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Abstract: The 2019 coronavirus outbreak and worsening air pollution have triggered the search
for manufacturing effective protective masks preventing both particulate matter and biohazard
absorption through the respiratory tract. Therefore, the design of advanced filtering textiles combining
efficient physical barrier properties with antimicrobial properties is more newsworthy than ever. The
objective of this work was to produce a filtering electrospun membrane incorporating a biocidal
agent that would offer both optimal filtration efficiency and fast deactivation of entrapped viruses
and bacteria. After the eco-friendly electrospinning process, polyvinyl alcohol (PVA) nanofibers were
stabilized by crosslinking with 1,2,3,4-butanetetracarboxylic acid (BTCA). To compensate their low
mechanical properties, nanofiber membranes with variable grammages were directly electrospun
on a meltblown polypropylene (PP) support of 30 g/m2. The results demonstrated that nanofibers
supported on PP with a grammage of around only 2 g/m2 presented the best compromise between
filtration efficiencies of PM0.3, PM0.5, and PM3.0 and the pressure drop. The filtering electrospun
membranes loaded with benzalkonium chloride (ADBAC) as a biocidal agent were successfully tested
against E. coli and S. aureus and against human coronavirus strain HCoV-229E. This new biocidal filter
based on electrospun nanofibers supported on PP nonwoven fabric could be a promising solution for
personal and collective protection in a pandemic context.

Keywords: COVID-19; coronavirus; electrospinning; face masks; air filtration; antiviral;
antibacterial; nanofibers

1. Introduction

Many studies have demonstrated that the decrease in air quality has serious impacts
on human health, and can result in morbidity, disabilities, and mental disorder. The larger
surface area that ultrafine particles have may carry other pollutants, which can penetrate
human bronchi and lungs through the respiratory tract and lead to lung and heart disease,
and also cancer [1,2].

The transmission of infectious agents, such as bacteria and viruses, can occur in several
ways. The acts of coughing, sneezing, and speaking may spread respiratory infections
through droplets (>5–10 µm) and aerosols (<5 µm) in the form of airborne particulate matter
that may be propelled up to 7–8 m and remain in suspension for hours in non-ventilated
rooms [3,4].

The SARS-CoV-2 virus has spread to over 220 countries, affecting over 200 million peo-
ple and killing over 4 million people as of September 2021, and at the end of January 2020,
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the World Health Organization (WHO) declared a global health emergency [5]. The high
rate of spreading and mortality of the coronavirus disease 2019 (COVID-19) changed the
human perception of “normal life”, imposing new rules for coexisting in society: social dis-
tancing, travel restrictions, lockdowns, mandatory use of face masks, etc. At the beginning
of the pandemic, the incidence of COVID-19 was significantly lower in countries where the
mask was worn (129 cases per million) compared to countries that delayed the adoption
of the mask (>1000 cases per million) [6]. Thus, increased demand for personal protective
equipment (PPE) occurred, with six times the number of surgical masks required [7]. From
the beginning of the SARS-CoV-2 pandemic, the demand for conventional masks raised
the demand for advanced respiratory masks with self-disinfecting properties. Therefore,
manufacturers and scientists recently faced the challenge of developing technologies for
biocidal activation of filters compatible with mass production. However, despite the topical
characteristics of personal protective equipment (PPE) development, there is a lack of stud-
ies in the scientific literature dealing with the biocidal properties of air filter systems against
coronavirus. Developing and engineering multifunctional protection masks presenting
breathability, biocidal, hydrophobic, and self-disinfecting properties is, as a matter of fact, a
challenge for researchers and for industry.

Electrospinning is a versatile and low-cost technology allowing for the production
of nanofibers from a very large choice of polymers [8,9]. In the literature, some of the
electrospun polymers that were applied for air filtration are polyamide (PA) [10], polyethy-
lene terephthalate (PET) [11], polyacrylonitrile (PAN) [12], polylactic acid (PLA) [13], and
polyvinyl alcohol [14,15] often laid on meltblown or spunbond nonwoven textiles [16].

