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Machine learning surrogate models employing atomic environment descriptors have found wide
applicability in materials science. In our previous work, this approach yielded accurate and transfer-
able predictions of the vibrational formation entropy of point defects for O(N) computational cost.
The present study investigates the limits of data driven surrogate models in accuracy and applicabil-
ity for vibrational properties. We propose an improvement of the accuracy by extending the fitting
capacity of the model by increasing the dimension of the descriptor space. This is achieved by using
a non-linear relation between descriptors - target observables and when it is possible by including
physical relevant information of the underlying energy landscape. The non-linear extension is used
to learn the formation entropy of defects with or without applied strain whilst including physical
information such as the minimum-saddle point sequences are employed for the migration of point
defects, a key ingredient of transition state theory rate approximations. We find excellent predictive
power after augmenting the dimensionality of the descriptor space, as demonstrated on large defect
databases in α-iron and amorphous silicon based on semi-empirical force fields. The current lin-
ear surrogate models are used to investigate the correlation between migration entropy and energy.
Our approaches reproduce the Meyer-Neldel compensation law observed from direct calculations in
amorphous Si systems. Moreover, the same abstract descriptor space representation for entropy and
energy is then used for the statistical correlation analysis. For linear surrogate models, we show that
the energy-entropy statistical correlations can be reinterpreted in descriptor space. This provides a
simple statistical criterion for marginal interpretation of the compensation law. More generally, the
present work shows how linear surrogate models can accelerate high-throughput workflows, aid the
construction of mesoscale material models and provide new avenues for correlation analysis.

Keywords: Harmonic approximation, defects, Machine Learning, vibrational entropy, attack frequency, migra-
tion rates, energy-entropy correlations, compensation law

I. INTRODUCTION

The thermodynamic and kinetic properties of defects
drive the microstructural evolution of materials [1, 2].
The appropriate thermodynamic potential of defects,
such as free energy and enthalpy, gives the equilibrium
density of defects, while the defects’ kinetic properties
steer the kinetic pathways of the microstructure towards
equilibrium. Therefore, the study of solids at finite tem-
perature requires the correct description of the free en-
ergy thermodynamic potential of defects. The defects’
free energy accounts for the contribution of the system’s
microstates around a particular atomic configuration. In
materials, the morphology of defects shows extraordinary
variety and is related to the complexity of the underlying
energy landscape.

Defects have a wide range of shapes and sizes: from
localized 2D dislocation loops [3, 4] to 3D clusters such
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as voids [5, 6], stacking fault tetrahedra [7, 8], small in-
terstitial cluster [9], insertions with particular crystallo-
graphic structure [10] etc. The complexity of the ener-
getic landscape is amplified by the fact that those defects
are embedded in a host matrix. The complexity does not
come from just the arrangement of atoms within the de-
fects, but also from the interface between the defects and
the surrounding matrix. Very often, in order to charac-
terise these complex energetic landscapes, the configura-
tions of defects are indexed by the local minima of the
energy landscape and the fluctuations associated with
thermal vibrations are neglected [11–18]. Therefore, the
entire domain of the free energy’s phase space R3N , of
N atoms, has particular topology: it is sparse and sliced
into basins of attraction, which can be indexed with dis-
crete labels. This approach is similar to that used to
describe atomic clusters in vacuum [19]. Any configura-
tion q ∈ R3N is then a member of some discrete states,
which belong to the same basin of attraction [19]. Hence,
the entire basin can be represented by the corresponding
local minimum to which q converges to under local mini-
mization of the internal energy U(q). Within this frame-
work, probably the most common visual representation
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of energetic landscape is provided by the disconnectivity
graph techniques [19–21]. For defects, it is very prac-
tical to account for the formation free energy, i.e. the
difference between the free energy of the perfect and the
defective solid containing the same number of N atoms.
The formation free energy converges to a well-defined
value in the thermodynamic limit N → ∞ [22]. How-
ever, the kinetic evolution of microstructure is driven by
the pathways and the connections of the sequences min-
imum - saddle point - minimum [11, 23–25]. For these
kinds of sequences, the quantification of the energy con-
tribution has been widely studied and the community has
well-established tools [12, 24, 26–28]. The entropic con-
tribution is still challenging to quantify because of the
methodological and numerical complexity [1, 29, 30].

The present study focuses on the evaluation of the vi-
brational entropy Svib for minima and saddle points con-
figurations of the energy landscape in the framework of
the harmonic approximation. The vibrational entropy
Svib(q) of some defect is directly related to the curva-
ture of the phase space q ∈ R3N in some particular point
of the potential energy surface on which the defect is
located. Many alternative methods to harmonic approx-
imation have been designed and tested in the commu-
nity [31–39] to compute the free energy of defects, includ-
ing even the non-harmonic contributions from energy and
entropy in an indistinguishable manner. However, these
methods remain computationally very demanding as they
usually rely on sampling the phase space of the system
through the construction of random or optimized trajec-
tories. Furthermore, in most cases the main limitation is
not the numerical efficiency and the poor scalability of
computational methods. There is a conceptual problem:
the community does not have the appropriate theoreti-
cal tools in order to handle in a systematic manner the
anharmonic finite temperature vibrational entropy of a
complex energy landscape. Currently, there are no ex-
isting general sampling methods to estimate the free en-
ergy barrier profile between two states of a complex en-
ergy landscape. The community proposes some promis-
ing methods for particular cases [31, 33–40] where is pos-
sible to build intuitively or automatically an ad hoc re-
action coordinate.

In the harmonic approximation, the vibrational en-
tropy can be computed from the knowledge of the fre-
quency of normal modes, which itself requires the eval-
uation and the diagonalization of local Hessian matrix
operations that have O(N2) and O(N3) complexity, re-
spectively. This traditional procedure requires an inter-
atomic interaction that can be treated in the framework
of electronic structure calculations, such as ab initio cal-
culations, or of empirical interatomic potentials. This
workflow can be bypassed by the recent surrogate model
proposed by Lapointe et al. [41], which proposes a linear
correlation between the atomic descriptors of the local
atomic environment and vibrational entropy. That model
was applied for point defects in crystals and nanoparti-
cles [41] and opens many perspectives for the fast eval-

uation of vibrational properties around energy-minimum
configurations. Moreover, the comparison of the surro-
gate model with direct calculations of formation vibra-
tional entropies of defects reveals an excellent accuracy
and predictive power. The direct evaluation of the Hes-
sian (O(N2)) and its diagonalization (O(N3)) is replaced
with O(N) computational effort. The utility of such a
model is huge: the numerical efficiency increases drasti-
cally. Consider the case of evaluating the formation en-
tropy of a dislocation loop containing 200 self-interested
atomsin α-Fe. To avoid finite size effects, traditional di-
rect evaluation requires simulation cells with over 120,000
atoms. For this size, solely the diagonalization of the
Hessian matrix requires 6 hours on 3000 modern CPUs,
whilst the surrogate model provides the same observable,
within 5 % error, in less than 10 minutes on one CPU i.e.
more than 105 faster.

The aim of this study is to explore the performance
of surrogate model approaches for other physical observ-
ables in the field of materials science. Here, we apply
the surrogate model for amorphous systems as well as
defects in crystals under deformation. The deformed sys-
tems can be defects in minima configurations but equally
first-order saddle points configurations. With this moti-
vation, the previous surrogate model [41] is revisited by
integrating specific physics, such as the metastable char-
acter of saddle point configurations. Moreover, in order
to have a better representation in the descriptor space of
the non-deformed minimum configurations, we introduce
a non-linear extension of the machine learning surrogate
model. The surrogate model formalism is then used to
learn and predict the kinetical transition rates during de-
fect migration.

