Supporting Information

NiAl_xFe_{2-x}O₄ mixed oxide catalysts for methane reforming with CO₂: effect of Al vs Fe contents and precursor salts

Rafik Benrabaa^{1,2*}, Martine Trentesaux³, Pascal Roussel³, Annick Rubbens³, Rose-Noëlle Vannier³,

Axel Löfberg³

¹Laboratoire de Physico-Chimie des Matériaux, Faculté des Sciences et de la Technologie, Université Chadli BENDJEDID-El Tarf, B.P 73 El Tarf 36000, Algérie.

²Laboratoire de Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, USTHB, BP32, El-Alia, 16111 Bab Ezzouar, Alger, Algérie.

³Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.

*Corresponding author, Prof. Rafik BENRABAA, (+213) 670380884, r.benrabaa@univ-eltarf.dz

Figure 1S. Thermal analyses (TG-DTA) in air of precursors issued from chloride and nitrate salts.

Figure 2S. XPS spectra of Ni2p3/2 species of NiAl_xFe_{2-x}O₄ (x=0) from chloride salts.

Figure 3S. XPS spectra of Ni2p3/2 species of NiAl_xFe_{2-x}O₄ (x=0.5) from chloride salts.

Figure 4S. XPS spectra of Ni2p3/2 species of NiAl_xFe_{2-x}O₄ (x=1) from chloride salts.

Figure 5S. XPS spectra of Ni2p3/2 species of NiAl_xFe_{2-x}O₄ (x=1.5) from chloride salts.

Figure 6S. XPS spectra of Ni2p3/2 species of NiAl_xFe_{2-x}O₄ (x=2) from chloride salts.

Figure 7S. XPS spectra of Ni2p3/2 species of NiAl_xFe_{2-x}O₄ (x=1) from nitrate salts.

Figure 8S. XPS spectra of Fe 2p3/2 species of NiAl_xFe_{2-x}O₄ (x=0) from chloride salts.

Figure 9S. XPS spectra of Fe 2p3/2 species of NiAl_xFe_{2-x}O₄ (x=0.5) from chloride salts.

Figure 10S. XPS spectra of Fe 2p3/2 species of NiAl_xFe_{2-x}O₄ (x=1) from chloride salts.

Figure 11S. XPS spectra of Fe 2p3/2 species of NiAl_xFe_{2-x}O₄ (x=1.5) from chloride salts.

Figure 12S. XPS spectra of Fe 2p3/2 species of NiAl_xFe_{2-x}O₄ (x=1) from nitrate salts.

Figure 13S. XPS spectra of Al2p species of NiAl_xFe_{2-x}O₄ (x= 0.5) from chloride salt.

Figure 14S. XPS spectra of Al2*p* species of NiAl_xFe_{2-x}O₄ (x= 1) from chloride salt.

Figure 15S. XPS spectra of Al2*p* species of NiAl_xFe_{2-x}O₄ (x= 1.5) from chloride salt.

Figure 16S. XPS spectra of Al2*p* species of NiAl_xFe_{2-x}O₄ (x= 2) from chloride salt.

Figure 17S. XPS spectra of Al2*p* species of NiAl_xFe_{2-x}O₄ (x= 1) from nitrate salt.

Figure 18S. Crystallite size (Cs, nm) (a) and lattice parameters (a, Å) (b) of $NiAl_xFe_{2-x}O_4$ spinel catalysts prepared from chloride salts.

Figure 19S. H₂ consumed of NiAl_xFe_{2-x}O₄ spinel catalysts co-precipitated from nitrate and chloride salts ($0 \le x \le 2$).