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Abstract: The discharge of untreated wastewater, often contaminated by harmful substances, such as
industrially used dyes, can provoke environmental and health risks. Among various techniques, the
adsorption of dyes, using three-dimensional (3D) networks consisting of hydrophilic polymers (hy-
drogels), represents a low-cost, clean, and efficient remediation method. Three industrially used dyes,
Methylene Blue, Eosin, and Rose Bengal, were selected as models of pollutants. Poly(acrylamide)
(poly(AM)) and poly(acrylamide-co-acrylic acid) (poly(AM-co-AA)) networks were chosen as adsor-
bent materials (hydrogels). These polymers were synthesized by crosslinking the photopolymeriza-
tion of their respective monomer(s) in an aqueous medium under exposure to UV light. Experimental
adsorption measurements revealed substantially higher dye uptakes for poly(AM-co-AA) compared
to poly(AM) hydrogels. In this report, a theoretical model based on docking simulations was applied
to analyze the conformation of polymers and pollutants in order to investigate some aspects of the
adsorption process. In particular, hydrogen and halogen interactions were studied. The presence of
strong hydrogen bonding plays a crucial role in the retention of dyes, whereas halogen bonding has
a small or negligible effect on adsorption. An evaluation of binding energies allowed us to obtain
information about the degree of affinity between polymers and dyes. The number of rotatable bonds
in the copolymer exceeds those of poly(AM),meaning that poly(AM-co-AA) is revealed to be more
suitable for obtaining a high retention rate for pollutants.

Keywords: wastewater; pollutant; dye; hydrogel; modeling; docking simulation

1. Introduction

Water is an important liquid for human beings, the universe, and all life existing on
earth [1,2]. This liquid can be easily polluted by different dyes [3,4]. Both water and dyes
are still largely used in the textile industry, meaning that the wastewater after production is
a mixture of dyes and water. Unfortunately, the elimination of the wastewater often occurs
through discharge into rivers and other effluents [5–12].

This negative situation has motivated many researchers to publish many reports
in the field of the treatment of water polluted with dyes [13–15]. Several physical and
chemical techniques have been developed to purify water from these compounds, including
photocatalysis, oxidation, filtration, coagulation/flocculation, and adsorption [16–20]. In
particular, adsorption processes have been studied intensively because of their low cost,
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easy access, and effective dye removal, in which the dissolved dye compounds adsorb on
the surface of suitable adsorbents [21].

Many biodegradable materials and effective adsorbents obtained from natural re-
sources have been used to remove dyes from aqueous solutions. Hydrogels were frequently
applied for this purpose, consisting of a three-dimensional polymeric material with the
capacity to uptake an important amount of water due to the presence of hydrophilic groups
in their structure, such as –OH, –CONH, and –SO3H [22].

Copolymers based on acrylamide (AM) and acrylic acid (AA) have been applied to
remove dyes. AM monomer is soluble in water, and linear poly(AM) finds many uses
as water-soluble thickeners and flocculation agents [23–25], whereas AA represents the
simplest unsaturated carboxylic acid. This colorless liquid is miscible with water, alco-
hols, ethers, and chloroform [26–28]. Solpan et al. [29] used (poly(AM-co-AA) hydrogels
for the uptake of the cationic dyes, safranin-O and magenta. The diffusion of water and
cationic dyes within hydrogels showed non-Fickian behavior. Corona-Rivera et al. [30]
applied poly(AM-co-AA) crosslinked with N,N′-methylene bisacrylamide (NMBAM) for
the removal of Remazol red dye from aqueous solutions, finding the maximum dye adsorp-
tion capacity for peculiar experimental conditions, with an adsorption mechanism well
represented by the Langmuir model.

The diffusion of colored water inside the hydrogel depends on many factors, such as
the dye structure and the functional groups on the polymer chains. The dye can generate
an attraction through electrostatic interaction, which also represents an important key to
removing dye from an aqueous medium, whereby a dye molecule and a receptor behave
similarly to a ship and a harbor. In the field of biochemistry, the theory of docking was
largely applied to study the interaction between ligand and protein, allowing us to explain
the affinity between these components [31–37]. In this study, the interactions between
the dyes and polymer networks were investigated. The docking method was applied to
analyze different interactions, with the receptor and ligand representing the polymer matrix
and dye, respectively. This simulation method has the advantage of enabling us to predict
the preferred orientation of one molecule to a second one when bound to each other to
form a stable complex [38–40]. Interestingly, this helps us to economize cost and time of
research work.