Electrospun nanofiber membranes present small diameters of several hundreds of
nanometers, a large surface-area-to-volume ratio, and small interconnected pores [17] and
are, therefore, reported to be effective filtering media that intercept fine particles (ranging
from 300 to 500 nm), volatile organic gases, and bacteria [18]. Due to the diameter and pack-
ing structure of their nanofibers, electrospun membranes outperform traditional meltblown
nonwoven filters made of microfibers [19]. As a consequence, nanofibers of a basis weight
of about one gram per square meter may be as efficient as a meltblown filter of several
tens of grams per square meter. Therefore, electrospun nanofiber membranes present low
bulkiness, high performance in the interception of particulate matter smaller than 2.5 µm
(PM2.5), and reduced breathing resistance (pressure drop) [20,21]. The electrospinning pro-
cess has the advantage of allowing the creation of composite membranes composed of an
electrospun nanofiber layer over a microfiber structure (e.g., robust nonwoven: meltblown
or spunbond) [22].

Antimicrobial nanofibers can be easily obtained by blending/dissolving/emulsifying
antimicrobial agents (antibiotics, antiseptics, biopolymers, metal salts, and nanoparticles)
in the precursor polymer solutions [23]. In this work, we opted for an environmentally
friendly electrospinning process; therefore, our choice was oriented toward polyvinyl
alcohol (PVA) for its water solubility, absence of toxicity, and flexibility in the production
of functional membranes [24–26], and also for its biodegradability in the presence of
aerobic bacteria, especially several species of Pseudomonas [27]. The possibility of avoiding
secondary environmental contamination by using eco-friendly solvent water instead of an
organic solvent has been positively encouraged [28]. PVA is available in several molecular
weights, and in order to compare its water stability effect on electrospun nanofibers, three
different molecular weights were tested.

In addition, PVA presents good thermal and chemical stabilities, and electrospun PVA
nanofibers can be stabilized in water by crosslinking with polycarboxylic acids. Crosslink-
ing agents such as 3,3′,4,4′-benzophenone tetracarboxylic acid [25,29–31], sulfosuccinic
acid [32], malonic acid [33], maleic acid [14], citric acid [34], and 1,2,3,4-butane tetracar-
boxylic acid (BTCA) [35] were widely used as stabilizers for PVA nanofibers in water or a
humid atmosphere. In addition to chemical crosslinking, heat treatment of PVA nanofibers
is another route for their physical stabilization by increasing their crystallinity [36,37].
Such crosslinking reactions of PVA nanofibers by the carboxylic acids mentioned above, or
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simple annealing, are often produced in a curing step after electrospinning at elevated tem-
peratures ranging from 140 ◦C to 180 ◦C. One challenge in the present study was to reach
the stabilization at a low curing temperature (125 ◦C) due to the low thermal resistance of
the nonwoven polypropylene supporting our nanofibers.

Antimicrobial nanofibers based on PVA have been reported in the literature, loaded
with silver nanoparticles [38], Ag-zeolite nanoparticles [39], poly (2-(tert-butylaminoethyl)
methacrylate), cationic-polymer-grafted graphene oxide nanosheets [40], and quaternary
ammonium salts (QASs) [25]. QASs are widely used in medicine and industry for their
disinfectant properties and are, therefore, certified by environmental and health authorities
(OECD 209/302B standard) [41]. QASs present broad-spectrum antimicrobial properties
against Gram-negative and Gram-positive bacteria [42,43], and against enveloped viruses
such as the herpes virus [44] and SARS-Cov-2 [45,46]. The biocidal activity of the QAS
stem, particularly the alkyl dimethyl benzalkonium chloride (ADBAC), exhibits maximum
activity from their cationic characteristic combined with a long alkyl chain composed of
12 to 16 carbons [47,48].

To summarize, in the present context of the COVID-19 pandemic, there is an abun-
dance of recent literature on the development of air filtering systems through different
technologies and on the antimicrobial functionalization of all types of fibers (natural and
synthetic) and electrospun nanofibers. Some focus on the filtration performances of their
filtering systems and some on the antimicrobial efficiency. The present work aimed to
consider at the same time both approaches through the development of a filtering structure
based on the electrospinning technique that would present advanced filtration efficiency
compliant with standards of respiratory masks, and that would also present fast and
significant biocide activity against bacteria and a human coronavirus. Therefore, we opti-
mized the electrospun solution composition based on PVA of different molecular weights,
BTCA as a crosslinking agent, ammonium hypophosphite as a catalyst for the crosslinking
reaction, and ADBAC as the biocide agent. Due to the light weight of the electrospun
membranes and their mechanical weakness, the nanofibers were electrospun directly on
a 30 g/m2 polypropylene nonwoven fabric (M30). The first challenge was to provoke
the crosslinking of the nanofibers for their stabilization at a temperature respecting the
dimensional stability of polypropylene (melting in the range of 145 ◦C). The technique used
for the crosslinking reaction characterization was FTIR, and the assessment of nanofiber
stability was with ageing in a water batch was followed by SEM observation. Then, we
had to define the best compromise between antagonist filtration performances and breatha-
bility of the filters. Therefore, filter samples of increasing grammages of nanofibers were
prepared and tested in terms of filtration efficiency and air permeability using the ap-
propriate equipment for the counting of calibrated particulate matter and pressure drop
measurement. The ultimate objective was then to measure the biocidal properties of the
ADBAC-loaded nanofibers. The challenge here was to reach a fast and a significant biocide
activity of the nanofibers. Nanofibers loaded with two concentrations of ADBAC were
tested against Gram-positive and Gram-negative bacteria (S. aureus and E. coli), and against
human coronavirus strain HCoV-229E.