Figure 1(A) and Figure 1(B) present the graphical
summary of the traditional and current workflow, re-
spectively, for the computation of vibrational harmonic
entropies. The only inputs required for the present surro-
gate model are the optimized atomic coordinates of var-
ious defect configurations. Minimum and saddle point
configurations are generated employing a 0 K method
for systematic search in complex energetic landscapes,
Activation-Relaxation Technique nouveau (ARTn). The
collection of found defect configurations, in α-Fe and
amorphous Si, defines the database of our machine learn-
ing surrogate model. The efficient ARTn 0 K method
is used employing an inter-atomic force field based on
a semi-empirical potential. Then, the system’s Hessian
matrix is computed and diagonalized to obtain the vi-
brational harmonic entropy Svib. Figure 1(B) emphasizes
the machine learning (ML) sequence of the workflow. De-
scriptors of each configuration of the database are com-
puted. Then, using a supervised regression models the
machine learning model is trained in order to estimate
Svib.

The paper is structured as follows. In Section II, we
summarize the link between the vibrational entropy and
the Green function formalism. The latter enables the to-
tal entropy of the system to be decomposed into local
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November 21, 2022 1 / 4FIG. 1: Graphical abstract of the vibrational entropy
calculations using the traditional (A) and the present
workflows of vibrational harmonic entropies. Atomic
configurations are generated and optimized using the

ARTn method and semi-empirical potentials for α-Fe and
amorphous Si. Then, in the traditional approach (A),

the system’s Hessian matrix is computed and
diagonalized in order to obtain vibrational harmonic

entropy Svib. In the present machine learning workflow
(B), to estimate Svib we calculate the atomic descriptors
of the same atomic configurations. Then the surrogate
regression model is trained using the corresponding

database of minimum and saddle point configurations.

atomic contributions. In the same section, we describe
the descriptor space used in order to obtain an appro-
priate representation of the atomic environments. The
construction of this space is based on the encoding, us-
ing atomic descriptors, of the local atomic neighborhood
of each atom by preserving all the geometrical invari-
ances. In Section III, we explore the limits of the present
non-linear extension of the surrogate model in order to
increase the accuracy of vibrational entropy predictions
when the system is constrained to a small deformation ϵ.
The efficacy of our approach is demonstrated on strained
defects in α-Fe. In Section IV, we use our approach to
build a surrogate model for attack frequencies, in partic-
ular for the logarithm of the attack frequency, which is
proportional to a vibrational entropy difference between
the initial minimum atomic configuration and the saddle
point configuration. The model is applied for the case
of amorphous silicon. In Section V, the same surrogate
model architecture is employed to predict the transition
energy barrier, giving a complete surrogate model for
harmonic transition state theory rate calculations. We
use linear surrogates models to investigate the correla-
tion between migration energy and entropy. Within the
present framework we give a statistical insight of the com-
pensation Meyer-Neldel law from the perspective of the
energetic and entropic surrogate models and descriptor
space.

II. THE HARMONIC VIBRATIONAL
ENTROPY AND GREEN FUNCTIONS

The normal modes of a system with N atoms are ob-
tained from the spectrum of the dynamical matrix D̃:

(D̃− ω2
νI) · êν = 0, (1)

where I is the identity matrix. When the dynamical ma-
trix includes only the phonons from the center of Bril-
louin zone, it reduces to the mass normalized Hessian
operator of the system: M− 1

2 .H.M− 1
2 , where M is a

diagonal matrix which return the mass of each atom. For
unary systems of mass m, M = mI. The Hessian is built
from the second derivatives of the potential energy U(q)
of the system: Hiαjβ = ∂2U/∂qiα∂qjβ . Vibrational mode
(or Γ point phonons) frequencies ω2

ν and displacements
êν are the eigenvalues and eigenvectors of the above sec-
ular equation (1). At high temperature T (above the De-
bye temperature in cristalline solids) in the so-called har-
monic approximation, the classical vibrational entropy of
the system becomes:

Svib(T,N) = kB
∑
ν

[
ln

(
kBT

ℏων

)
+ 1

]
, (2)

where kB and ℏ are the Boltzmann and Planck constants,
respectively.

A. Green function formalism for vibrational
entropy calculations

Within the harmonic approximation, vibrational en-
tropy estimation requires the full spectrum of the secular
equation (1). The Green function formalism provides an
iterative solution to the mentioned eigen-problem. The
total density of states of vibrational modes Ω(ω) is ex-
tracted from the imaginary part of the trace of Green
function G ∈ C3N×3N [23]:

Ω(ω) =
2ω

π
ℑ (Tr {G(ω)}) , (3)

G(ω) =
∑
ν

êν ⊗ êν
ω2
ν − ω2

=
[
D̃− ω2I

]−1

, (4)

and the above total density of state (DOS) of Γ-point
phonons, Ω(ω), verifies the following constraint with re-
spect to the degrees of freedom of the system under 3D
periodic boundary conditions:∫ ∞

0

Ω(ω)dω = 3N − 3. (5)

We can express the classical vibrational entropy of the
system at a given temperature T , from the total density
of vibrational modes states:

Svib = −kB

∫ ∞

0

[
ln

(
ℏω
kBT

)
− 1

]
Ω(ω)dω. (6)
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Very often, the eigenmode (êν , ων) is delocalized over
several atoms. For example, low energy and large wave-
length Rayleigh phonons induce concerted atomic mo-
tions across the entire system. However, the local contri-
bution to Svib

i can be deduced [23] by transforming from
the delocalized basis êν of the Green function in equa-
tion (4) to a localized basis êiα of atomic sites, which
will yield the local density of states Ωi(ω). This trans-
formation is not unique, and, in the next section, we will
choose the standard local projection.

B. Local basis for densities of states of vibrational
modes

The orthonormal bases of normal modes êν and atomic
sites êiα (where êiα are unit vectors for displacement of
atom i along direction α) are both complete over the
configurational phase space, and are therefore related by
a unitary transformation:

êν =
∑
i

∑
α

ξiα(ν) êiα, (7)

where the square of the rotation matrix elements,
|ξiα(ν)|2, can be seen as the probability of the mode êν
to be localized on atom i and along the α direction.

By analogy with equation (4), the local density of state
of Γ-point phonons reads:

Tr(G(ω)) =
∑
i,α

êiα · G(ω) · êiα , (8)

Ωi(ω) =
∑
α

2ω

π
ℑ (êiα · G(ω) · êiα) , (9)

where ℑ(·) selects the imaginary component, giving a
local vibrational entropy

Svib
i = −kB

∫ ∞

0

[
ln

(
ℏω
kBT

)
− 1

]
Ωi(ω)dω. (10)

We note that the vibrational entropy of the system is
completely defined by projected normal modes on each
atom. Furthermore, in this local basis the total entropy
can be exactly decomposed into local entropies. Regres-
sion of vibrational entropy can thus be achieved by a local
approach depending on the atomic neighborhood. This
local problem needs an accurate and systematic repre-
sentation of the local atomic environment as well as the
fact that this projection mixes the eigenvectors.