In a previous paper [41], the interaction between a polymer based on HEMA monomer
and Eosin Y (EY) as a pollutant was discussed. It was found that the theoretical prediction
correlates well with experimental results. In the literature, some authors report on poly(AM-
co-AA) crosslinked with NMBAM [42–46]. In this work, AM and AA were copolymerized
and crosslinked with HDDA since it contributes to the high level of conversion of acrylic
double bonds [47,48]. Under the UV-visible light exposure in the presence of a suitable
photoinitiator (Darocur 1173), a chemically crosslinked three-dimensional copolymer was
successfully obtained. In contrast to thermal polymerization, which often requires ele-
vated temperatures, photopolymerization can be performed at room temperature [49]. In
most reports on poly(AA), thermal polymerization was applied using a source of free
radicals, together with a chemical stabilizer, such as ammonium persulfate and tetram-
ethylethylenediamine [50–52]. This method has disadvantages such as long polymerization
times, unstable and toxic reagents, and tedious preparation steps. On the other hand,
photopolymerization using an initiator sensitive to light represents a quicker method that
is less tedious and less toxic. The field of the exploitation of these polymeric materials is,
thus, enlarged to applications in which the elevation of temperature is not advised. The
final properties of UV-polymerized gels depend on the UV-visible spectrum of the source,
light intensity and uniformity, and exposure times [53].

The model dyes studied in this report were Rose Bengal (RB), EY, and Methylene
Blue (MB), presenting anionic and cationic natures. These dyes are widely used in many
applications, thus increasing the probability that they contribute to water pollution, since
even small quantities can easily affect the water quality [54–56].
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To understand the different interatomic interactions between dyes and polymers, the
docking simulation method was exploited. Two model systems, crosslinked poly(AM)/dye
and poly(AM-co-AA)/dye, were considered using Avogadro software. These model sys-
tems were all energy-minimized, and the conformation of polymer/dye systems was
simulated using Auto-Dock Vina software [57,58], and then visualized and analyzed using
UCSF Chimera.

2. Results and Discussion
2.1. Effect of Crosslinker Content on Equilibrium Swelling

To find out the optimal dye concentration for the retention study, the UV-visible
spectra of the dyes were screened in the concentration range from 32 × 10−3 mg·mL−1 to
64 × 10−3 mg·mL−1. According to the obtained results (Figure S1), the spectra correspond-
ing to 64 × 10−3 mg·mL−1 reveal saturation effects for all absorbance bands except those
from RB. Electronic spectra associated with the lower concentration of 32 × 10−3 mg·mL−1

were acceptable; therefore, this concentration was chosen for the retention study.
Figure 1 presents the evolution of poly(AM) swelling equilibrium versus the composi-

tion of a crosslinking agent (HDDA) for each dye solution. Equilibrium swelling data were
remarkably increased by decreasing the crosslinker content. The best results of maximum
equilibrium swelling were obtained with 1 wt% of HDDA. In this case, swelling values in
solutions of RB, BM, and EY were found at around 870%, 850%, and 900%, respectively. The
crosslinking density essentially governs the diffusion of the dyes in the polymer networks,
as well as the swelling behavior.
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Figure 1. Effect of the composition of HDDA (wt%) on equilibrium swelling of poly(AM) hydrogel
in dye solutions.

Figure 2 presents the evolution of the swelling equilibria of poly(AM-co-AA) versus
the composition of HDDA for each dye solution. The copolymer prepared with 1 wt%
HDDA shows the highest equilibrium swelling with 70%, 72%, and 71% in solutions of
BM, RB, and EY, respectively. In comparison with poly(AM), poly(AM-co-AA) presents
a much lower equilibrium swelling due to the addition of AA units, thus increasing the
crosslinking density. Swelling equilibrium values of 34%, 35%, and 29% were obtained
for 4 wt% HDDA in solutions of BM, RB, and EY, respectively. For 7 wt% HDDA, the
corresponding swelling data were 18%, 19%, and 19%.
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hydrogel in dye solutions.