2. Materials and Methods
2.1. Materials

Three polyvinyl alcohol (PVA) grades were used, of low (PVA-L, 31–50 kDa), medium
(PVA-M, 85–124 kDa), and high (PVA-H, 146–186 kDa) molecular weights, all presenting
87–89% degrees of hydrolysis (data from the supplier) (Table 1). Polyvinyl alcohol, ammo-
nium hypophosphite (NH4H2PO2), and 1,2,3,4-butanetetracarboxylic acid (BTCA) were
purchased from Sigma Aldrich (Saint-Quentin Fallavier, France). Benzalkonium chloride
(Benzyl-C12 to C16 alkyldimethyl chlorides, ADBAC) was formulated as 50% w/v aqueous
solution purchased from Mon Droguiste (Troyes, France). Electrospun membranes were
supported on meltblown nonwoven polypropylene of 30 g/m2 basis weight (M30) pro-
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vided by Lydall (Melrand, France); the average diameter was 2.65 µm (see SEM analysis in
Figure S1—Supplementary Data).

Table 1. PVA grades used (low, medium, and high molecular weights) and acylation degrees.

Nomenclature MW (g/mol) Degree of Hydrolysis (DH) (%)

PVA-L 31,000–50,000 87–89

PVA-M 85,000–124,000 87–89

PVA-H 146,000–186,000 87–89

2.2. Electrospinning

Electrospun solutions were prepared by solubilizing each PVA grade (L, M, and H)
at concentrations of 8% w/v in distilled water at 80 ◦C and stirred for 4 h. BTCA as
a crosslinking agent (0.24% w/v to 0.96% w/v) and ADBAC as an antimicrobial agent
(0.4% w/v and 1.4% w/v) were then added and, finally, ammonium hypophosphite (AH)
(0.5% w/v) as a catalyst for the crosslinking reaction was added to the solution followed by
stirring for 15 min. The compositions of the electrospun solutions are reported in Table 2.

Table 2. Parameters of the electrospun solutions.

PVA (8% w/v) BTCA (% w/v) ADBAC (% w/v) AH (% w/v)

PVA-L
PVA-M
PVA-H

0.24
0.64
0.81
0.96

0.4
1.4 0.5

For the preliminary study of the electrospinning parameters, the precursor solutions
were loaded in a 5 mL plastic syringe connected to a 21-gauge needle as a spinneret
(Terumo) by the intermediate of a polyethylene catheter (inner diameter 1 mm, Vygon).
A homemade electrospinning device was used for the preliminary tests of optimizing the
electrospinning parameters. The solution was delivered to the spinneret by a syringe pump
(Fisher Scientific) at a flow rate of 0.5 mL/h and a voltage of 20 and 25 kV. The nanofibers
(NFs) were collected on an aluminum foil placed at 20 cm from the spinneret. For the
elaboration of filtering electrospun membranes supported on M30, a Fluidnatek LE-500
electrospinning device (Bioinicia, Valencia, Spain) was used. The solution was loaded in a
20 mL syringe connected to a five-needle spinneret at a flow rate of 1.6 mL/min. Nanofibers
were spread on a meltblown nonwoven textile with a basis weight of 30 g/m2 (M30)
running at a speed of 0.6 mm/s over a metallic table equipped with a roll-to-roll system.
Electrospun membranes were then heat-treated at 125 ◦C for 30 min using a ventilated
oven (Minithermo, Roaches, Leeds, Great Britain) for NF stabilization by crosslinking the
reaction between PVA and BTCA.