C. Local atomic environment encoded into local
atomic descriptors

At the heart of the current approach is the relationship
between the local density of states and the local atomic
environment. Atomic descriptors are numerical tools de-
veloped to describe quantitatively the local atomic envi-
ronments [42–46]. A large number of the methods and

studies were presented in the literature to build regres-
sion models between local physical observable and lo-
cal atomic descriptors [46–52]. In the next section, we
will introduce simple models which link the local den-
sity of states and the local atomic environment. Even
if the choice of local basis is not unique we will numer-
ically show that the above local basis is a good choice
to state the proportionality of descriptors and the lo-
cal environment. The relation between the two quanti-
ties is established by the use of local atomic descriptors
that provide the non-linear encoding of the geometrical
neighborhood of each atom. These atomic descriptors
project the atomic configurations into descriptor space.
This non-linear function maps the entire neighborhood of
a central atom into a space with fixed dimension, hence,
we assume the existence of a set of functions {Di}0≤i≤N

such that

Di : R3N → RD

q → Di(q),

where Di is the local atomic descriptor for the ith atom
and q is the vector of coordinates of the entire system.
Moreover, D is independent of the number of atoms in
the system. Descriptor functions should respect the sym-
metries of the system, i.e. applying symmetry operations
(e.g. permutations, translations and rotations) on the in-
put coordinate vector q should not change the value of
Di.

The notion of atomic descriptors in material science
was introduced by Behler and Parrinello [42–44]. They
proposed the G2 descriptor, which is sensitive to the
radial distribution of neighboring atoms, weighted by a
Gaussian. Since then, many descriptors have been devel-
oped by (i) introducing the explicit angular description,
as the G3 descriptor [42], (ii) using the spectral decom-
position in 3D or 4D spherical functions of the atomic
density [45, 46] (iii) decomposition of the total energy in
manybody contributions that are expanded in tensorial
decomposition in particular basis [53–57] (iv) particular
design for a given system [58–63], (v) or using machine
/ deep learning methods in order to find the appropri-
ate descriptors [49, 50, 64, 65], (vi) hybrid descriptors
that can mix all other classes mentioned above [51]. The
dimension of the descriptor space, D, ranges from few
tens to few thousands. The dimension is flexible and is
often used to control the level of accuracy necessary to
represent the local atomic environment in the descriptor
space. The numerical cost is also proportional to D.

In this paper we choose to work with bi-spectrum
SO(4) (bSO(4)) descriptor [45, 46]. This descriptor is
based on the 4D hyper-spherical harmonics decomposi-
tion onto the unit sphere of R4. With this projection any
function returns values in R3 as described in [45]. The
local environment of the ith atom is described as a den-
sity ρi(q), and can be decomposed on the basis of 4D
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spherical harmonics

ρi(q) =
∑
k∈Ri

wkδ(q − qk + qi), (11)

=
∑
k∈Ri

∞∑
j=0

j∑
m,m′=−j

cm,m′

i,j Um,m′

j , (12)

wk is species-dependent weight, the cm,m′

i,j are the result
of the scalar product between the density centered on

atom i and the hyper-spherical harmonic Um,m′

j . Ri is
the cut-off radius for atom i, qk and qi are the coordi-
nates of atom k and i, respectively. The components of
bSO(4) are defined by the following equation:

Bi
jj1j2 = (cm,m′

i,j )†Hj1j2(c
m1,m

′
1

i,j1
⊗ c

m2,m
′
2

i,j2
), (13)

where j ≤ jmax, |j1 − j2| ≤ j ≤ j1 + j2 and Hj1j2

is related with the Clebsch-Gordan coefficient of SO(4)
group. In this study we use jmax = 4 and select only
the diagonal components j1 = j2 [45, 46, 66] yielding the
total number of components to 35. Otherwise stated,
the cut-off distance is set to 5Å . The bSO(4) descriptor
is an over-complete basis of representation of the SO(3)
group. In the present study, we extend our previous for-
malism [41] to a quadratic machine learning model. The
main improvements of the regression model for formation
entropy or attack frequency are achieved by increasing
the dimension of the descriptor space: from 2D (for at-
tack frequencies) to D2 (for formation entropy of systems
under deformations), where D is the initial dimension of
the descriptor space. The higher the dimension of fit, the
more parameters are required. This high-dimensional re-
gression increases the risk of overfitting and decreases the
predictive power of the model. An accurate description
of the local atomic environment can be obtained using
the bSO(4) descriptor with a relatively low number (35)
of components [45, 46, 51] Therefore, descriptor bSO(4)
provides the right balance between the low dimensional
descriptor space (critical for the ML quadratic model)
and the precision of the representation. This low di-
mensional descriptor space helps to prevent the risk of
overfitting.

III. EXTENSION OF SURROGATE MODEL
FOR VIBRATIONAL ENTROPY AT HIGHER

ORDERS

In previous work [41] we have shown that the local en-
tropy Svib

i is proportional to the local atomic descriptors:

Svib
i = w ·Di , (14)

where w is the weight vector that parametrizes the sur-
rogate model. Di = {Bi

jj1j2
}0≤j≤jmax

such as |j1 − j2| ≤
j ≤ j1 + j2 is the local atomic descriptor of the atom i
given by Eq. (13). For jmax = 4.0, the number of com-
ponents is equal to 35. Moreover, this proportionality

expressed in [41] is reinforced by the definition of har-
monic vibrational entropy given by Dederichs et al. [23],
Svib as a sum of local terms on each atom :

Svib =
∑
i

Svib
i . (15)

The above equation (15) is exact when summing over all
atoms in the system. In this study, we explore how the
mere proportionality of Eq. 14 may be enhanced beyond
linearity, e.g., by considering a quadratic model. Before
introducing the quadratic model, we introduce the fol-
lowing vector and matrix notations for the rest of the
study:

D =
∑
i

Di ∈ RD, D =
∑
i

Di · [Di]⊤ ∈ RD×D . (16)

By using the above notations our quadratic model for the
vibrational entropy reads

Svib = w ·D +Tr {W ·D} , (17)

where w is the weight vector of the linear model Eq. (14)
and W ∈ RD×D is a learnable matrix. We note that
D/N and D/N − DD⊤/N2 give the descriptor means
and sample covariances, respectively. An equivalent way
of writing this quadratic model is given by:

Svib =
∑
i

[w ·Di +W : Di ⊗Di

+ o
(
∥Di ⊗Di ⊗Di∥

)
], (18)

where : denotes the double contraction operator. The sec-

ond term reads W : Di ⊗ Di =
∑D

k=1

∑D
l=1 Wk,lD

i
kD

i
l .

Finally, the third term accounts to Di ⊗ Di ⊗
Di =

∑D
k=1

∑D
l=1

∑D
m=1 D

i
kD

i
lD

i
m ek ⊗ el ⊗ em (where

{ei}1≤i≤D are the canonical basis of the descriptor space)
and corresponds to 3rd order (i.e. cubic) term. In the
present study, we consider only the quadratic expansion.
Increasing the order of expansion increases the number
of model parameters and thus the fitting capacity of the
model, but also increases the risk of overfitting. We show
below that a well chosen quadratic model form gives bet-
ter accuracy than the linear model while maintaning ex-
cellent transferability.
We will call as ”Extended Quadratic” Machine Learn-

ing (EQML) this second order formulation. The current
EQML model preserves the entropy extensiveness, is lo-
cal and enables direct comparison with the linear model
Eq. (14). The performances of EQML model (17) are
tested on the database of small defects under strain in
bcc iron built in our previous work [41].

