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ABSTRACT 61 

Tobacco smoking is classified as a human carcinogen. A wide variety of new products, in particular 62 

electronic cigarettes (e-cigs), have recently appeared on the market as an alternative to smoking. 63 

Although the in vitro toxicity of e-cigs is relatively well known, there is currently a lack of data on their long-64 

term health effects. In this context, the aim of our study was to compare, on a mouse model and using a 65 

nose-only exposure system, the in vivo genotoxic and mutagenic potential of e-cig aerosols tested at two 66 

power settings (18W and 30W) and conventional cigarette (3R4F) smoke. The standard comet assay, 67 

micronucleus test and Pig-a gene mutation assay were performed after subacute (4 days), subchronic (3 68 

months) and chronic (6 months) exposure. The generation of oxidative stress was also assessed by 69 

measuring the 8-hydroxy-2'-deoxyguanosine and by using the hOGG1-modified comet assay. Our results 70 

show that only the high-power e-cig and the 3R4F cigarette induced oxidative DNA damage in the lung 71 

and the liver of exposed mice. In return, no significant increase in chromosomal aberrations or gene 72 

mutations were noted whatever the type of product. This study demonstrates that e-cigs, at high-power 73 

setting, should be considered, contrary to popular belief, as hazardous products in terms of genotoxicity in 74 

mouse model.  75 
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ABBREVIATIONS 85 

e-cig: electronic cigarette; Mb18W: Modbox e-cig model set at 18 W; Mb30W: Modbox e-cig model set at 86 

30 W; 8-OHdG: 8-hydroxy-2'-deoxyguanosine; hOGG1: human 8-oxoguanine glycosylase; Pig-a: 87 

phosphatidylinositol glycan, class A (gene); TI: tail intensity; MNPCE: micronucleated polychromatic 88 

erythrocytes; PCE: polychromatic erythrocytes; NCE: normochromatic erythrocytes; RET: reticulocytes; 89 

RBC: red blood cells; PAHs: polycyclic aromatic hydrocarbons; ALI: air-liquid interface. 90 
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1. INTRODUCTION 92 

 Tobacco use is a major public health concern killing more than 8 million people every year 93 

worldwide, yet is the leading cause of preventable death worldwide (World Health Organization, 2020). 94 

Cigarette smoke is composed of a mixture of toxicants and carcinogens such as polycyclic aromatic 95 

hydrocarbons (PAHs), N-nitrosamines, aromatic amines, aldehydes (e.g. formaldehyde and 96 

acetaldehyde), phenols, volatile hydrocarbons, and metals (International Agency for Research on Cancer, 97 

2012, 2004). Tobacco smoking is classified as a human carcinogen (group 1) by the International Agency 98 

for Research on Cancer (IARC) for the development of mainly lung cancer and several other cancers 99 

(larynx, pharynx, oesophagus, stomach, colon, liver, pancreas, bladder, cervix, ...) (International Agency 100 

for Research on Cancer, 2012, 2004). It is also well known that smoking is a major risk factor for many 101 

other adverse effects on human health, including respiratory, cardiovascular, nervous, immune, liver, 102 

urinary, gastrointestinal and reproductive systems (Altamirano and Bataller, 2010; Dechanet et al., 2011; 103 

Erhardt, 2009; Gotts et al., 2019; Lakier, 1992; Li et al., 2014; Orth, 2000; Soares and Melo, 2008; Sopori, 104 

2002; Sopori and Kozak, 1998). In recent years, a wide variety of new products, in particular electronic 105 

cigarettes (e-cigs), have emerged on the market as an alternative to smoking tobacco products. E-cigs are 106 

battery-powered devices that allow the nebulization of e-liquids composed of propylene glycol and/or 107 

glycerol and flavoring agents, with or without nicotine. E-cigs are generally perceived as less harmful than 108 

traditional cigarettes, particularly because they do not contain tobacco, do not require combustion during 109 

use and deliver fewer toxicants (Cao et al., 2021; Dusautoir et al., 2021). However, due to the thermal 110 

degradation of the e-liquid constituents, other substances in e-cig aerosols have been identified as toxic 111 

compounds or potential carcinogens such as aldehydes (e.g. formaldehyde, acetaldehyde, methylglyoxal, 112 

acrolein), phenolic compounds (e.g. phenol, quinol, catechol, ortho-, meta- and para-cresol), volatile 113 

organic compounds (e.g. xylene, toluene, acetonitrile) and heavy metals (e.g. nickel and copper) (Beauval 114 

et al., 2019, 2017, 2016; Cao et al., 2021; Erythropel et al., 2019; Gillman et al., 2016; Merecz-Sadowska 115 

et al., 2020; Polosa et al., 2019). Moreover, due to the lack of in-depth toxicity assessment, especially long 116 

term or repeated-dose toxicity studies, safety of e-cigs cannot be guaranteed.  117 

 118 

 Recent reviews (Cao et al., 2021; Merecz-Sadowska et al., 2020; Polosa et al., 2019; Wang et al., 119 

2019) provide an overview of the in vitro and in vivo toxicity of e-cigs. To date, the published studies 120 

mainly focus on in vitro toxic effects of e-cigs emissions. Data show that exposure to e-cig aerosols 121 



triggers cytotoxic effects such as cell death, DNA damage, and reactive oxygen species (ROS) and 122 

proinflammatory agents’ production. It was also demonstrated that e-cig aerosol is much less cytotoxic 123 

than traditional cigarette smoke (Anthérieu et al., 2017; Cervellati et al., 2014; Dusautoir et al., 2021; 124 

Neilson et al., 2015; Tellez et al., 2021). In vitro, e-cigs had the potential to increase oxidative stress and 125 

inflammatory response in a similar level to that of cigarette smoke, but after more intensive exposures 126 

(Dusautoir et al., 2021). In contrast, there are relatively few in vivo experimental approaches. Most of them 127 

were performed or sponsored by the tobacco industry and have been carried out using short-term 128 

exposures (from a few hours to a few weeks), with individual e-cig components (e.g. popylene glycol 129 

and/or vegetable glycerine) but not whole aerosols, or with old generation or low-power e-cig devices. 130 