2.2. Effect of Crosslinker Content on Absorbance
2.2.1. Rose Bengal Dye

Figure 3 illustrates the retention behavior of RB using poly(AM) and poly(AM-co-AA).
A retention rate of about 7% for RB by poly(AM) was obtained, whereas 97% of RB was
removed in the case of poly (AM-co-AA) (Figure S2).
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Figure 3. Retention behavior of RB in presence of crosslinked poly(AM) and poly(AM-co-AA) (1 wt%
HDDA, after 24 h contact time).

The hydrogen bonding between chains of the neutral poly(AM) provokes physical
crosslinking effects; the poly(AM) network is brittle and its glass transition was reported to
be around 450 K [59,60].

From the Morse curve [61], considering large distances, the energy is zero (no interac-
tion). This means that two atoms placed infinitely far away do not interact with each other,
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or they are not bonded to each other. At inter-nuclear distances in the order of the atomic
diameter, attractive forces dominate. At smaller distances between two atoms, the force is
repulsive and the energy of the two atoms is high.

The distance between atoms has, thus, an important effect on the interactions of the
system. It was found that interactions can be classified as strong and medium for a distance
interval of [2.5, 3.1] Å and [3.1, 3.55] Å, respectively, whereas distances between selected
atoms greater than 3.55Å correspond to weak or non-existing interactions [41].

In the case of crosslinked poly(AM) hydrogel, the distances between chlorine and
oxygen atoms are greater than 3.55 Å, which shows that the interactions are weak. The
hydrogen bond with 2.48 Å represents a strong interaction, but the neutrality of the hydrogel
cannot allow this bond to be constructed (Table 1 and Figure 4).

Table 1. Interatomic distances obtained from interactions of the two polymers with RB using the
docking simulation method.

System Bonds Distance (Å)

Poly(AM)/RB I...O 4.721
C...O 6.197
O...H 2.486

Poly(AM-co-AA)/RB I...O 3.823
Cl...O 3.752
O...H 2.246

Gels 2022, 7, x FOR PEER REVIEW 5 of 17 
 

 

atomic diameter, attractive forces dominate. At smaller distances between two atoms, the 
force is repulsive and the energy of the two atoms is high. 

The distance between atoms has, thus, an important effect on the interactions of the 
system. It was found that interactions can be classified as strong and medium for a dis-
tance interval of [2.5, 3.1] Å and [3.1, 3.55] Å, respectively, whereas distances between 
selected atoms greater than 3.55Å correspond to weak or non-existing interactions [41]. 

In the case of crosslinked poly(AM) hydrogel, the distances between chlorine and 
oxygen atoms are greater than 3.55 Å, which shows that the interactions are weak. The 
hydrogen bond with 2.48 Å represents a strong interaction, but the neutrality of the hy-
drogel cannot allow this bond to be constructed (Table 1 and Figure 4). 

 
Figure 4. Crosslinked poly(AM)/RB system: (a) 3-D representation of results of the interaction; (b) 
enlargement of the hydrogen bonding interaction. 

Table 1. Interatomic distances obtained from interactions of the two polymers with RB using the 
docking simulation method. 

System Bonds Distance (Å) 
Poly(AM)/RB I…O 4.721 

 C...O 6.197 
 O...H 2.486 

Poly(AM-co-AA)/RB I...O 3.823 
 Cl...O 3.752 
 O...H 2.246 

In the crosslinked poly(AM-co-AA)/RB system, there are weak and average electro-
static interactions between the AA fraction and RB. The interaction between chlorine and 
iodine with oxygen is of a halogen type. The corresponding interatomic distance is higher 
than 3.55 Å, thus resulting in a weak interaction. Furthermore, the hydrogen bond with 
2.24 Å represents a strong interaction, because the copolymer is charged in the aqueous 
medium and becomes a polyelectrolyte. Repulsion occurs between the negative charges 
of the AA parts and, consequently, the dye was retained by the strong hydrogen bond 
(O…H). The AA fraction of poly(AM-co-AA) has increased the retention percentage from 
7% to 97%; therefore, it can be concluded that this copolymer effectively retains RB in an 
aqueous medium (Table 1 and Figure 5). 