2.3. Characterization Techniques
2.3.1. Electrospun Solution Viscosities

The viscosities of the polymer solutions were measured by using a MCR 301 rheome-
ter (Anton Paar, les Ulis, France). The 25 mm diameter circular parallel plate geome-
try was used with a 1.0 mm gap. The tests were examined with a shear rate ranging
from 0.1 to 300 s−1.

2.3.2. Scanning Electron Microscopy

The morphology of the electrospun membranes was characterized using scanning
electron microscopy (SEM, FlexSEM 1000, Hitachi, Tokyo, Japan) operating at 5 kV on
platinum-sputter-coated samples. The fiber diameters were determined by using ImageJ
software. Diameter measurements of 60 nanofibers were collected.
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2.3.3. Thermal Analysis

A Fourier transform infrared spectroscopy (FTIR) analysis was conducted to identify the
esterification of PVA and BTCA using a spectrometer UATR Two (Perkin Elmer, Villebon-sur-
Yvette, France) with an attenuated total reflectance accessory (ATR). Spectra were collected at
room temperature in the spectral range of 4000–500 cm−1 at a resolution of 4 cm−1.

2.3.4. Air Filtration Performance

The filtration efficiency of samples was evaluated by employing a portable particle
counter (AeroTrak, model 9550, TSI, Marseille, France) under a fixed velocity of airflow of
50 L/min. Filtration of airborne particulate matter PM0.3, PM0.5, and PM3.0 (respectively,
0.3, 0.5, and 3.0 µm) was registered. The pressure drop was measured by a manometer
linked to a vacuum pump under an airflow of 11.5 L/min passing through the filters. Tested
samples were M30 nonwoven textiles covered by electrospun nanofiber membranes with
different basis weights corresponding to electrospinning times of 30, 45, 60, 75, 90, 120, 150,
180, 210, and 240 min. Six measurements were performed to ensure data reproducibility for
basis weight values. Three membranes were tested to determine the filtration efficiency
and pressure drop.

2.3.5. Antibacterial Tests

Antimicrobial assessments were carried out by following the AATCC (American
Association of Textile Chemists and Colorists) Test Method 100–2019 (Assessment of antimi-
crobial finishes on textile materials). Kill time is a method that makes it possible, by direct
contact, to test the antibacterial activity of the electrospun membranes and to evaluate the
bacterial reduction kinetics. E. coli and S. aureus were selected as representative examples
of Gram-negative and Gram-positive bacteria, respectively. The antibacterial activity was
evaluated after 20 min, 2 h, and 4 h of contact between membranes and bacteria. The
membranes were sterilized by UV irradiation for 20 min.

First, the bacteria were transferred onto agar plates 24 h before the test. The culture
obtained was suspended in 10 mL of cystine in Krebs–Ringer phosphate solution. Then,
this suspension was diluted 7 times by decimal dilutions. Each diluted suspension was
inoculated and incubated for 24 h at 37 ◦C to determine the real initial concentration. The
tenth dilution of the initial suspension was used as the inoculum.

An amount of 200 µL of the freshly prepared bacterial suspensions was placed onto
the surfaces of the electrospun layer membranes and was incubated at 37 ◦C. After 20 min
of contact time, the samples were transferred individually into 2 mL of sterilized phosphate-
buffered solution (PBS), treated for 1 min in an ultrasonic bath, and vortexed for 30 min to
detach the bacteria from the membranes and re-suspend them.

The suspensions were diluted to the tenth 4 times, placed onto agar plates, and
incubated at 37 ◦C for 24 h. The number of surviving bacteria was determined by counting
the colony-forming units (CFU) in triplicate for each experiment. The same protocol was
repeated for 2 h and 4 h of membrane contact.

2.3.6. Antiviral Tests

Antiviral activity assessments were carried out by following NF EN 18,184 (Determi-
nation of antiviral activity of textile products) with minor adaptations (modification of the
neutralizer and the volume of recovery). Tests were conducted using human coronavirus
strain 229E (HCoV-229E) produced and titrated on Huh-7 cells. DMEM with glutamax
supplemented with 10% fetal bovine serum (FBS) and 1% antibiotics was used as a medium
and the cells were incubated for 6–7 days at 33 ◦C with 5% CO2. The principle was to
contaminate textile samples with a known suspension of the virus. An amount of 200 µL
of the suspension was deposited in micro-droplets on 400 mg ± 50 mg of pieces of the
membrane (2 cm × 2 cm). The samples were previously sterilized by UV irradiation for
30 min. Membranes (treated and untreated) were kept at 20 ◦C for 5 min, 20 min, 1 h, 2 h,
and 4 h. At the end of the contact times, the textiles were immersed in 10 mL of neutralizer
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(DMEM + glutamax supplemented with 2% FBS and 1% antibiotics) to stop the action
of the active substance. The number of surviving viruses was determined quantitatively
by Spearman and Kärber’s method. The results in TCID50/mL in the neutralizer were
multiplied by 10 to have the viral load on samples.