Furthermore, the experimental protocols of exposure often used did not correspond to normal conditions 131 

of use (e.g. number of puffs/min), or used whole body exposure systems that are not representative of real 132 

exposure since animals are exposed by other routes than the respiratory route (i.e. cutaneous and 133 

digestive by deposition of e-cig aerosols on the coat). Another limitation of most of these studies is that 134 

they did not compare the results obtained with e-cig aerosol with those obtained with traditional cigarette 135 

smoke. Results showed that e-cig aerosols are likely to induce oxidative stress, mitochondrial dysfunction, 136 

pulmonary inflammation, DNA damage and even impairment of respiratory function (Canistro et al., 2017; 137 

Garcia-Arcos et al., 2016; Glynos et al., 2018; Hwang et al., 2016; Laube et al., 2017; Lerner et al., 2016; 138 

Lim and Kim, 2014; McGrath-Morrow et al., 2015; Salturk et al., 2015; Scott et al., 2018; Werley et al., 139 

2016). 140 

 141 

 Regarding the assessment of the genotoxicity of tobacco products, many studies have been 142 

conducted to specifically investigate the in vitro genotoxic/mutagenic potential of cigarette smoke and e-143 

cig aerosols. Unfortunately, contradictory results have often been obtained depending on the products 144 

tested (e.g. particulate phase, gas phase, smoke condensate or extract, e-liquid itself, or whole smoke 145 

aerosol), the cell line used (e.g. lung epithelial cells, oral epithelial cells, oropharynx cells, or ‘regulatory’ 146 

cells), or the mode of cell exposure [(e.g. submerged cell cultures or air-liquid interface (ALI) conditions)]. 147 

For these reasons, some of these cell treatment/exposure methods are not representative of an actual 148 

human exposure to cigarette smoke or e-cig aerosols. In the Ames test, negative responses were 149 

observed with e-liquid and e-cig aerosols (with nicotine and a range of flavorings) whereas positive results 150 

were obtained concurrently with 3R4F smoke (Wieczorek et al., 2020). Similar negative results were 151 



obtained with e-liquids and pad-collected aerosols of e-cigs, and positive results with pad-collected smoke 152 

condensates of tobacco cigarettes (3R4F, 1R5F, Malboro gold) (Misra et al., 2014). Rudd et al. also 153 

demonstrated that e-cig emission is not mutagenic under their tested conditions, unlike 3R4F cigarette 154 

smoke (Rudd et al., 2020). Thorne et al. have carried out a study on Salmonella typhimurium strains TA98 155 

and TA100 exposed at the air-agar interface to e-cig aerosols and showed no mutagenic activity in 156 

contrast to 3R4F cigarette smoke (Thorne et al., 2016). The same authors also performed a mouse 157 

lymphoma assay at the tk locus and in vitro micronucleus tests (on CHO, V79 and TK6 cells) with an e-158 

liquid, the e-cig aerosol matter captured from the same e-liquid, and the total particulate matter from a 159 

3R4F cigarette. No mutagenic or genotoxic effect was observed for the e-liquid and its aerosol, in contrast 160 

to 3R4F smoke (Thorne et al., 2019a, 2019b). All in vitro micronucleus tests reported in the literature were 161 

negative (Misra et al., 2014; Rudd et al., 2020; Tellez et al., 2021; Thorne et al., 2019a; Wieczorek et al., 162 

2020), either with e-liquids, aerosols or condensates, except the one reported very recently by Tellez et al. 163 

(2021) on e-cig aerosols (containing diverse flavoring product, with and without nicotine) in oral epithelial 164 

cells. In contrast, in all these studies, traditional cigarette smoke (or total particulate matter or condensate) 165 

induced chromosomal aberrations. Very recently, Tellez et al. demonstrated that 10 different e-cig 166 

aerosols did not induce DNA damage, as measured by the in vitro comet assay, in oral epithelial cells, 167 

unlike the 3R4F cigarette (Tellez et al., 2021). This result was not confirmed by several previously 168 

published data. Khalil et al., also using the in vitro comet assay, showed that e-cig aerosols cause DNA 169 

damage in A549 lung cells exposed at the ALI (Khalil et al., 2021). Ganapathy et al. also reported that e-170 

cig aerosol extracts can induce significant increases in DNA damage (using the primer anchored DNA 171 

damage detection assay), including 8-OHdG, on human oral and lung epithelial cells (Ganapathy et al., 172 

2017). Yu et al. observed increases in DNA strand breaks (as measured by the in vitro comet assay and 173 

the ɣH2AX immunostaining) after short- and long-term exposure (48 hours to 8 weeks) to e-cig aerosol 174 

extracts, on several normal and cancerous cell lines (Yu et al., 2016). Finally, two studies performed on 175 

A549 and/or BEAS-2B pulmonary cells exposed at the ALI to whole smoke from reference cigarettes 176 

(M4A and/or 3R4F) reported the induction of DNA damage using the ɣH2AX assay or the in vitro comet 177 

assay (Garcia-Canton et al., 2014; Weber et al., 2013). 178 

 In vivo genotoxicity studies are much less numerous and less recent. Almost all of them have 179 

been carried out on cigarette smoke and results show induction of micronuclei in bone marrow, peripheral 180 

blood and lung of exposed rodents, as well as DNA damage in lung, stomach and liver cells (Balansky, 181 



1999; Balansky et al., 2000; D’Agostini et al., 2001; Dalrymple et al., 2016, 2015; Nakamura et al., 2015; 182 

Tsuda, 2000; Ueno et al., 2011). Some negative results have been also reported in the micronucleus and 183 

the Pig-a mutation tests. In contrast, there is very little in vivo genotoxicity data on e-cigs with only two 184 

published studies. Canistro et al. found that e-cig aerosol increased DNA damage and micronuclei 185 

formation in peripheral blood of rats exposed for 4 weeks, and the collected urine of animals induced 186 

reverse mutations in the Ames test (Canistro et al., 2017). Using the 32P-postlabeling method, Lee et al. 187 

showed that e-cig emission induced DNA adducts in lung, bladder and heart tissues of exposed mice (Lee 188 

et al., 2018). 189 

 190 

 Because of a daily and prolonged consumption of e-cig by many users, it is now essential to 191 

produce data on the mechanisms underlying the potential genotoxicity of e-cigs after long-term exposure. 192 

In this context, the aim of our study was to investigate the in vivo genotoxic and mutagenic effects of e-cig 193 

aerosols compared to traditional cigarette smoke. After nose-only exposure of BALB/c mice, the in vivo 194 

genotoxic and mutagenic potential of smoke from conventional cigarette (3R4F) and emissions from a 195 