Figure 4. Crosslinked poly(AM)/RB system: (a) 3-D representation of results of the interaction;
(b) enlargement of the hydrogen bonding interaction.

In the crosslinked poly(AM-co-AA)/RB system, there are weak and average electro-
static interactions between the AA fraction and RB. The interaction between chlorine and
iodine with oxygen is of a halogen type. The corresponding interatomic distance is higher
than 3.55 Å, thus resulting in a weak interaction. Furthermore, the hydrogen bond with
2.24 Å represents a strong interaction, because the copolymer is charged in the aqueous
medium and becomes a polyelectrolyte. Repulsion occurs between the negative charges of
the AA parts and, consequently, the dye was retained by the strong hydrogen bond (O...H).
The AA fraction of poly(AM-co-AA) has increased the retention percentage from 7% to
97%; therefore, it can be concluded that this copolymer effectively retains RB in an aqueous
medium (Table 1 and Figure 5).
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2.2.2. Methylene Blue Dye

Figure 6 shows that crosslinked poly(AM) presents a negligible retention of MB (about
1%), whereas poly(AM-co-AA) removes MB at rates of 45% for a contact time of 24 h.
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Figure 6. Retention of MB in presence of crosslinked poly(AM) and poly(AM-co-AA) hydrogels (1%
wt HDDA, after 24 h contact time).

In the neutral hydrogel, the interatomic distance between nitrogen and oxygen is
5.37 Å, which means that there is a weak attraction between these two atoms. A similar
situation occurs between sulfur and hydrogen atoms (Table 2 and Figure 7). Initial and
final spectra of the dye are shown in Figure S3.
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Table 2. Interatomic distances obtained from interactions of the two polymers with MB using the
docking simulation method.

System Bonds Distance (Å)

Poly(AM)/MB S...H 4.229
N...O 5.373

Poly(AM-co-AA)/MB S...H 2.670
N...O 3.924
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Sulfur atoms have been known to participate in hydrogen bonds. It has been shown
that the sulfur atom is a poor H-bond acceptor, but a moderately good H-bond donor [62].
In the copolymeric hydrogel, there is a hydrogen bond with an interatomic distance of
2.67 Å, which is considered to be a strong bond, facilitating an increase in the retention
percentage from 1% to 45% (Table 2 and Figure 8).
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2.2.3. Eosin Y Dye

Figure 9 reveals a very small adsorption effect of EY by poly(AM) (0.4%). Halogens
participating in the halogen bonding of the investigated dyes include iodine (I) (present in
RB), bromine (Br) (present in EY), and chlorine (Cl) (present in RB). These halogens are able
to act as donors and follow the general trend of Cl < Br < I, with iodine normally forming
the strongest interactions [63,64].
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(1 % wt HDDA, after 24 h contact time).

For this neutral system (poly(AM)), there is a Br...O bond with an interatomic distance
higher than 3.07 Å and a hydrogen bond with 6.53 Å (Table 3 and Figure 10) that qualify
these bonds as weak bonds. Initial and final spectra are presented in Figure S4. A strong
hydrogen bonding of poly(AM-co-AA) exists with 1.872 Å, which improves the retention of
the MB dye (Figure 11).

Table 3. Interatomic distances obtained from interactions of the two polymers with EY using the
docking simulation method.

System Bonds Distance (Å)

Poly(AM)/EY O...H 6.536
Br...O 3.072

Poly(AM-co-AA)/EY O...H 1.872
Br...O 3.618

Figure 12 represents a summary of the adsorption results for poly(AM-co-AA) hydro-
gel, showing retention percentages of 45%, 50%, and 97% for MB, EY, and RB, respectively.
Poly(AM-co-AA) functions, thus, with considerable efficiency, removing a high percentage
of RB, though it is less effective for EY and MB. This difference can be explained by the
different molecular structures and architectures of these dyes. Moreover, RB possesses
more functional groups compared to EY and MB.
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2.3. Binding Energy and Number of Rotatable Bonds Analysis

AutodockVina software allows us to determine the binding energies, which were used
to evaluate if dyes could have stable complex interactions with polymeric hydrogels. The
negative sign of the binding energy means that the dye was bound spontaneously without
consuming energy. If the sign is positive, the binding occurs only if the required energy is
available. Lower values of binding affinity correspond to a higher stability of polymer/dye
complexes. Consequently, hydrogel/dye systems with the highest and lowest stability in
Table 4 were poly(AM-co-AA)/RB and poly(AM)/MB, respectively.