A. The database: small defects in BCC iron

A point defect can be created in a perfect crystalline
system ofNb atoms by adding or removingNd atoms. We
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are going to denote with C the resultant defective struc-
ture. The formation vibrational entropy Sf,C at temper-
ature T reads:

Sf,C(T,Nd) = Sd,C(T,Nb ±Nd)−
Nb ±Nd

Nb
Sb(T,Nb),

(19)
By definition, the vibrational entropies of the defected
structure Sd,C(T,Nb ±Nd) and of the perfect bulk struc-
ture Sb(T,Nb) are computed at the same volume V . Un-
der the harmonic approximation, the formation entropy
will thus depend only on the energies ℏων of normal
modes. For high temperatures, larger than the crystal

Debye temperature, such that max
(

ℏων

kBT

)
≪ 1, the ex-

pression becomes simply

Sf,C(Nd) = kB ln

∏
νb
(ℏωνb

)
Nb±Nd

Nb∏
νd

ℏωνd

 , (20)

where ωνb
and ωνd

are the frequencies of the perfect bulk
and defect configurations, respectively. This classical for-
mulation of the formation vibrational entropy is useful in
the present study because it is possible to assign to each
defect configuration a single value for vibrational entropy,
instead of a function that depends on temperature (as
would be the case in the limit of quantified phonons).
This formulation is not a limitation of the present study,
but a choice to demonstrate the feasibility of current sur-
rogate models.

To train our machine learning model we used a
database of 4506 configurations of bcc iron, including var-
ious defect morphologies such as 2-4 self interstitials and
4 vacancy clusters in supercells of (8a0)

3 (Nb = 1024).
All these instances of the defects are minima of the en-
ergy landscape and have been generated using the ARTn
method. [24, 67]. The Activation-Relaxation Technique
nouveau [24, 67–69] is a powerful method for searching
saddle points and transition pathways of a given potential
energy surface. The ARTn method is designed to explore
the energy landscape of the system using only the lowest
eigenvalue and the associated eigenvector of the Hessian.
The ARTn method is composed of two main steps, the ac-
tivation step and the relaxation step. The activation step
consists in moving the system from a local minimum to
a saddle point. The relaxation step consists in relaxing
the system, from the computed saddle point, to another
local minimum. At the end the ARTn method provides
0 K minimum - saddle point - minimum sequences. All
the 4506 minima configurations are different. In order to
obtain a more complete dataset, we perform data aug-
mentation. On the ARTn minimum configurations of the
dataset, we have applied a homogeneous and isotropic
strain of −1% to 3%, resulting in a total of 22530 config-
urations. Reference harmonic vibrational entropies are
computed by using molecular dynamics simulations with
LAMMPS [70] and the PHONDY package [71–73] from the di-
rect evaluation of vibrational spectrum. PHONDY package
enables the evaluation of the phonon spectrum of crys-

talline systems by direct diagonalization of the dynamical
matrix of the system [1, 71–73] and allows the computa-
tion of vibrational properties in the framework of the
harmonic approximation. We use the modified embed-
ded atom potential (MEAM) developed by Alireza and
Asadi [74]. Descriptors of each configuration have been
computed by using the MILADY package [51, 52, 75].

B. Train/test procedure

The linear model is parametrized with the same proce-
dure described in [41] using Eq. (14). The parametriza-
tion of the EQML model is sequential, in two steps proce-
dure, being preconditioned by the linear model and then
adjusting the quadratic part. Firstly, we set the values
of the linear model, w in Eq. (17) by a linear fit using
Bayesian ridge regression. Secondly, the target property
becomes the differences ∆Sk ≡ Sk − Ŝlin

k for each con-

figuration k, where Ŝlin
k is the estimation of Sk with the

linear model. The values of the elements of the tensor
W , in Eq. (17), are parametrized using ∆Sk values us-
ing the same Bayesian ridge regression. All the fitting
procedure is performed with ridge Bayesian Regression
by using scikit-learn package [76] (the initial value of
σw Bayesian prior has been set by default).
The robustness and the transferability of the surrogate

EQML model is checked by performing a train/test pro-
cedure. Here, we define two statistical quantities in order
to evaluate the quality of the surrogate model:√√√√ 1

M

M∑
k

(
Ŝvib
k − Svib

k

)2

(RMSE), (21)

1

M

M∑
k

|Ŝvib
k − Svib

k | (MAE), (22)

where Svib
k and Ŝvib

k are the formation entropy and the
predicted formation entropy of the kth configuration, re-
spectively. RMSE and MAE are the Root Mean Square
Error and the Mean Absolute Error, respectively. The
database configurations were randomly divided into two
sets at a certain ratio of p. The percentage of the training
configurations is set at (1− p) (from the total database)
and the rest of the database, with a ratio of p, is reserved
for tests. The surrogate model is fitted on the training set
and the predictions are evaluated for the test set. RMSE
and MAE are calculated for both sets. In order to re-
duce bias of the random procedure selection, we iterate
the procedure a hundred times for a given ratio of p and
we average the value of RMSE and MAE for the training
and test set.

C. The performance of the EQML surrogate model

Here, we compare the two regression models presented
in the previous sections: (i) the linear model given by
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equation (14) and (ii) the EQML model given by equa-
tion (17). The comparison is made using Figure 2: lin-
ear machine learning approach from [41] is presented
in the Figure 2(a) while EQML model is presented in
Figure 2(b). Both models, linear and quadratic, use
the same parametrization for the bSO(4) descriptor i.e.
jmax = 4.0 and the cut-off radius is set to 5 Å . The
number of dimensions for linear and quadratic fit are
D = 35 and D+D(D+ 1)/2 = 665, respectively. EQML
model provides better RMSE/MAE fit errors than the
simple linear model. The non-linearity of EQML model
introduces coupling between descriptor components giv-
ing larger fit capacity. For each class of deformations,
EQML model has lower RMSE (0.34kB) compared to lin-
ear model, 0.82 kB . From the learning curves presented
in the insets of Figure 2 it is possible to deduce that the
linear model is transferable even for a very small fraction
1 − p. EQML remains stable even for large test / small
train database’s partition. EQML learning curves em-
phasize small over-fitting behavior for the ratio p > 0.7.
Even under these conditions, the RMSE of EQML model
is inferior to the linear model. It is important to note that
the additional quadratic term preserves the good trans-
ferability capacity of the linear model. The strong linear
preconditions of the quadratic parametrization keep the
characteristics of the linear fit. Moreover, as we pointed
out in [41], the information provided by the local vibra-
tional modes is sufficient to quantitatively recover vibra-
tional modes properties, even if they are delocalized over
the cutoff distance of descriptors.

IV. APPLICATION OF LINEAR MODELS FOR
HARMONIC TRANSITION STATE THEORY

(HTST)

The kinetic pathways of the microstructural evolution
of the system are driven by the migration energies /
free energies landscape. Sequences of minima and saddle
points drive complex phenomena such as the agglomer-
ation of defects in a larger structure, e.g. a dislocation
loop [77] or the mobility of the dislocations [1, 78]. In the
following, we will call a sequence of connected minimum
- saddle point - minimum as an event E . The transition
rate is the probability of realisation of that event in a spe-
cific order. The migration coefficients can be computed
from the transition rates between the relevant minima of
the energy landscape [13, 15, 79–82]. As such, the transi-
tion rates are observable of paramount importance in the
implementation of multiscale simulations such as Kinetic
Monte Carlo (KMC), whatever the variant: objects [83–
89], events [90–93], or off-lattice framework [11, 94]. Each
variation of the KMCmethod mentioned above has a spe-
cial recipe for defining the physical reality corresponding
to the transition rate. In object KMC, for example, each
rate is associated to an atomistic transition rate of a par-
ticular defect which is the main concept of the present

study. The event and off-lattice KMC deals with rates,
which correspond to some physical phenomenons such as
collective migration and reaction of defects.
Let’s consider an event E , which is defined by two in-

stances: the initial minimum state E ,m and an associ-
ated saddle point state E , s. We define the rate from state
E ,m to state E , s as RE,m→s. The overall sequence of the
event contributes to the transition rate [95, 96]. However,
within the framework of the most used approximation in
computational materials science for the transition rate,
namely the Transition State Theory (TST) [95, 97], only
the initial minimum and the saddle point of the events
account for the transition probability. In the harmonic
approximation, the transition rates gives [95, 97]:

RE,m→s = ν∗E,mse
−β∆EE,m→s , (23)

where β = (kBT )
−1, ∆EE,m→s is the energy difference

between the saddle point and the minimum and ν∗E,ms
is the attack frequency defined in the framework of har-
monic TST as:

ν∗E,ms =

∏
νm′∈S(E,m) νm′∏
νs′∈S(E,s) νs′

, (24)

where the numerator is the product of frequencies at the
minimum S(E ,m) and the denominator is the product of
frequencies at the saddle point S(E , s). By S(E ,m) and
S(E , s), we denote the ensemble of the Hessian spectrum
at the minimum (E ,m) and saddle point (E , s) configu-
ration of event E , respectively. Obviously, the unstable
modes such as the three zero modes due to the periodic
boundary conditions as well as the imaginary mode of the
saddle point are not included in ensemble S. In practice,
under harmonic approximation, ν∗E,ms is obtained by di-
agonalizing the dynamical matrix of the system’s mini-
mum and saddle point. The numerical complexity of this
procedure is O(N3) and limits the size of the routinely
studied systems to a few tens of thousands of atoms. Due
to this complexity, the majority of multiscale studies use
phenomenological laws of unique value for the attack fre-
quencies (such as the Debye frequency for crystalline ma-
terials). Here, we propose to extend the linear machine
learning approach in the descriptor space to compute and
predict the attack frequencies for a collection of events
{E i}. In this way, as in the case of formation vibrational
entropy, we avoid a direct diagonalization of the dynam-
ical matrix which is replaced by the O(N) operation of
computing descriptors.

A. Reformulation of the attack frequency

For the attack frequency defined in Eq. (24), it is better
to handle the logarithm of frequencies for ensemble S,
which are positively definite.

ln
(
ν∗E,ms

)
=

∑
νm′∈S(E,m)

ln (νm′)−
∑

νs′∈S(E,s)

ln (νs′) ,

(25)
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FIG. 2: Illustration of the performance of linear and EQML surrogate models using deformed supercells of I2−4/V4

clusters and by using bSO(4)4 descriptor. The initial configurations have a (8a0)
3 volume and have been deformed

by applying an homogeneous and isotropic dilatation of the supercell. The deformation rates range from −1% to
3%. Figures illustrate the performances of linear (a) and EQML (b) of surrogate models.

which can be related to the density of states Ωj(ω) for
the jth state of the system:∑

νj′∈S(E,j)

ln (νj′) =

∫ +∞

0

ln
( ω

2π

)
Ωj(ω)dω. (26)

Similarly, the logarithm of the attack frequency can be
decomposed into local contributions. The associated sur-
rogate model can be set up using a linear model in de-
scriptor space. The regression model attack frequency -
descriptors now has the following formulation:

ln
(
ν∗E,ms

)
= w1 ·

(
DE,m ⊕DE,s

)
, (27)

where DE,m/s =
∑

d∈E,m/s D
d ∈ RD is the total descrip-

tor vector for E ,m or E , s. We denote by · ⊕ · the direct
concatenation operator for two descriptor vectors. This
extended descriptor space is sufficiently general to cap-
ture the fact that the evaluation of reaction rate RE,m→s

of the event E requires information about the minimum
configuration m and the saddle point configuration s.
The direct sum of descriptor vectors for states E ,m and
E , s gives an extended descriptor vector of dimension 2D.

B. The database for transition rates: amorphous Si

The performance of the surrogate model for attack fre-
quencies was tested on amorphous Si. This system is a
challenging test case where each minimum of the energy
landscape is connected to a large number of saddle points.
This system was widely studied in the past using the
ARTn method [15, 94, 98, 99]. The amorphous system is

contained within a cubic cell of 4096 atoms at constant
volume. The spectrum of partial Hessian is estimated
by using the Lanczos method described by Marinica et
al. [9], and we fix the admissible error on Lanczos eigen-
values at 1×10−6(1.018049×10−2ps)−2. The amorphous
Si system is explored through inherent states. The inher-
ent states are representative states of disordered materi-
als corresponding to attraction basins (local minimum
surrounded by many other minima and saddle points).
Inherent states give access to a potentially astronomical
number of different configurations and activation barri-
ers. The database of events E is generated from 20 inde-
pendent inherent states of amorphous silicon, simulated
using a modified version of the Stillinger-Weber poten-
tial [100]. To obtain inherent states, we run canonical
molecular dynamics simulations [70], with 4096 Si atoms,
a fixed density of 2.192 g.cm−3, and using a timestep
of 1 fs. Random configurations are first equilibrated at
2300 K for 20 ns, and then directly relaxed (i.e. with-
out any intermediate quench) at 700 K during 100 ns.
Finally, the system energy is minimized using the FIRE
algorithm [101], until all components of the force vector
are lower than 10−9 eV.Å−1. Once initial minima are
prepared, we sample saddle points with ARTn (converg-
ing towards them until all force vector components are
lower than 10−7 eV.Å−1). The connectivity of saddle
points to initial minima is systematically checked using
the steepest descent method, and duplicates are removed
by comparing saddle points energies and displacements of
the most displaced atom [30]. At the end, the amorphous
Si database contains an average of 420 saddle points per
minimum (a total of 10502 distinct activated events).
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C. Surrogate model for attack frequencies

The surrogate model was trained using the bSO(4)
with jmax = 4.0. For consistency reasons, the descrip-
tor was computed using a cut-off equal to that of the
empirical potential used to perform the MD simulations,
rcut = 3.77Å [100]. The direct sum descriptor spans a
descriptor space with 35 + 35 components. The perfor-
mances of the linear model are presented in figure 3 for
logarithm (a) and plain values (b) of attack frequencies.
The spectrum of attack frequencies is wide over many
orders of magnitude.The linear model is capable of pre-
dicting magnitude changes in a fairly accurate manner.
The value of the log(ν/ν0) (ν0 is fixed at 1 THz) has the
RMSE of 0.65 for a range of 10 log(ν/ν0). The results
of the train/test procedure, presented in the inset of the
figure 3.(a), indicate that the model is stable even for
a small train fraction of the database. This behavior of
the present linear model is similar to that of the previous
surrogate model for vibrational formation entropies [41].

The results of plain attack frequencies are shown in
Figure 3.(b), the RMSE is about 1400 THz for a range of
values from 1×10−1 to 1×105 THz. The logarithm of the
stochastic noise for the direct attack frequency model,
log(ν/ν̂) where ν̂ is the predicted frequency, follows a
normal distribution presented in the inset of Figure 3.(b)
with a mean µ = 0 and a standard deviation σ = 0.653.
We can estimate that 98 % of the predictions ν̂ verify
the following ratio 0.27 ≈ e−2σ ≤ ν/ν̂ ≤ e2σ ≈ 3.7. Fur-
ther analysis of the distribution of errors will be carried
out in the context of the statistical formulation of the
compensation law, in the next section.