“Modbox” e-cig model with 0.5 Ohms coil and set at 18W (Mb18W) or 30W (Mb30W) power were 196 

assessed using (i) the in vivo comet assay in lung (primary target organ) and liver (systemic and most 197 

active metabolizer organ), (ii) the in vivo micronucleus test in bone marrow and (iii) the in vivo Pig-a gene 198 

mutation assay in peripheral blood (to identify possible systemic effects). The standard comet assay was 199 

performed within the framework of subacute (4 days), subchronic (3 months) and chronic (6 months) 200 

exposures. The micronucleus test and the Pig-a gene mutation assay, as markers of effects, were only 201 

carried out for the 3- and 6-month exposures. For ethical and scientific reasons, these three tests were 202 

applied to the same animals. In order to specifically determine oxidation-dependent DNA damage, we also 203 

measured the pulmonary 8-OHdG content after subacute, subchronic and chronic exposures, and the 204 

results were confirmed by performing a modified comet assay using the human 8-oxoguanine glycosylase 205 

(hOGG1) after the 6-month treatment. 206 

  207 



2. MATERIALS AND METHODS 208 

 209 

2.1. E-cigarettes, e-liquid and conventional cigarette 210 

 Today there is a wide variety of e-cigs and e-liquids. As explained in our previous studies 211 

(Beauval et al., 2019; Dusautoir et al., 2021), we chose the third generation “ModBox” model, used with 212 

the “Air Tank” clearomiser equipped with a 0.5 Ω kanthal coil and with a partially closed air flow. For our 213 

experiments, we chose two power settings for the Modbox model: a “low” power of 18W and a “high” 214 

power of 30W. Both devices are from NHOSS® (Innova, Bondues, France). For the e-liquid, we chose the 215 

best-selling NHOSS® brand containing 65% propylene glycol, 35% glycerine, 16 mg/mL nicotine and the 216 

most common flavour, “blond tobacco”, representative of a standard e-liquid in accordance with the 217 

French national organisation for standardisation (AFNOR) recommendations (AFNOR, Association 218 

Française de Normalisation, 2015). Conventional 3R4F cigarettes were obtained from the University of 219 

Kentucky (Lexington, KY, USA). 220 

 221 

2.2. Animal model 222 

 Experiments were conducted on male BALB/c mice (Janvier Labs, Le Genest-Saint-Isle, France), 223 

9 weeks old, 5 animals/group. This mouse strain is described as sufficiently sensitive to the chemical 224 

induction of lung cancers (Meuwissen, 2005). Animal procedures were in agreement with European 225 

directive 2010/63/EU for the protection of animals used for scientific purposes and obtained the Ethical 226 

Committee on Animal Experimentation (CEEA 75) approval.  227 

 228 

2.3. Aerosol generation and mice exposure protocols 229 

 To avoid chemical cross-contamination, two different pieces of equipment (exposure towers and 230 

pipes) were used for e-cig and 3R4F exposures. Aerosols from e-cigs and 3R4F cigarette were generated 231 

with an InExpose e-cigarette extension system on which we adapted the Modbox and a cigarette smoking 232 

robot (SCIREQ®, Emka technologies, Montreal, Quebec, Canada), respectively. Mice were exposed to 233 

aerosols by a nose-only tower (InExpose system, SCIREQ®, Emka technologies). In order to perform a 234 

comparative study of the in vivo genotoxicity of the e-cig aerosols and tobacco cigarette smoke, all 235 

products were tested with Health Canada Intense puff profile (55 mL puff volume, 2 s puff duration, 30 s 236 

puff period). 237 



 Based on data from the literature and our preliminary study after a 4-day subacute exposure (data 238 

not shown), three exposure protocols were applied in this study (Table 1). First, a subacute exposure for 4 239 

days (4 treatments at 24-hour intervals for 30, 60 or 90 min/day for both e-cigs, and for 60 min/day for 240 

3R4F) was performed as a preliminary toxicity assessment. Then, a 3-month subchronic and a 6-month 241 

chronic exposure were realized (60 min/day, 5 days/week for e-cigs and 3R4F).  242 

 For each exposure schedule, one group was sham-exposed to fresh conditioned air (negative 243 

control). Control groups with genotoxic reference compounds were also used for in vivo genotoxicity 244 

studies (see part 2.5). 245 

 Animal body weights were recorded on Monday of each weak while clinical signs were monitored 246 

daily (data not shown).  247 

 248 

2.4. Chemical characterization of aerosols 249 

 Chemical composition of aerosols from electronic and conventional cigarettes was assessed and 250 

described in our previous study (Dusautoir et al., 2021). Chemical characterization analyses focused on 251 

the quantification of nicotine and the identification and quantification of carbonyl compounds and PAHs 252 

(see part 4). 253 

 254 

2.5. In vivo genotoxicity assessment 255 

 The genotoxic/mutagenic potential of conventional and electronic cigarettes emissions was 256 

assessed after subacute (4 consecutive days), subchronic (3 months) and chronic (6 months) exposures 257 

by using a battery of three in vivo tests, namely the comet assay, the micronucleus assay and the Pig-a 258 

gene mutation assay. These studies were carried out using an approach very similar to that of Good 259 

Laboratory Practice (GLP). Tests, endpoints, target organs and treatment schedules are summarized in 260 

Table 1. 261 

 262 

2.5.1. In vivo comet assay 263 

 The in vivo comet assay was performed in isolated lung and liver cells under alkaline conditions 264 

(pH>13) according to previously described protocol (Platel et al., 2020; Singh et al., 1988; Tice et al., 265 

2000; Witte et al., 2007) and in compliance with the OECD test guideline No. 489 (OECD, 2016a). At the 266 

end of each exposure period, a positive control group was treated orally with methyl methanesulfonate 267 



(MMS) [100 mg/kg body weight (b.w)/day for 2 consecutive days in sterile water]. For all groups (i.e. 268 

treated and controls), tissues were collected once at 2-6 h after the last treatment. For the 6-month 269 

exposure time, slight modifications were added (use of hOGG1) to specifically detect oxidative DNA 270 

damage, based on Collins’ and Smith’s procedures (Collins et al., 1993; Smith et al., 2006). 750 randomly 271 

selected cells per group (i.e. 50 cells per slide, 3 slides per animal, 5 animals per group) were analysed for 272 

DNA fragmentation scoring using the Comet Assay IV Image Analysis System, version 4.11 (Perceptive 273 

Instruments Ltd, Suffolk, United Kingdom). DNA damage was expressed as percentage of DNA in the tail 274 