3. Results and Discussion
3.1. Electrospinning Parameters

PVA electrospinning has been widely reported and is considered a green process
due to the ability to use water as a solvent. However, because of the water saturation of
breathed airflow, PVA nanofibers as-spun swelled when placed inside a face mask worn
for 4 h, necessitating a stabilization strategy. Wijanarko et al. [37] reported that thermal
post-treatments from 135 ◦C involved an increase in the crystallinity of NFs and resulted
in the stability of nanofibers in water at an ambient temperature for one week. Elsewhere,
Miraftab et al. [36] reported that nanofibers post-treated at 150 ◦C remained insoluble
but displayed deformation to a great extent after immersion in water. However, heat
treatment at 180 ◦C stabilized PVA nanofibers, even in boiling water. Interestingly, the
same authors also highlighted the beneficial effect of immersing their PVA nanofibers in
methanol, although this treatment could not prevent nanofibers from swelling [36]. PVA
nanofibers are chemically crosslinked during curing by esterification of poly(carboxylic
acid) and poly(vinyl alcohol). Our group has widely studied the crosslinking reaction
between cyclodextrins as polyols, and poly(carboxylic acids), such as citric acid, polyacrylic
acid, and BTCA, and we reported that BTCA presented the lowest threshold esterification
temperature [49]. Phosphate or hypophosphite salts are used as catalysts that either
promote the direct coupling between carboxylic and hydroxyl functions or promote the
formation of cyclic anhydrides intermediates in the poly(carboxylic acids) that subsequently
react with hydroxyl groups [50,51].

In the first approach, nanofibers were prepared from the three grades of PVA-L,
PVA-M, and PVA-H with 0.24% w/v of BTCA (Figure 1). The nanofiber diameters increased
in the order PVA-L < PVA-M < PVA-H. This may be related to the viscosities of the solutions
(117, 1390, and 2258 mPa.s, respectively). To a lesser extent, nanofiber diameters also varied
with the flow rate and with the applied voltage.

Then, nanofibers underwent a curing step to provoke the chemical crosslinking by
esterification of PVA with BTCA in a damp environment of breathed-out air passing
through the mask. As the strategy was to electrospin a thin PVA nanofiber network onto
a PP 30 g/m2 meltblown nonwoven textile (M30), the low melting temperature of PP
(approximately 150 ◦C) was a limiting parameter for the curing step of the composite
PP-PVA membrane. Indeed, preliminary tests revealed that the M30 substrate shrank when
exposed to a curing temperature of 130 ◦C. As the result, the curing temperature applied
for nanofiber crosslinking was limited to 125 ◦C in order to preserve the PP nonwoven
textile. Figure 2a presents an example of the nanofibers’ morphology when heat-treated
at 125 ◦C before the water stability test. As observed in Figure 2b, nanofibers obtained
from the sodium ammonium hypophosphite-free solution and treated at 125 ◦C were
damaged after immersion in water contrary to those where AH was present (Figure 2c).
This validated the catalytic action of AH that lowers the temperature threshold for the
esterification at 125 ◦C for crosslinking PVA with BTCA and, thereby, stabilizes nanofibers
exposed to a wet environment. Physical crosslinking is another method for achieving
PVA stabilization in water without the use of chemicals; however, the microstructure
modification of PVA (increase in crystallinity) requires curing temperatures above 160 ◦C
that are not compliant with our M30 support as mentioned above. Some studies have
shown that adding nanocellulose particles can result in a crystalline structure. The PVA
matrix and the cellulose nanowhiskers form a strong hydrogen bond interaction [51,52].
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Figure 2. (a) SEM images of heat-treated electrospun nanofibers from the solution of 8% PVA-H/0.96%
BTCA (curing at 125 ◦C for 30 min) before water immersion, (b) electrospun nanofibers from the solution
free of AH after 4 h of immersion in water at ambient temperature, and (c) electrospun nanofibers from
the solution with 0.5% w/v AH after 4 h of immersion in water at ambient temperature.