A rotatable bond is defined as any single non-ring bond attached to a non-terminal,
non-hydrogen atom. In Figure 13a, presenting the crosslinked poly(AM) model using
Autodock tools, most bonds were nonrotatable. When two HDDA units were very close,
the crosslinker creates rigidity in the polymer network. The presence of a single crosslinking
unit leads to more rotatable bonds. In Figure 13b, representing the AM repetition unit, we
can see that C214–N215 bonds are nonrotatable; the same situation applies for C219–N220:
amide C-N bonds present a high energy barrier for rotation [65,66]. C212–C214 and
C223–C219 bonds are rotatable, i.e., the AM repetition unit possesses one rotatable bond.
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Table 4. Binding energies of polymer/dye systems.

Polymer/Dye Binding Energy (kcal/mol)

Poly(AM)/RB −7.0
Poly(AM)/EY −5.2
Poly(AM)/MB −4.1
Poly(AM-co-AA)/RB −7.7
Poly(AM-co-AA)/EY −5.1
Poly(AM-co-AA)/MB −4.4
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Figure 13. Rotatable bonds of the crosslinked poly(AM) model using Autodock tools: (a) 92 rotatable
bonds, (b) one rotatable bond of the AM repetition unit. Green: rotatable, magenta: nonrotatable, red:
unrotatable bond.

Figure 14a presents 104 rotatable bonds of the crosslinked poly(AM-co-AA) model, us-
ing Autodock tools. Figure 14b shows the AA repetition unit of poly(AM-co-AA), exhibiting
two rotatable bonds, C201–C203 and C203–C204.
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The crosslinked poly(AM) model presents 92 rotatable bonds whereas the crosslinked
poly(AM-co-AA) presents 104 rotatable bonds (Table 5). This difference creates more
conformations for the copolymer compared to the homopolymer, so that polymer–dye
interactions are favored for crosslinked poly(AM-co-AA).

Table 5. Number of rotatable bonds of poly(AM)/HDDA, poly(AM-co-AA)/HDDA and dyes,
obtained by Autodock software.

Product Number of Rotatable Bonds

poly(AM/HDDA) 92
poly(AM-co-AA)/HDDA 104
AM repeat unit 01
AA repeat unit 02
RB 2
EY 2
MB 2

3. Conclusions

The UV photopolymerization technique in an aqueous medium was chosen to elabo-
rate chemically crosslinked poly(AM) and poly(AM-co-AA) as dye adsorbent hydrogels.
Experimental parameters, such as the optimal percentage of HDDA as a crosslinking
agent, as well as the suitable dye concentration for analysis, were found to be1 wt% and
32 × 10−3 mg·mL−1, respectively. All dyes show negligible retention effects using the
neutral poly(AM), and significant adsorption for the polyelectrolyte poly(AM-co-AA). It
was found that 97% of RB was removed efficiently by the copolymer (MB: 45%, EY: 50%),
which can be related to the presence of one more functional group compared to the other
dyes, and also due to strong hydrogen bonding (O...H) with an interatomic distance of
2.24 Å, which plays a key role in interaction. As a consequence, this copolymer could be
considered to be an efficient hydrogel with which to remove the considered dyes from a
water medium.

The conformation of polymers and pollutants were analyzed via a docking simulation.
Interestingly, halogen bonding could be neglected, whereas hydrogen bonding plays a key
role for dye retention. The system composed of poly(AM-co-AA)/RB has a binding energy
of −7.7 kcal/mol, which means that this system has the highest stability compared to the
other investigated polymer/dye systems. An analysis of rotatable bonds shows that the
AA repetition unit presents two rotatable bonds, whereas that of AM has one; therefore,
poly(AM-co-AA) has more conformations than poly(AM), thus increasing dye retention.
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4. Materials and Methods
4.1. Materials

The monomers used in this study were AM and AA (both from Sigma-Aldrich (Saint-
Quentin-Fallavier, France), purity: 99%), the crosslinking agent was HDDA (from Cray
Valley, Courbevoie, France), purity: 98%), and the photoinitiator was 2-hydroxy-2-methyl-1-
phenyl-propane-1 (commercial designation: Darocur 1173) (from Ciba-Geigy, purity: 97%).
RB (purity: 95%), EY (purity: 99%), and MB (purity: 70%) (all from Sigma-Aldrich) were
applied as dyes. All products were used as received without purification. The chemical
structures of the reagents are illustrated in Table 6. Abbreviations are given in Table S1.