(% tail intensity) (Burlinson et al., 2007; Lovell and Omori, 2008). 275 

 276 

2.5.2. In vivo micronucleus test 277 

 The in vivo micronucleus test was performed in the bone marrow of treated mice in compliance 278 

with the OECD test guideline No. 474 (OECD, 2016b). A positive control group was treated orally with 279 

MMS [100 mg/kg b.w/day (x2 days) in sterile water] (see part 2.5.1). The protocol has been previously 280 

described (Platel et al., 2020). Two slides per animal were prepared. For the determination of genotoxicity, 281 

slides were blindly scored by microscopy for the number of polychromatic erythrocytes (PCE) (2000 PCE 282 

per slide, i.e. 4000 PCE per animal) having one or more Howell-Jolly bodies (micronucleated 283 

polychromatic erythrocytes, MNPCE). For the determination of cytotoxicity, the 284 

polychromatic/normochromatic erythrocyte ratio (PCE/NCE) was determined from the microscopic 285 

examination of at least 500 erythrocytes per slide (i.e. 1000 erythrocytes per animal). 286 

 287 

2.5.3. In vivo Pig-a gene mutation assay  288 

 The quantification of in vivo Pig-a (phosphatidylinositol glycan, class A) gene mutation (Bryce et 289 

al., 2008; Dobrovolsky et al., 2010; Kimoto et al., 2011) was performed with the MutaFlowPLUS Kit Mouse 290 

Blood (Litron, Rochester, New York) as previously described (Platel et al., 2020). According to the kinetics 291 

for mutant phenotype cells appearance in circulation and ease of scoring, one month before the end of 292 

each exposure period, a positive control group was treated orally with ethyl-nitrosourea (ENU) [40 mg/ kg 293 

b.w/day for 3 consecutive days in sterile water]. Blood samples were collected after 3 and 6 months of 294 

exposure. The incidence of Pig-a mutation per animal was expressed as the number of CD24-negative 295 

red blood cells (RBC) per one million RBC, and as the number of CD24-negative reticulocytes (RET) per 296 



one million RET, using a FACSCanto II flow cytometer (BD Biosciences) running FACSDiva™ v7.0 297 

software. The percentage of RET was also established for cytotoxicity assessment. 298 

 299 

2.6. 8-hydroxy-2’-deoxyguanosine (8-OHdG) assay 300 

8-OHdG level was measured in the genomic DNA of mouse lung tissues following 4 days, 3 months or 6 301 

months of exposure to either electronic or conventional cigarette aerosols. Genomic DNA was extracted 302 

using the QIAamp DNA mini kit (Qiagen, Courtaboeuf, France) following manufacturer’s 303 

recommendations. Extracted DNA was pre-treated with P1 nuclease using the reagents from Wako 8-304 

OHdG Assay Preparation (Wako, Tokyo, Japan). This step permits to digest the DNA down to the single 305 

nucleotide level. 8-OHdG level were then determined using a competitive enzyme-linked immunosorbent 306 

assay (ELISA): Oxiselect™ Oxidative DNA Damage Kit (Cell Biolabs, San Diego, CA), according to the 307 

manufacturer’s recommendations. Results were expressed as fold-change (± SD) relative to the 8-OHdG 308 

level in control mice arbitrarily set at a value of 1. 309 

 310 

2.7. Statistical Analysis 311 

 All statistical analyses were performed with GraphPad InStat Software (version 3.10). For each 312 

test, differences between groups (i.e. between each concentration vs. the respective negative control) with 313 

p<0.05 were considered statistically significant.  314 

The Mann-Whitney U-test was used for the comet assay, the micronucleus test (for the frequency of 315 

MNPCE) and the 8-OHdG content. The Student's t test was used for the statistical comparison for the 316 

PCE/NCE ratio (micronucleus test). The Dunnett’s t-test (pair-wise comparison) was performed for the 317 

Pig-a gene mutation assay. 318 

  319 



3. RESULTS 320 

 Results of the in vivo tests are summarized in Table 2. For each test, concurrent negative controls 321 

(animals sham-exposed to fresh conditioned air) were within the range of current observed values and 322 

concurrent positive controls induced responses that are comparable to the historical positive control data 323 

(data not shown) and produced a statistically significant increase compared with the negative control. The 324 

validity criteria for the tests were considered as fulfilled. 325 

 326 

3.1. Subacute exposure (4-day treatment) 327 

 The genotoxic potential of electronic and conventional cigarettes was investigated in the in vivo 328 

comet assay on isolated lung and liver cells of mice after a subacute exposure (4 treatments at 24-hour 329 

intervals for 90 min/day for both e-cigs, and for 60 min for 3R4F). Results of the means of medians of 330 

percentage of tail intensity (TI) are given in Figure 1. Under tested conditions, no increase in DNA strand 331 

breaks was observed in the two selected organs, for both conventional and electronic cigarettes. 332 

 Regarding the levels of 8-OHdG in mouse lung tissues, exposure to cigarette smoke for 60 min, 4 333 

days in a row, induced a significant increase relative to air-exposed mice (1.6 fold-change) (Figure 4A). 334 

For e-cigs, subacute exposure to Mb18W aerosol induced no change in 8-OHdG levels regardless of the 335 

duration of exposure (i.e. 30, 60 or 90 min), whereas exposures to Mb30W emissions for 60 min and 90 336 

min induced a statistically significant increase compared to the control (1.5 and 1.6 fold-changes) (Figure 337 

4A). 338 

 339 

3.2. Subchronic exposure (3-month treatment) 340 

 Results of genotoxicity/mutagenicity assessment after the 3 months subchronic exposure of mice 341 

(60 min/day, 5 days/week) are presented in Figure 2. 342 

 For both e-cigs and the conventional cigarette, no statistically significant increase in the level of 343 

DNA damage was observed, in either the liver (Figure 2A) or the lung (Figure 2B). The highest TI was 344 

obtained with Mb30W in the liver (2.3 % vs. 1.69 % for the negative control). 345 

 Regarding the frequency of MNPCE, no significant increase was found in animals exposed to 346 

Mb18W (0.75 ‰), Mb30W (1.13 ‰) or 3R4F (0.60 ‰) emissions when compared to the control group 347 

(0.55 ‰) (Figure 2C). The ratio PCE/NCE was not significantly affected by exposure to e-cig aerosols and 348 



