decarbonisation, Oct 2022, Les Loges-en-Josas, France. hal-03851412

HAL Id: hal-03851412
https://hal.univ-lille.fr/hal-03851412
Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Impact of hydrogen as a fuel additive on the formation of soot precursors and particles in atmospheric laminar premixed flames of methane

Hong Quan Do, Alessandro Faccinetto, Luc-Sy Tran, Laurent Gasnot, Abderrahman El Bakali and Xavier Mercier

Physicochimie des Processus de Combustion et de l’Atmosphère (PC2A), CNRS UMR 8522, Université de Lille, F-59000 Lille, France

1. Context
➢ Hydrogen as a fuel additive
 - Non carbonaceous species
 - High LHV (120MJ/kg)
 - High flammability limit
 - High flame speed
➢ GN (Natural Gas)
 - Large reserve
 - Main compound: CH₄
 - Low CO₂ emission

2. Objective
✓ Co-combustion properties of H₂ and CH₄ on emission of:
 • Soot particles
 • Soot precursors
 • CO, CO₂

3. Flame condition

H₂ + CH₄/O₂/N₂

Slight sooting premixed flame

H₂ Substitution

H₂ Addition

4. Experimental section

4.1 Soot measurements

LII & CRDS

Burner

Laser 1064 nm

Vertically moveable

Microprobe

Stabilization disk

SMPS

4.2 Gaseous species measurements

Microprobe

Stabilization disk

Jet Cooled LIF

Burner

Detector

FTIR

 ✓ TCD: CO, N₂, O₂, H₂
 ✓ FID: Aliphatic species (C₁-C₆) and benzene
 ✓ Naphthalene
 ✓ Pyrene
 ✓ CO₂

5. Results
➢ Soot particle sizer distribution function (PSDF)

Small impact on PSDF

Kinetic impact of hydrogen atom on soot formation process

(A) Oxidation process enhanced

(B) PAHs (Terminal reaction)

(C) PAHs + C₃H₆ → H₂PAHs (Surface growth) (HACA)

(D) C(5) + C₃H₆ → H₂C₅ + C₃H₆ (Terminal reaction)

(E) Change of soot volume fractions profiles essentially depending on aromatic species concentrations

Small impact on formation of aliphatic species and CO, CO₂, H₂

Aromatic species and soot

6. Conclusion
➢ The H₂ introduction into slight sooting premixed flames of methane strongly influences the formation of soot and their precursors
➢ This impact depends on the operating conditions (addition or substitution)