In conclusion, under the linear formalism in descriptor
space, the attack frequencies can be inferred and pre-
dicted. This approach is purely geometric and based on
the local decomposition of the density of states of vi-
brational modes, bypassing the direct calculations and
diagonalization of the dynamical matrix. This type of
approach scales like O(N) and has the same order of
magnitude as the calculation of descriptors and could be
used in any multi-scale atomistic methodology that uses
transition rates.

V. THE COMPENSATION MEYER-NELDEL
LAW IN DESCRIPTORS SPACE

It is frequently found in thermally activated processes
- i.e. following an Arhenius-like law given in Eq. (23) -
that when the activation energy increases within a family
of processes, the prefactor also increases. Thus, observed
first in chemistry [102] and then in physics by Meyer
and Neldel [103], the increase of a rate prefactor some-
what “compensates” for the decrease in the Arrhenius
exponential term governing the dependence on temper-
ature. This experimental observation can be expressed

as a simple correlation between the observed prefactor
(νexp) and the slope (∆Eexp) of the measured Arrhenius
law: ln νexp = a + b∆Eα

exp (where α is an exponent,
which usually is taken as 1). Evidence of a direct link
between the experimental measurements and numerical
simulations is difficult to obtain [30, 104, 105]. The main
complexity is that in experimental measured Arrhenius
law there is a contribution of many kinetic pathways for
which it is difficult to account theoretically / numeri-
cally the huge number of thermally activated sequences
of events. Evidence of a direct link between experimen-
tal measurements and numerical simulations is difficult
to obtain [30, 104, 105]. The main complexity is that in
experimental measurements of the Arrhenius law, there is
a contribution from many kinetic pathways which are dif-
ficult to theoretically and/or numerically account for the
huge number of thermally activated sequences of events.
However, in the case of simple energetic landscapes, a
direct association can be established between the migra-
tion mechanism and experimental observation. This is
the case for self-diffusion in crystalline solids or migra-
tion of particular defects, e.g. diffusion of ad-atoms on
metallic surfaces [106, 107] or thermal activated dislo-
cation movements [108]. This compensation was even
demonstrated analytically in the case of well identified
thermal overcoming of energetic barriers, such as in the
correlation between the magnitude of the gap in semicon-
ductors and the thermally activated conductivity [109].
This compensation is explained by some authors with
the concept of multi-excitation entropy and its conse-
quences. When a fluctuation involving a large number of
excitations occurs, for example when a large activation
barrier is overcome, there must be a large entropy asso-
ciated with this fluctuation [105]. Otherwise, when the
kinetic pathways are difficult to identify, such as the mi-
gration in disordered solids, some studies [30, 104, 105]
describe a compensation effect for large set of events be-
tween the average value of the pre-exponential factor
logarithm ln

(
ν∗E,m→s

)
, in a given bin / window of ac-

tivation energy, and the energy barrier. This correlation
is called enthalpy-entropy compensation law and results
from the averaging over a large number of kinetic path-
ways [30]. Moreover, in the general framework of ther-
mally activated diffusion of kinetic processes, beyond an
array of interpretations all along the last 100 years, Gelin
et. al [30] recently proposed (based on numerical simu-
lations) a general interpretation for which the compensa-
tion is a statistical law associated with the deformation
of the vibrational spectrum caused by the local defor-
mations of the atomic lattice and that can be calculated
within the harmonic TST.

The goal of this section is two fold: (i) we first exam-
ine if the present surrogate model for attack frequencies is
able to recover enthalpy-entropy compensation law that
was previously identified by the direct calculations. (ii)
Then, in the framework of the linear model in descriptors
space, we try to give a statistical insight of the compen-
sation law by the simple fact that the present surrogate
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FIG. 3: Illustration of the linear model to adjust the (log) attack frequencies of the amorphous Si database, where
ν0 = 1 THz. The color gradient represents the data distribution, with yellow corresponding to dense data zones.
Figure 3.(a) shows the regression of the logarithm of attack frequencies; the results of the train/test validation

procedure are presented in the inset. The values of statistical indicators remain stable, even for a large proportion of
validation sets. Figure 3.(b) emphasizes the results of attack frequencies. The logarithm of noise log(ν/ν̂) (ν̂ is the
frequency estimation using the surrogate model of the direct computed frequency ν from ML model) is presented as

inset of Figure 3.(b) and follows a normal distribution with mean µ = 0 and standard deviation σ = 0.653.

model for the activation entropy and the activation en-
ergy share the same descriptor space.

First, let’s define the proportionality between the value
of energy barrier ∆EE,m→s and the logarithm of attempt
frequency log

(
ν∗E,ms

)
. We define two possible statisti-

cal correlations: (i) the direct correlation of activation
energy-entropy (DCAEE) for a particular event, and (ii)
the enthalpy-entropy compensation (EEC) law based on
averaging many activated events. In the case of DCAEE
the correlation can be expressed in simple terms for event
i:

log(νi/ν0) = γ∆Ei + log(νγ/ν0), (28)

where γ in eV−1 and log(νγ/ν0) are parameters that de-
fine DCAEE correlation. As we have mentioned before,
this law is observed in some simple thermally activated
events such as metal conductivity [110], diffusion of ad-
atoms on metallic surfaces [106, 107], dislocation glide in
Zr [108] etc. The other type of correlation is a marginal
proportionality. This average EEC relation can be ex-
pressed as:

E [log(ν(∆E)/ν0)|∆E] = γ∗∆E + log(ν∗γ/ν0), (29)

where γ∗ in eV−1 and log(ν∗γ/ν0) are parameters. We
denote by E [log(ν(∆E)/ν0)|∆E] the average value of
log(ν(∆E)/ν0) for each configuration whose associated
energy barrier is between ∆E and ∆E + δϵ, where δϵ is

the width of the energy bin. This expression has been
used by Gelin et al. [30] for EEC in thermally activated
systems in materials science. We note that the DCAEE
law implies its marginal EEC definition. These corre-
lations have practical consequences being a ”physical”
surrogate models in order to estimate the prefactor of
some transitions without doing any computations or ex-
periments. In the following, we give a new statistical
insight of the DCAEE compensation law by representing
the energy barriers and attack frequencies in the same de-
scriptor space and using the same surrogate model with
just different parameterisations.
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FIG. 4: The correlation between the predicted and com-
puted energy barrier ∆E using the linear regression be-
tween descriptors and energy barriers on the amorphous
Si database. The relative accuracy of the linear regres-
sion model is better for barriers than for the log of pref-
actors (a RMSE of 0.09 eV over a range of 6 eV).

Using the formalism of the current surrogate model, we
built a linear regression model for energy barriers, using
the relation:

∆EE,m→s = w2 ·
(
DE,m ⊕DE,s

)
, (30)

where DE,m/s =
∑

d∈E,m/s D
d ∈ RD is the total descrip-

tor vector for E ,m or E , s. The weight vector w2 ∈ R1×2D

is parametrized using the same database of amorphous
Si with the particularity that the target property is now
the barrier energy of the event. The corresponding en-
ergy barriers have been calculated using the same ARTn
exploration. For the mapping of the atomic configuration
into the descriptor space we have used the same descrip-
tor bSO(4) with the same parameters i.e. jmax = 4.0
and the cut-off radius rcut = 3.77 Å . Regression results
are presented in Figure 4. The surrogate energy model
given by Eq. (30) provides a RMSE of 0.09 eV. Inter-
estingly, the regression is more accurate for the energy
barrier than for the log attack frequency. In [41], it is
shown that the accuracy performances can be explained
by the nature of the force fields. This source of errors for
surrogate models for the migration energy or the attack
frequency has exactly the same origins. With these two
surrogate models for the energy and the attack frequency
we have the appropriate tools to investigate the DCAEE
and EEC ”compensation laws”.