3R4F cigarette smoke, indicating the absence of cytotoxic effects (a very slight decrease but non-349 

statistically significant was observed with 3R4F). 350 

 The frequencies of mutants RET (highest value: 2.92 x 10-6 for 3R4F) and mutants RBC (highest 351 

value: 3.42 x 10-6 for 3R4F) did not show statistically significant increase in the animals exposed to 352 

Mb18W, Mb30W or 3R4F emissions when compared to the control group exposed to air (RET = 1.44 x 10-353 

6 and RBC = 2.08 x 10-6) (Figure 2D). The percentage of RET is the ratio of newly formed RNA-positive 354 

erythrocyte relative to all erythrocytes, and is used as a measure of bone marrow cytotoxicity. E-cig and 355 

conventional cigarette exposed mice did not exhibit significant changes in % RET after a 3-month 356 

exposure, thus confirming the absence of toxicity. 357 

 After 3 months of exposure to Mb30W aerosol and 3R4F smoke, 8-OHdG quantity assessment in 358 

DNA of mouse lung tissues showed a statistically significant increase compared to control (1.8 and 2.0 359 

fold-changes, respectively) while an exposure to Mb18W emissions induced no change (Figure 4B). 360 

 361 

3.3. Chronic exposure (6-month treatment) 362 

 Results obtained after the 6-month chronic exposure (60 min/day, 5 days/week) are presented in 363 

Figure 3. 364 

 In the standard comet assay, no increase in DNA strand breaks was observed for both 365 

conventional and electronic cigarettes. On the contrary, with the hOGG1-modified comet assay, 366 

statistically significant increases (p<0.05) in TI were observed for Mb30W and 3R4F in the liver (15.15 % 367 

and 11.46 %, respectively, vs. 1.52 % for the negative control) (Figure 3A) and in the lung (34.96 % and 368 

30.59 %, respectively, vs. 11.57 % for the negative control) (Figure 3B), indicating oxidative DNA damage 369 

induction. 370 

 Under tested conditions, no induction of MN formation was observed in mice exposed to e-cigs 371 

18W, 30W or 3R4F cigarette aerosols (< 0.8 ‰). No decrease of the ratio PCE/NCE was observed (Figure 372 

3C).  373 

 No statistically significant increase in mutant frequencies of RBC (highest value: 0.37 x 10-6 cells 374 

for 3R4F) and RET (highest value: 0.47 x 10-6 cells for 3R4F) was observed whatever the types of 375 

cigarette compared to the control group (RET mutant frequency = 1.33 x 10-6 and RBC mutant frequency 376 

= 0.65 x 10-6) (Figure 3D). The % RET was not significantly affected indicating the absence of toxic effects 377 

in the bone marrow at this exposure level. 378 



 Consistent with subacute and subchronic exposures, a 6-month exposure to Mb18W aerosol 379 

induced no change in the level of 8-OHdG in the lung tissue DNA of mice compared to air-exposed mice, 380 

whereas Mb30W aerosol and 3R4F smoke induced a statistically significant increase (1.2- and 1.4-fold, 381 

respectively) (Figure 4C). 382 

  383 



4. DISCUSSION 384 

 Electronic nicotine delivery systems are considered by public opinion to be less harmful than 385 

traditional cigarettes, and are currently used as a smoking cessation aid. Paradoxically, there is a lack of 386 

long-term in vivo studies on their health effect, thus their safety cannot be claimed. To fill this gap, we 387 

carried out a comprehensive assessment of the in vivo genotoxicity and mutagenicity of an e-cig model 388 

set to two different power levels (18W and 30W) and of conventional cigarette. The conditions of animal 389 

exposure, in terms of route (pulmonary), mode (nose-only), time (short and long-term treatment) and puff 390 

profile (Health Canada Intense profile), were designed to be as close as possible to human vaping 391 

conditions. 392 

 393 

 Under our experimental conditions, whatever the duration of animal exposure, 3R4F cigarette and 394 

e-cigs at both powers did not induce an increase in DNA strand breaks in lung and liver cells, as 395 

measured by the standard comet assay. This result may seem in contradiction with the study carried out 396 

by Canistro et al. in which e-cig aerosol produced DNA damage in leukocytes of whole-body exposed rats 397 

(Canistro et al., 2017). However, as the authors themselves stated, their data should be analysed with 398 

caution as the exposure conditions used [animals were submitted to 11 cycles (puff: 6s on, 5s off, 6s 399 

on)/day, 5 days/week, for 4 weeks] did not reflect actual human exposure to e-cig aerosols. Their aim was 400 

to characterize a hazard and perhaps the use of too high doses may explain the induction of non-specific 401 

DNA damage. Other published data have also shown positive results in the in vivo comet assay on 402 

stomach, liver and/or lung with cigarette smoke (Tsuda, 2000; Ueno et al., 2011).  403 

 On the other hand, our results showed that only Mb30W and 3R4F aerosols induced a statistically 404 

significant increase in 8-OHdG formation in the lung of exposed mice after 4 days, 3 months and 6 months 405 

of exposure. At the end of our study (i.e. for the 6-month exposure) we decided to confirm this result by 406 

using a modified protocol for the comet assay. Indeed, we used the repair endonuclease hOGG1 to better 407 

characterize the mechanism of genotoxicity of e-cig emissions and conventional cigarette smoke. The 408 

hOGG1-modified comet assay is a useful tool to increase both the sensitivity and the specificity of the test 409 

and thus provide first elements of the oxidizing mode of action of test compounds (Platel et al., 2011). The 410 

corresponding results were consistent with the 8-OHdG measurement since only Mb30W and 3R4F 411 

aerosols induced significant oxidative DNA damage in the lung and the liver of exposed mice. Our findings 412 

are also in line with our previous study (Dusautoir et al., 2021) and with reviews reporting that exposure to 413 



e-cig aerosols is related to oxidative stress (Cao et al., 2021; Merecz-Sadowska et al., 2020; Polosa et al., 414 

2019; Wang et al., 2019). Interestingly, Dalrymple et al. also showed, after 5 days of nose-only exposure 415 

of rats to 3R4F cigarette smoke, an increase in oxidative DNA damage in alveolar type II lung cells 416 

exclusively by using the FPG-modified comet assay (i.e. no DNA damage was observed with the classical 417 

protocol without FPG) (Dalrymple et al., 2015). The authors also found oxidative DNA damage after 3 and 418 

6 weeks of exposure (Dalrymple et al., 2016). 419 

 Very recently, we have carried out a comparison of the chemical composition of aerosols from 420 