Membranes were prepared from solution containing 8% PVA-H with variable BTCA
compositions (0.64, 0.81, and 0.96% w/v) and AH (0.5% w/w), cured at 125 ◦C for 30 min,
and then immersed in water for 4 h. SEM images in Figure 3a,c,e displayed no significant
influence of the BTCA content in electrospun solutions on nanofiber diameters as the
measured mean diameters were 429 ± 261 nm, 389 ± 142 nm, and 455 ± 185 nm after



Nanomaterials 2023, 13, 9 8 of 17

electrospinning, respectively. SEM images in Figure 3b,d,f also display that after water
immersion, nanofibers from solutions containing 0.64% w/v and 0.81% w/v of BTCA un-
derwent swelling, tortuosity, and fusion. In contrast, the BTCA concentration of 0.96% w/v
clearly prevented the deterioration of the nanofibrous network in water. Thus, this series of
tests of the immersion of cured nanofibers in water demonstrated that optimal concentra-
tions of BTCA of 0.96% w/v and ammonium hypophosphite of 0.5% w/v could preserve
the nanofibers’ structure.
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Furthermore, the above-mentioned experiment was also performed with electrospun
nanofibers from solutions prepared with 8% PVA-L and 8% PVA-M. The results demon-
strated that these electrospun nanofibers did not display any stability in the water batch,
regardless of BTCA concentration or heat treatment. The fibers’ morphology changed
drastically upon selling, and in the worse cases (especially for PVA-L) were transformed
into film-like materials. According to Limpan et al. [53], the behavior of PVA in water is
correlated with its molecular weight, i.e., the higher it is, the lesser it swells or solubilizes
in water. Therefore, PVA-H was selected for preparing the electrospun membranes in the
rest of the study.

The FTIR analysis of these nanofibers before and after thermal treatment was con-
ducted (FTIR spectra and analysis are displayed in Figure S2—Supplementary Data). The
expected band around 1735 cm−1 associated with the esterification process was masked
by the carbonyl band of vinyl acetate groups contained in PVA [35,54], so FTIR could not
clearly evidence the esterification reaction by BTCA. However, the crosslinking reaction
was indirectly demonstrated by the immersion tests. Finally, it is worth mentioning that
the test of immersing nanofibers in water for 4 h represents more drastic conditions than
breathing a damp air flow passing through a respiratory mask.

3.2. Filtration Performance of the Meltblown-Supported Electrospun Fibers

Due to the poor mechanical properties of the lightweight electrospun membranes, the
solutions based on the optimal parameters described above were electrospun over a variable
time period on a conductive collector covered by a meltblown PP nonwoven textile (basis weight
30 g/m2, fiber mean diameter 2.65 µm, named M30) as a substrate to create a mechanically
resistant bilayered filter. Thus, M30 supports were covered with nanofibers from the solution of
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8% PVA-H/0.96% BTCA/0.04% ADBAC/0.5% AH during variable electrospinning times at
a flow of 0.5 mL/h and resulted in nanofibrous layers with variable basis weights. The SEM
picture in Figure 4 displays the progressive covering of the M30 structure by electrospun fibers
with mean diameters ranging from 243 ± 95 nm to 351 ± 149 nm at different deposition times.
The underlying meltblown fibers were visible up to 45 min of electrospinning, and then they
were fully covered by the nanofiber layer from 75 min of electrospinning.
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inserted on each micrograph (n = 60).

Using a weighing method, it was then possible to plot the grammage of the nanofibrous
layer versus the time of electrospinning as observed in Figure 5a. The basis weight of
nanofiber membranes increased linearly from 0.66 ± 0.27 g/m2 to 5.13 ± 0.17 g/m2

from 30 min to 240 min of electrospinning time, corresponding to a coverage rate of
0.02 g/m2/min. The grammage corresponding to the optimal coverage after 75 min by
SEM observation was 2.13 ± 0.86 g/m2.