Table 6. Chemical structure of monomers, crosslinker, and dyes.

Name Chemical Structure

Acrylamide (AM)
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4.2. Hydrogel Synthesis

First, the AM monomer was dissolved in distilled water. Then, 0.5 wt% of Darocur 1173
was added. To underline the crosslinker effect on the water uptake capacity of the obtained
hydrogels, a set of three solutions with different percentages of HDDA (1 wt%, 4 wt%, and
7 wt%) was prepared. After steering for 24 h, the solutions were exposed to UV irradiation
for 30 min, using a TL08 UV lamp, with a characteristic wavelength of λ = 365 nm and
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an intensity of 1.5 mW/cm2. For the sake of comparison, a hydrogel copolymer was
generated. A stock solution of 50 wt%/50 wt% AM/AA was firstly prepared. In the second
step, three solutions were prepared with different percentages of HDDA: 1 wt%, 4 wt%,
and 7 wt%, with 98.5 wt%, 95.5 wt%, and 92.5 wt% of the AM/AA solution, respectively.
Finally, Darocur 1173 as a photoinitiator was added to each of these solutions (0.5 wt%).
All solutions were prepared at room temperature.

After the polymerization/crosslinking process (see also Figure S5), all samples were
obtained in pellet form (sample thickness: 3 mm, diameter: 2.5 cm) and washed in distilled
water to remove all remaining residue.

4.3. Dye Retention Experiments

The selected cylindrical hydrogel (1.5 g), as an adsorbent, was immersed in
32 × 10−3 mg·mL−1 of dye solution at room temperature (T = 23 ◦C) for 24 h. Then, the
hydrogel was separated by filtration, and the residual concentration of the considered dye
solution was introduced in a glass flask and evaluated using a dual-beam ultraviolet–visible
spectrometer (Specord 200 plus, Analytik Jena, Jena, Germany).

4.4. Equilibrium Swelling Measurements

In order to underline the equilibrium swelling of the elaborated hydrogels, the sample
was weighed in the dry state and then immersed in a dye solution for 24 h under stirring.
Then, the sample was wiped with a filter paper to remove free liquid on the surface before
being weighed. The degree of swelling was calculated according to Equation (1).

τ(%) = 100
(

mt −m0

m0

)
(1)

where τ(%) represents the degree of swelling, mt stands for the weight of the swollen
network at time t, and m0 is the weight of the initially dried network.

4.5. Model Proposition

Two model systems were proposed. The first one represents the crosslinked poly(AM)/
HDDA system, based on three chains of poly(AM) containing ten units each. Chains were
connected by three HDDA crosslinking nodes. The second model system, the crosslinked
poly(AM-co-AA), was created similar to the first model. RB, EY, and MB were all presented
in 3-D. All models were energy-minimized using auto-optimization with force field UFF
and the steepest descent algorithm of the Avogadro software. The output simulation
implies eight conformations; the best conformation of each hydrogel/dye system was
illustrated based on their energy.

4.6. Software

Avogadro version 4.8.6 was used to visualize and optimize the model systems. The
files were saved in the molecule file format pdb. AutoDock version 1.5.6, a molecular
modeling simulation software, represents a suite of automated docking tools. It is designed
to predict how dyes bind to polymer networks; the grid box allows the user to limit the
space of interaction analysis (Figure 15).

The simulation was conducted in dimensions of grid box points (x = y = z = 126 Å), and
the grid box center dimensions were set as mentioned in Table S2. The other parameters
were maintained and were used as defaults. Finally, the output file (log.txt) was analyzed,
and the best docking results regarding binding energies were selected and investigated
with other software programs. The Chimera calculation software UCSF version 1.5.3 was
used to analyze interatomic distances.
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