Mb18W, Mb30W and 3R4F (Dusautoir et al., 2021). We showed that increasing the power of the e-cig can 421 

induce an increase in the amount of toxic compounds in the aerosol (by puff, Mb18W emitted 6.9% and 422 

51.4% less total PAHs and carbonyl compounds, respectively, than Mb30W). It has been previously 423 

demonstrated that higher power leads to higher carbonyls compounds production due to higher coil 424 

temperature (up to 300°C) and thus the thermal degradation of e-liquid and that, secondarily, the 425 

increased level of carbonyl compounds results in the formation of ROS (Dusautoir et al., 2021; Geiss et 426 

al., 2016; Haddad et al., 2019; Kosmider et al., 2014; Zhao et al., 2018). Our results are thus consistent 427 

with these explanations since in our study oxidative DNA damage was observed only with Mb30W. 428 

 Noteworthy, we observed an almost similar response between the 3R4F cigarette and the Mb30W 429 

e-cig. It is difficult, if not impossible, to define precisely which toxic substance(s) is (are) responsible for 430 

the genotoxic effect observed in each case. The use of predictive toxicity methods (i.e. in silico models) 431 

would be an interesting tool for this purpose as an alternative approach to experimental testing. In the 432 

study performed by Barhdadi et al., a genotoxic alert was identified by (Q)SAR models for 60 flavoring 433 

substances identified among the 129 e-liquids tested (Barhdadi et al., 2021). Based on information 434 

collected from EU databases 5 flavoring substances of genotoxic concern were identified (estragole, 435 

safrole, 2,5-dimethyl-4-hydroxyl-3(2H)-furanone, furylmethylketon and trans-hexenal) and 4 substances 436 

(2,3-butanedione, 2,3-pentanedione, isoledene and β-phellandrene) gave positive result in at least one in 437 

vitro test (Ames and/or in vitro micronucleus test). Similarly, Kang et al. used (Q)SAR models to predict 438 

DNA adducts formation by flavor chemicals found in e-liquid and e-cig aerosols (Kang and Valerio, 2020). 439 

Two chemical classes were identified, alkenylbenzenes (including estragole and eugenol) and aldehydes 440 

(including acrolein, glyoxal and methylglyoxal), well known to be produced in cigarette smoke and e-cig 441 

aerosol (Beauval et al., 2019; Bekki et al., 2014; Dusautoir et al., 2021; Hutzler et al., 2014; Khlystov and 442 

Samburova, 2016; Peace et al., 2018).  443 



 Lee et al., as a step towards understanding the carcinogenicity of e-cig aerosols, demonstrated 444 

that nicotine (noncarcinogenic in animals) can be nitrosated, metabolized, and further transformed into 445 

methyldiazohydroxide (MDOH) and aldehydes in lung, bladder, and heart tissues of mice (Lee et al., 446 

2018). They found that aldehydes and MDOH induced DNA adducts and also decreased DNA repair. 447 

Interestingly, we previously showed that the level of nicotine delivered in the aerosols is much lower for 448 

Mb18W (60 µg/puff) than for Mb30W (137 µg/puff) and 3R4F (95 µg/puff) (Dusautoir et al., 2021). 449 

Therefore, it can be assumed that the level of DNA adducts to be formed could be less for Mb18W which 450 

is consistent with our results. 451 

 452 

 In addition, our results revealed that both traditional cigarette smoke and e-cig aerosol induced no 453 

biologically or statistically significant increases in chromosomal aberrations and gene mutations, whatever 454 

the duration of exposure. Therefore, they are considered having no mutagenic activity under our 455 

experimental conditions. These results, although at first sight surprising, are fully in line with those of 456 

Dalrymple et al. (2016). In their study, rats were nose-only exposed to 3R4F cigarette (1h or 2h/day, 5 457 

days/week) for 3 and 6 weeks. Blood was collected only at the 6-week timepoint and results showed that 458 

Pig-a gene mutations and micronucleus frequencies were not significantly increased (as mentioned 459 

above, positive results were obtained in the modified comet assay). Others have also obtained negative 460 

results in the in vivo micronucleus test on bone marrow or peripheral blood following nose-only cigarette 461 

exposure (Schramke et al., 2014; Van Miert et al., 2008). For e-cig, no data was found in the literature 462 

regarding the assessment of its in vivo mutagenicity, with the exception of the study by Canistro et al. 463 

(2017) that showed micronuclei formation in reticulocytes of rats whole-body exposed to e-cig aerosol. 464 

However, as explained above, their data should be compared with ours with caution because the 465 

exposure conditions they used were not intended to reflect actual human exposure to e-cig emission but 466 

rather to characterize a hazard. Indeed, in our study, the absence of mutagenic effect of reference 467 

cigarette smoke and e-cig aerosols, while it is well known that they are composed of carcinogenic 468 

substances, suggest that the experimental conditions we implemented, although realistic, may not be high 469 

enough to reach a level of exposure in bone marrow and blood to induce a positive response in the 470 

micronucleus and Pig-a tests, respectively. Furthermore, as already mentioned by Dalrymple et al. (2016) 471 

it is possible that cigarette and e-cig do not induce mutagenic effect in organs other than the respiratory 472 

system (i.e. the first tissue of contact and target organ of tobacco products). Another important point that 473 



may explain the negative results is the sensitivity of the tests. Although the in vivo micronucleus test in 474 

bone marrow or peripheral blood is traditionally the most used in vivo test in the first instance, it is known 475 

to have a poor sensitivity of about 40-50% (Benigni et al., 2010; Kirkland and Speit, 2008; Morita et al., 476 

2016). As there is no single 'ideal' test for detecting clastogenic, aneugenic and mutagenic genetic events, 477 

it is common to use a combination of several tests (different genotoxic endpoints), as we did in our study, 478 

to increase sensitivity without reducing specificity. The Pig-a test is known for its remarkable sensitivity to 479 

mutagenic agents (Gollapudi et al., 2015) and its relatively sensitivity to clastogens (Bhalli et al., 2013). 480 

Ideally, these tests should have been carried out on the lung and liver (i.e. on the target organs), but for 481 

methodological reasons this is not feasible. Despite an inter-laboratory study showed that the combination 482 

of the comet, micronucleus and Pig-a assays, using the same animals, may be a robust strategy for 483 

evaluating in vivo genotoxicity (Chung et al., 2018), it would have been relevant to perform an in vivo gene 484 

mutation test on the target organs (i.e. liver and lung) using transgenic animals. Indeed, transgenic rodent 485 

gene mutation tests have the ability to detect and quantify mutations in virtually all somatic tissues 486 