Firstly, we investigate the ability of the present surro-
gate model to recover the direct EEC law from [30]. We
emphasize in Figure 5 the correlation between the value
of energy barrier ∆E and the corresponding attack fre-
quency, in terms of log(ν/ν0), using direct and machine
learning surrogate approaches. We observe a clear lin-
ear relation between ∆E and log(ν/ν0). In Figure 5.(a)
the blue spots emphasize the direct atomistic calcula-
tions and in Fig 5.(b) the red spots are the predictions of
the current surrogate model. Regression models for both
datasets are given in the inset in figure 5. The correla-
tions between ∆E and log(ν/ν0) for the direct method
and the surrogate model are quantitatively very close.
The current correlation coefficient is defined by the fol-
lowing equation:

r(log(ν/ν0),∆E) =
C[log(ν/ν0),∆E]√
V[log(ν/ν0)]V[∆E]

(31)

where C[log(ν/ν0),∆E] is the covariance between
log(ν/ν0) and ∆E. V is the variance of the corresponding
observables. The correlation coefficient is a quantitative
measurement of whether there is a linear relation between
two quantities. If the DCAEE law is exact, it implies this
r(log(ν/ν0),∆E) = 1. The correlation coefficient is 0.61
for the database and 0.65 for the data predicted by the
surrogate model. The current surrogate machine learn-
ing approach is accurate enough in order to reconstruct
the correlation between the two observables.
Here, we go further. Are there particular conditions

of realisation of DCAEE law that can be character-
ized in the descriptor space? Let’s consider two dis-
tinct events E1 and E2 and the associated attempt fre-

quencies ν∗E1,m→s and ν∗E2,m→s such as ln
(
ν∗E1,m→s

)
=

α ln
(
ν∗E2,m→s

)
, Eq. (27) implies:

w1 · (DE1,m ⊕DE1,s − αDE2,m ⊕DE2,s) = 0, (32)

where DE1,m, DE1,s and DE2,m, DE2,s are the descrip-
tors of minimum and saddle point for the two events
E1 and E2, respectively. w1 is the weight vector intro-
duced by Eq. (27). If we set ∆Ei −∆E0 = γ log(νi/ν0)
and ∆Ej −∆E0 = γ log(νj/ν0), so we can deduce from

equation (28) log(νi/ν0) =
∆Ei−∆E0

∆Ej−∆E0
log(νj/ν0). If there

exists a DCAEE relation then we can build the following
relation based on Eq. (32) such as:

w1 ·
(
DEi,m ⊕DEi,s −

∆Ei −∆E0

∆Ej −∆E0
DEj ,m ⊕DEj ,s

)
= 0,

(33)

where E i, DEi,m ⊕ DEi,s are the events and the associ-

ated descriptors for each event E i of the Si amorphous
database. w1 is the weight vector defined by Eq. (27).
This orthogonality relation is valid if the DCAEE law
defined by equation (28) is exact. As shown in Figure 5
the DCAEE relation (28) is qualitatively true but implies
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an imperfect correlation i.e. 0.61 instead of 1.0 for the
perfect theoretical correlation. In order to quantify the
notion of orthogonality in the descriptor space, given by
Eq. (33), for the realistic case of imperfect correlations of
DCAEE law, we introduce the following vectorial quan-
tity: Dij = DEi,m ⊕DEi,s − ∆Ei−∆E0

∆Ej−∆E0
DEj ,m ⊕DEj ,s. In

the end, we focus on the following ratio:

κij =

∣∣w1 ·D
ij
∣∣∣∣w1 ·

(
DEi,m ⊕DEi,s +DEj ,m ⊕DEj ,s

)∣∣ . (34)

If DCAEE law is valid, the following ratio κij should
be as small as much as possible. For the amorphous Si
dataset we can compute the average ratio:

⟨κ⟩ ≡ 1

M2

M,M∑
i,j

κij ≪ 1, (35)

where M is the number of events. The average value of
κ over the entire database is equal to ⟨κ⟩ = 0.11, which
is low value. This suggests a weak DCAEE law for this
particular database.

Furthermore, for the same amorphous Si database we
investigate the variance of the marginal correlation of the
EEC law. In order to compute the numerical value of bin
average of the E [log(ν/ν0)|∆E], given by Eq. (29), the
barrier energies domain ∆E is split into 50 uniform bins,
each of them having the width δϵ = 0.144 eV. Conse-
quently, E [log(ν/ν0)|∆E] is computed with the average
of log(ν/ν0) in each bin of the energy domain. The anal-
ysis is performed, over the Si database, for brute and
predicted data from our surrogate model. For both we
compute the marginal variance V [log(ν/ν0)|∆E]. The
marginal variance represents the width of the intrinsic
stochastic noise over log(ν/ν0) for a bin in [∆E,∆E+δϵ].
A constant marginal variance implies constant intrinsic
noise for all energy bins. Consequently, constant vari-
ance over the entire database indicates that correlation
between log(ν/ν0) and ∆E is blurred by a noise with the
same origin e.g. induced by the same physical phenomena
over the entire range of the energy barriers domain ∆E.
Moreover, marginal variance V [log(ν/ν0)|∆E] is a quan-
titative indicator of the DCAEE law’s validity. From this
perspective, the DCAEE is a particular case of marginal
law with V [log(ν/ν0)|∆E] = 0. The less is the variance,
the better is the accuracy of DCAEE to predict log(ν/ν0)
from ∆E.
Results of this analysis are given in Figures 5.(a) and

(b) emphasize the correlation between log(ν/ν0) and
∆E for the Si amorphous database employing direct
and surrogate model, respectively. Grey points indicate
the marginal observable E [log(ν/ν0)|∆E] and his esti-
mated standard deviation. The ajusted marginal EEC
from equation (29) is given as an inset for each fig-
ures. Average EEC models are very similar for direct
and surrogate models. Figure 5.(c) and Figure 5.(d)
draw the marginal variance V [log(ν/ν0)|∆E] for di-
rect and predicted data, respectively. For these fig-

ures we also give the estimated value of standard devi-
ation variance 2σ [V [log(ν/ν0)|∆E]]. This indicator al-
lows to quantify the uncertainty of the marginal variance
V [log(ν/ν0)|∆E]. Low deviation of marginal variance
implies that DCAEE law could be extended depending
only on V [log(ν/ν0)|∆E]. From Figure 5.(c) and Fig-
ure 5.(d) it can be noted that the marginal variance
of log(ν/ν0) remains almost constant for every bin of
barrier domain ∆E. Moreover, the marginal variance
σ[log(ν/ν0)|∆E]2 = V [log(ν/ν0)|∆E] is quite similar be-
tween direct and predicted data. 2σ [V [log(ν/ν0)|∆E]]
slightly depends on the value of ∆E. Consequently, the
DCAEE relation can be extended by adding only a de-
pendency in V [log(ν/ν0)|∆E]. If we suppose that all
events present in the Si database are independent, we can
give a simple stochastic reformulation of the DCAEE law,
Eq. (28), by assuming that the stochastic noise follows a
normal distribution:

log(ν/ν0) = γ∆E + log(νγ/ν0) +N (σ2[log(ν/ν0)|∆E]),
(36)

where N (σ2[log(ν/ν0)|∆E]) is a centered normal distri-
bution of standard deviation equal to σ[log(ν/ν0)|∆E].
In the limit σ[log(ν/ν0)|∆E] → 0, we find the DCAEE
relation. Combining the two perspectives of the compen-
sation law, direct correlation and marginal, allows us to
give a more general formulation of the enthalpy-entropy
compensation. This formulation is valid for simple (e.g.
small point defects in crystalline lattice) and disordered
systems (such as the present amorphous system).