Figure 5b reports the evolution of the pressure drop ∆P with nanofiber grammages
supported on M30. The first section of the plot reveals a moderate increase in the absolute
value of the pressure drop from 26 ± 1.41 Pa (M30 only) up to 96 ± 0.01 Pa as the basis
weight was increased up to 4 g/m2. From 4 g/m2, the pressure drop increased drastically
up to 256 ± 6.0 Pa, corresponding to an air permeability that is not suitable for use as a
respiratory mask. Based on data from Figure 5b, it could be established that 0.66± 0.27 g/m2

and 2.76± 0.84 g/m2 were the minimum and maximum grammages acceptable, respectively,
with ∆P ranging from 12.5 ± 3.54 to 63 ± 2.0 Pa. In particular, the sample corresponding to
an electrospinning time of 75 min and a grammage of 2.13± 0.86 g/m2 displayed a ∆P value
of 49 ± 1.0 Pa.
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The filtration efficiency η of M30-supported nanofibers was then investigated and is
reported in Figure 6a. According to standard EN 14683, the filtration efficiency threshold
values (dotted lines) were 70.92%, 96.90%, and 99.95% for particle sizes of 0.3, 0.5, and 3 µm,
respectively; basis weights of 0.66 ± 0.27 g/m2 and 1.45 ± 0.91 g/m2 displayed filtration
efficiencies in the same range as M30 due to the low density and large mesh size of these
nanofiber networks. The slight decrease in efficiency toward particles of 0.3 µm and 0.5 µm in
both these samples could be attributed to the loss of electrostatic charges present on raw M30
during the electrospinning process [55]. From NF grammages of 2.13 ± 0.86 g/m2, the η val-
ues exceeded the threshold standard values, reaching 85.84 ± 1.15% for 0.3 µm, 98.37± 0.18%
for 0.5 µm, and 99.79± 0.30% for 3 µm particles defined by the European standard EN 14683.
Interestingly, our findings demonstrate that an electrospun membrane with a grammage as
low as 2 g/m2 has a higher filtration efficiency than a meltblown microfiber-based nonwoven
textile with a superior grammage of several tens of g/m2. Furthermore, the light weight of the
electrospun filters preserves acceptable air permeability. As a result, electrospinning provides
a good compromise between the lightness of the filter, air permeability, and filtration efficiency.
Nonetheless, the literature has widely reported the advantages of electrospun mats in air
filtration applications; for instance, such an observation was reported by Leung and Sun [55]
who demonstrated that filters made of nanofibers require a much smaller grammage, less than
1 g/m2 compared to the 20–40 g/m2 necessary for a microfiber filter. Choi et al. [56] reported
that the addition of nanofibers drastically changes the pressure drop of filters with micro- and
nanofibers. The contribution to the pressure drop of these nanofibers was 74.4% and 97.9% for
filters comprising 5% and 30% in weight of nanofibers, respectively. A recent study conducted
by Wang et al. [57] produced a biodegradable nanofiber mask by electrospinning based on
poly(lactic acid), exhibiting a high-efficiency filtration (PM0.3—99.996%) and a low-pressure
drop (104 Pa). Although the value of 104 Pa is higher than the one obtained by our work, it
was acceptable according to the standard filtration test (EN 779:2012), which employs rigid
solid NaCl particles. In another study by Zhang et al. [58], reduced graphene oxide (rGO)
nanosheets were embedded into electrospun nanofibers of polyacrylonitrile (PAN) to enhance
the removal efficiency. Their results showed filters with 99.99% (PM2.5) efficiency and a
70 Pa pressure drop. Focusing on the COVID-19 pandemic and air pollution, Xu et al. [59]
designed a protective filter mask by electrospinning nylon-6 (PA) nanofibers onto meltblown
nonwoven textiles. The results showed a filtration efficiency (PM2.5) of up to 99% and a
pressure drop > 100 Pa. He et al. [60] developed an antimicrobial bilayer structure face mask
by combining modified woven cotton and electrospun poly(vinylidene fluoride)/polystyrene



Nanomaterials 2023, 13, 9 11 of 17

(PVDF/PS) nanofibers. The composite presented a high filtration performance for PM0.3
(99.1% and 79.2 Pa).
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H/0.96% BTCA/0.04% ADBAC/0.5% AH) on M30 support of PM = 0.3 µm, 0.5 µm, and 3 µm (n = 3).
Dotted lines indicate filtration efficiencies of 70.92% for 0.3 µm (orange), 96.90% for 0.5 µm (green),
and 99.95% for 3 µm (purple) particles defined by the European standard EN 14683; (b) SEM image of
the bilayered structure M30 + PVA nanofibers (grammage 2.13 ± 0.86 g/m2) after 1 h of air filtration
test under an air flow of 50 L/min displaying airborne particles with sizes in the sub-micrometric
range captured by the filter.