(Gingerich et al., 2014; Lambert et al., 2005; OECD, 2020). However, these tests are complex, currently 487 

expensive and not widely available. 488 

  489 



5. CONCLUSION 490 

 The e-cig was initially developed as an alternative to conventional cigarette although there is 491 

insufficient data to assess its long-term safety for human health. In this context, our study was 492 

implemented with the aim of comparing the in vivo genotoxic and mutagenic potential of two low- and 493 

high-power e-cigs and the traditional cigarette, after subacute (4 days), subchronic (3 months) and chronic 494 

(6 months) exposure. In order to be as close as possible to human exposure conditions, animals were 495 

exposed to realistic doses of e-cig and cigarette emissions (i.e. Health Canada Intense puff profile) via the 496 

pulmonary route (nose-only). Under these experimental conditions, the main result of our study is that 497 

both 3R4F and Mb30W induce oxidative DNA damage in lung and liver, demonstrating that high-power e-498 

cig should be considered as “hazardous material” as traditional cigarette, whereas e-cig at low power 499 

setting seems to be devoid of in vivo genotoxic effect. These differences in results between Mb18W and 500 

Mb30W are probably attributable to lower concentrations of toxic substances (mainly carbonyls 501 

compounds) in low power e-cig aerosols, as previously described. Moreover, micronuclei and Pig-a gene 502 

mutation were not detected in reticulocytes. This suggests that our experimental conditions, although 503 

realistic, may not be sufficient to reach a level of exposure in bone marrow and blood to induce a positive 504 

response. This also raises the question of the sensitivity of these two tests in organs other than the target 505 

organ (here the lung). It is important to underline the originality of our work which is based on a complete 506 

study of the in vivo genotoxic/mutagenic potential of e-cig. Finally, our work could be completed by 507 

assessing gene mutations in the target organs (i.e. liver and lung) using the transgenic rodent mutation 508 

assay. It would also be interesting to study other non-genotoxic endpoints involved in the potential 509 

carcinogenesis of e-cig such as epigenetic alterations. All these data could lead to a better regulation of 510 

these new alternatives to conventional cigarettes. 511 
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 874 

Figure 1. Results of the in vivo comet assay after subacute exposure of mice to e-cig and 875 

conventional cigarette aerosols. 876 

Animals (n=5) were exposed to conventional cigarette (3R4F) smoke for 60 min/day or to e-cig (Mb18W 877 

and Mb30W) emissions for 90 min/day, for 4 consecutive days. The negative control group was exposed 878 

to air. MMS [(100 mg/kg b.w./day)x2] was used as positive control. The level of DNA fragmentation on 879 

liver (A) and lung (B) cells is expressed as the mean of medians of % of tail DNA intensity (±SD). ** 880 

p<0.01 (Mann-Whitney U-test). 881 

 882 

 883 

Figure 2. Results of in vivo genotoxicity/mutagenicity assessment after subchronic exposure of 884 

mice to e-cig and conventional cigarette aerosols. 885 

Animals (n=5) were exposed to conventional cigarette (3R4F) smoke or to e-cig (Mb18W and Mb30W) 886 

emissions for 60 min/day, 5 days/week, for 3 months. The negative control group was exposed to air. 887 

MMS [(100 mg/kg b.w./day)x2] and ENU [(40 mg/kg b.w./day)x3] were used as positive controls. (A-B) 888 

The level of DNA fragmentation is expressed as the mean of medians of % of tail DNA intensity (±SD). (C) 889 

The chromosomal aberrations frequency is expressed as the number of micronucleated polychromatic 890 

erythrocytes (MNPCE) per 1000 cells (±SD). The polychromatic erythrocytes (PCE) / normochromatic 891 

erythrocytes (NCE) ratio is used as a measure of bone marrow cytotoxicity. (D) The gene mutations 892 

frequency is expressed as the number of red blood cells (RBC) or reticulocytes (RET) per 106 cells (±SD). 893 

Toxicity in bone marrow was measured by % RET. * p<0.05; ** p<0.01 (Mann-Whitney U-test for the 894 

comet assay and the micronucleus test, Dunnett’s t-test for the Pig-a test). 895 

 896 

 897 

Figure 3. Results of in vivo genotoxicity/mutagenicity assessment after chronic exposure of mice 898 

to e-cig and conventional cigarette aerosols. 899 

Animals (n=5) were exposed to conventional cigarette (3R4F) smoke or to e-cig (Mb18W and Mb30W) 900 

emissions for 60 min/day, 5 days/week, for 6 months. The negative control group was exposed to air. 901 

MMS [(100 mg/kg b.w./day)x2] and ENU [(40 mg/kg b.w./day)x3] were used as positive controls. (A-B) 902 



The level of DNA fragmentation is expressed as the mean of medians of % of tail DNA intensity (±SD). (C) 903 

The chromosomal aberrations frequency is expressed as the number of micronucleated polychromatic 904 

erythrocytes (MNPCE) per 1000 cells (±SD). The polychromatic erythrocytes (PCE) / normochromatic 905 

erythrocytes (NCE) ratio is used as a measure of bone marrow cytotoxicity. (D) The gene mutations 906 

frequency is expressed as the number of red blood cells (RBC) or reticulocytes (RET) per 106 cells (±SD). 907 

Toxicity in bone marrow was measured by % RET. * p<0.05; ** p<0.01 (Mann-Whitney U-test for the 908 

comet assay and the micronucleus test, Dunnett’s t-test for the Pig-a test). 909 

 910 

 911 

Figure 4. Results of in vivo lung 8-OHdG assessment in mice after acute, subchronic and chronic 912 

exposure to e-cig and conventional cigarette aerosols. 913 

Animals were exposed to conventional cigarette (3R4F) or to e-cig (Mb18W and Mb30W) emissions for 914 

30, 60 or 90 min/day for 4 days for subacute exposures (n = 5) and for 60 min/day, 5 days/week for 3 or 6 915 

months for subchronic and chronic exposures (n = 8), respectively. The control group was exposed to air. 916 