The present statistical analysis within the descriptors
formulation of the enthalphy-entropy correlations gives
two important information. Firstly, by using two surro-
gate models - one for barrier energy and one for attack
frequency - which underlay the same descriptor space, we
are able to recover the statistical correlations of the EEC
law given by direct calculation of Gelin et al. [30]. The
results, provided by our linear surrogate models over an
amorphous Si database, emphasize the same correlations
with the direct HA TST calculations and are solely based
on geometrical considerations. Our statistical analysis of
the compensation law underlines the ability of the present
linear models to capture the complex information about
the potential surface of the energy landscape. Secondly,
the geometrical information that feed the surrogate mod-
els is local, i.e. the descriptors on which is based the
linear models encode the geometric structure of atoms
within a cut-off distance around a central atom. It is
interesting to note that our surrogate model is able to
reconstruct well the enthalpy-entropy compensation law
solely from this local geometric information. This means
that the current surrogate models enable the reconstruc-
tion of harmonic vibration quantities, which are diffuse
by definition. The ability of the local surrogate model to
reconstruct non-local components of vibrational quanti-
ties implies a particular structuration of the data in the
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FIG. 5: Drawing the enthalpy-entropy compensation relation for the Si amorphous database. Figure 5.(a) shows
values of ∆E and log(ν/ν0) computed with ARTn method. Figure 5.(b) shows predicted values of ∆E and log(ν/ν0)
with linear model. The color gradient represents data distribution; yellow corresponds to dense data zones for both
types of points. Adjusted EEC relations, following Eq. (29), for both direct and surrogate models are emphasized in
(a) and (b) by white points with black contour. Both models, the direct and the surrogate, have distributions with
very close correlation indicators. Marginal variance distribution for both dataset is presented in Figure 5.(c) and
Figure 5.(d) for direct and surrogate data respectively. The marginal variance is quantitavely almost the same for

both dataset.

descriptor space. In fact, data in the descriptor space
seems to present a simple topology that allows for new
formulations, in terms of elementary geometry in high di-
mensional space, of non-trivial physical laws in the con-
figuration space, such as the present Meyer-Neldel corre-
lation law.

VI. CONCLUSIONS AND PERSPECTIVES

The current study explores the limits of machine learn-
ing surrogate models for the vibrational properties of
solids that make a direct link between atomic geome-
try and vibrational observables of interest. This current
approach is developed using the traditional harmonic ap-
proximation, which allows vibrational properties to be
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exactly decomposed into local contributions around each
atom. This feature allowed the model to be easily in-
tegrated within machine learning frameworks. Tradi-
tional methods based on harmonic approximation use for
the evaluation of the vibrational entropy the derivatives
of the interatomic potential energy surface in particu-
lar points of the potential energy surface i.e. minima or
saddle points. Consequently, here we treat only the in-
formation from particular instances of the phase space
such as minima or saddle points of the first-order.

Within the framework of harmonic approximation and
transition state theory we proposed surrogate models for
the vibrational entropy that account for (i) variations
under applied hydrostatic strains (ii) attack frequencies
for thermally activated events. The traditional evalua-
tion of the system’s Hessian and its diagonalization is
bypassed; the only need is to provide reliable atomic po-
sitions for the minimum / saddle point configurations. In
the present study we have used the ARTn method in order
to provide those configurations.

For the present surrogate model for formation vibra-
tional entropy, with or without strain, compared to the
previous work, we have extended the dimension of atomic
descriptors through quadratic coupling between various
components of the original atomic descriptor. We have
deduced the correlation between the new atomic descrip-
tors and the vibrational observables within the frame-
work of the quadratic surrogate model (EQML). This
EQML model is more accurate than previous linear mod-
els and it is not too much less transferable. We keep the
balance between accuracy and transferability of the fit
by the parametrization procedure of the quadratic fit,
which is preconditioned by the linear fit. Furthermore,
the EQML model has very good transferability in the
sense of train/test procedure. Over a database containing
various point defects in α-Fe we have numerically demon-
strated that this approach has better accuracy for homo-
geneous, isotropic deformations from -1% to 3% strain
than the previous linear model introduced in [41].

We have replaced the local atomic descriptors with the
appropriate descriptor of the activated event, i.e., the se-
quence minimum - saddle point, for estimating the attack
frequency of thermally activated processes. For this pur-
pose, the surrogate model uses structural information,
through descriptor projection, of the geometrical config-
urations of the minimum and of the saddle configura-
tion. The relation descriptors - target local observables
is based on the linear model Eq. (14). However, this
choice is not restrictive and the model framework can
be extended to higher orders, such as quadratic EQML.
This new surrogate model has been tested on a database
of activated events in amorphous Si [30] and provides
good accuracy over many orders of magnitude (6 orders
of magnitude) of the attack frequency. This model has a
good transferability with very stable train / test learning
curves.

Our study shows that it is possible to adjust the for-
mation entropy of defects and logarithm of the attack

frequency of their activated events only with O(N) nu-
merical estimation. The present workflow avoids the
time-consuming evaluation of system’s dynamical ma-
trix (O(N2)) and its spectrum (O(N3)). The current
efficient solution opens many avenues in the field of
on-the-fly exploration of complex energetic landscapes,
for example using semi-automatic atomistic frameworks
such as lattice or off-lattice and relaxed Kinetic Monte
Carlo [11, 83–89, 94].

Finally, employing the framework of machine learn-
ing surrogate models, we have proposed an insight into
the statistical analysis of enthalpy-entropy compensation
law - a non-trivial conjecture observed in several materi-
als [104, 111]. This law states that, for a given transition
event, the link between the magnitude of the potential
energy function (the value of ∆E) and its curvature (the
value of log(ν/ν0)). Here we give a statistical formula-
tion of the compensation energy - frequency law. Sharp
statistical analysis emphasizes that we are able to repro-
duce the same correlation as the direct calculations by
using two linear surrogate models for the barrier energy
and the attack frequency of activated events. Moreover,
by tackling the DCAEE law in the descriptor space, we
have provided a geometrical insight into the conditions of
realisation of this conjecture, which are quantified by an
orthogonality relation. The present formulation requires
more investigation in other systems and opens many per-
spectives for further investigation.

VII. CODES AND DATA

The ARTn package and databases of amorphous silicon
events are available upon reasonable request to Nor-
mand Mousseau (normand.mousseau@umontreal.ca).
The Milady package is open source software
under ASL license and can be downloaded at
https://ai-atoms.github.io/milady/.
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[94] N. Mousseau, L. K. Béland, P. Brommer, F. El-
Mellouhi, J.-F. Joly, G. K. N’Tsouaglo, O. Restrepo,
and M. Trochet, Comp. Mater. Sci. 100, 111 (2015),
special Issue on Advanced Simulation Methods.

[95] P. Hänggi, P. Talkner, and M. Borkovec, Reviews of
Modern Physics 62, 251 (1990).

[96] C. Dellago, P. Bolhuis, and P. L. Geissler, Adv. Chem.
Phys. 1 123, 1-78 (2002).

[97] G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).
[98] A. Jay, C. Huet, N. Salles, M. Gunde, L. Martin-Samos,

N. Richard, G. Landa, V. Goiffon, S. De Gironcoli,
A. Hémeryck, et al., Journal of Chemical Theory and
Computation 16, 6726 (2020).
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