The level of 8-OHdG is expressed as fold-change relative to the level found in control mice (± SD) 917 

measured using a competitive ELISA assay following 4 days (A), 3 months (B) or 6 months (C) of 918 

exposure. *p<0.05 (Mann-Whitney U-test). 919 

 920 

 921 

Table 1. Summary of in vivo genotoxic/mutagenic tests performed. 922 

For subacute exposure, mice received 4 treatments at 24-hour intervals for 90 min (and for 30 and 60 min 923 

for the 8-OHdG assay) for e-cigs, and for 60 min for conventional cigarette. For subchronic (3 months) and 924 

chronic (6 months) exposures, animals were exposed to e-cig or 3R4F cigarette emissions for 60 min, 5 925 

times a week. X: test performed. 926 

 927 

 928 

Table 2. Summary of in vivo genotoxicity/mutagenicity tests results. 929 

For subacute exposure, mice were exposed 4 times at 24-hour intervals for 90 min (and for 30 and 60 min 930 

for the 8-OHdG assay) to Mb18W and Mb30W aerosols, and for 60 min to 3R4F smoke. For subchronic (3 931 



months) and chronic (6 months) exposures, animals were exposed 60 min/day, 5 days/week, to Mb18W, 932 

Mb30W and 3R4F aerosols. n.a.: not assessed; -: negative result; +: positive result. 933 



0

10

20

30

40

50

60

Air Mb
18W

Mb
30W

3R4F MMS
0

10

20

30

40

50

60

Air Mb
18W

Mb
30W

3R4F MMS

FIGURE 1 

 

 

     

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%
 T

ai
l I

nt
en

si
ty

 

** 

%
 T

ai
l I

nt
en

si
ty

 

** 

A 
 

In vivo comet assay (liver) 

B 
 

In vivo comet assay (lung) 



0

10

20

30

40

50

Air  Mb
18W

 Mb
30W

 3R4F MMS
0

10

20

30

40

Air  Mb
18W

 Mb
30W

 3R4F MMS

0

0,5

1

1,5

2

0

5

10

15

20

25

Air  Mb
18W

 Mb
30W

3R4F MMS
0

1

2

3

4

5

6

0

10

20

30

40

Air Mb
18W

Mb
30W

3R4F ENU

60

FIGURE 2 

 

 

      

 

 

  

 

  

 

 

  

 

 

 

              

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%
 T

a
il
 I
n

te
n

s
it

y
 

** 

%
 T

a
il
 I
n

te
n

s
it

y
 

** 

A 
 

In vivo comet assay (liver) 

B 
 

In vivo comet assay (lung) 

 

M
N

P
C

E
 /
 1

0
0
0
 c

e
ll
s
 

P
C

E
 /
 N

C
E
 

C 
 

In vivo micronucleus test 

D 
 

In vivo Pig-a gene mutation assay 

** 

* 

RBC RET 

%
 R

E
T

s
 

* 

M
u

ta
n

ts
 x

 1
0

-6
 c

e
ll

s
 



0

20

40

60

80

100

Air  Mb
18W

 Mb
30W

 3R4F MMS

0

20

40

60

80

Air  Mb
18W

 Mb
30W

 3R4F MMS

0

1

2

3

4

5

0

5

10

15

20

Air Mb
18W

Mb
30W

3R4F MMS
0

2

4

6

8

0

5

10

15

20

25

Air Mb
18W

Mb
30W

3R4F ENU

120 

FIGURE 3 

 

 

      

 

 

  

 

  

  

 

 

 

 

 

 

              

 

 
 
 

 
 
 
 
 

 
 

 
 
 
 
 

M
N

P
C

E
 /
 1

0
0
0
 c

e
ll
s
 

P
C

E
 /
 N

C
E
 

** 

C 
 

In vivo micronucleus test 

D 
 

In vivo Pig-a gene mutation assay 

RBC RET 

%
 R

E
T

s
 

* 

A 
 

In vivo comet assay (liver) 

%
 T

a
il

 I
n

te
n

s
it

y
 

%
 T

a
il

 I
n

te
n

s
it

y
 

* 
* 

B 
 

In vivo comet assay (lung) 

 

* 

M
u

ta
n

ts
 x

 1
0

-6

 c
e
ll

s
 

* 

* 

hOGG1 (-) hOGG1 (+) 

* 

* * 
* 

hOGG1 (-) hOGG1 (+) 



Air

M
b18W

 3
0 m

in

M
b18W

 6
0 m

in

M
b18W

 9
0 m

in

M
b30W

 3
0 m

in

M
b30W

 6
0 m

in

M
b30W

 9
0 m

in
3R4F

0.0

0.5

1.0

1.5

2.0
[8

-O
H

d
G

]

(r
a

ti
o

 c
o

m
p

a
re

d

to
 c

o
n

tr
o

l)
*

*
*

Subacute 

Air Mb
18W

Mb
30W

3R4F
0.0

0.5

1.0

1.5

2.0

2.5

[8
-O

H
d

G
]

(r
a

ti
o

 c
o

m
p

a
re

d

to
 c

o
n

tr
o

l)

* *

Subchronic 

Air Mb
18W

Mb
30W 

3R4F
0.0

0.5

1.0

1.5

2.0

[8
-O

H
d

G
]

(r
a
ti

o
 c

o
m

p
a

re
d

 t
o

 c
o

n
tr

o
l) *

*

Chronic 

A 

B 

C 

Air 

Mb18W 

3R4F 30 

min 

60 

min 

90 

min 

Mb30W 

30 

min 

60 

min 

90 

min 



TABLE 1 

 

 

 

In vivo tests End-points Target organs 

Exposure time 

4 days 3 months 6 months 

Standard comet 
assay 

Primary DNA 
damage 

Liver, lung X X X 

Micronucleus 
test 

Chromosomal 
aberrations 

Bone marow  X X 

Pig-a gene 
mutation assay 

Gene mutations Erythrocytes  X X 

hOGG1-modified 
comet assay 

Oxidative DNA 
damage 

Liver, lung 
  

X 

8-OHdG assay 8-OHdG Lung X X X 

 



TABLE 2 

 

 

 

4 days 3 months  6 months 

 

Mb 

18W 

Mb 

30W 
3R4F 

 Mb 

18W 

Mb 

30W 
3R4F 

 Mb 

18W 

Mb 

30W 
3R4F 

Standard comet 
assay 

- - -  - - -  - + + 

Micronucleus test n.a. n.a. n.a.  - - -  - - - 

Pig-a assay n.a. n.a. n.a.  - - -  - - - 

hOGG1-modified 
comet assay n.a. n.a. n.a.  n.a. n.a. n.a.  - + + 

8-OHdG assay - + +  - + +  - + + 
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