To highlight the particle removal efficiency, membranes used in air filtration tests (1 h
of air filtration test under an air flow of 50 L/min) were analyzed by SEM (Figure 6b).
It can be observed that the nanofibrous network intercepted a large number of airborne
particulate matter ranging in size from 0.1 µm to 2.5 µm.

The performance of the filters for each particulate matter could also be evaluated
by the quality factor (QF), relating both filtration efficiency (η) and pressure drop (∆P)
parameters: QF = −ln(1 − η)/∆P [61–64]. The higher the value of QF, the higher the
filter performance.

Considering data from the quality factor for PM0.5, the highest QF values ranged from
0.0727 Pa−1 (2.76± 0.84 g/m2) to 0.1663 Pa−1 (0.66± 0.27 g/m2), with the 2.13 ± 0.86 g/m2

basis weight showing a QF of 0.0840 Pa−1, coinciding with the results of the ideal grammage
related to the pressure drop mentioned above. However, it is crucial to highlight that this
factor is unique in terms of PM0.5 filtration efficiency, and when findings from PM0.3 were
analyzed, membranes with basis weights of 0.66 ± 0.27 and 1.45 ± 0.91 g/m2 provided
an ineffective filtration efficiency (55.92 ± 2.76% and 55.80 ± 2.97%, respectively) of lower
than 70.92% (PM0.3) as defined by European standard EN 14683.

Similar results were obtained in work conducted by Zhang et al. [65], who presented
the performance of electrospun polyamide nanofibers air filters with a QF of 0.1072 Pa−1

and ∆P of 73 Pa for PM2.5. In another recent research study, Cui et al. [66] reported that
an electrospun mat obtained from PVA and sodium lignosulfonate (LS) presented a high
quality factor of 0.212 Pa−1 for PM1.0.

To summarize, filtration performance experiments led us to conclude that a basis weight
of nanofibers in the range of 2 g/m2 supported on a M30 meltblown PP substrate was the
best compromise for achieving optimal filtration efficiency and good air permeability.

3.3. Antibacterial Activity

The antibacterial activity against S. aureus and E. coli of the electrospun nanofibers
prepared from solutions containing 0.4% w/v and 1.4% w/v of ADBAC was tested. The
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number of surviving bacteria put in contact with nanofibers was assessed as a function of
exposure times. For comparison, the activity of the nanofibers with/without ADBAC and
M30 as a control was also assessed.

Figure 7a,b report the antibacterial activity against S. aureus and E. coli of M30 coated
with nanofibers. Without ADBAC, meltblown nonwoven M30 and M30 coated with
nanofibers showed no significant difference against S. aureus and E. coli, with a reduction
of approximately 1.0 log10 for all exposure times.
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Figure 7. Bacterial reduction of (a) S. aureus and (b) E. coli as a function of contact time with M30
(control) and M30 coated by nanofibers (2 g/m2) electrospun from solutions with 0% w/v, 0.4% w/v,
and 1.4% w/v ADBAC.

Nanofibers prepared from the 0.4% w/v ADBAC solution displayed a very slight
reduction of 1.0 log10 against both S. aureus and E. coli, which was not significant when
compared to the raw M30 control.

After 2 and 4 h of exposure, electrospun nanofibers from precursor solutions containing
1.4% w/v ADBAC demonstrated a significant antibacterial effect, with bacterial charge
decreasing from 1.71 log10 to 1.93 log10 against S. aureus, and from 2.46 log10 to 2.68 log10
against E. coli, respectively. Additionally, our results showed that ADBAC is more effective
against Gram-negative E. coli than against Gram-positive S. aureus, which is consistent
with results found in the literature [67]. The microbiology experiments revealed that the
antibacterial activity of the nanofibers required an ADBAC concentration of 1.4% w/v in
the electrospun solution.

3.4. Antiviral Efficacity

The antiviral assays were performed to investigate the virucidal activity of the ADBAC
loaded filters against the human coronavirus strain HCoV-229E (used as a surrogate for
SARS-CoV-2). The experiment was carried out with samples consisting of M30 covered
by nanofibers (grammage 2 g/m2) not loaded with ADBAC as a control and nanofibers
resulting from solutions containing 0.4% and 1.4% w/v ADBAC.

Figure 8 reports both electrospun membranes that presented significant efficacy against
the virus. The 0.4% w/v ADBAC and 1.4% w/v ADBAC nanofibers exhibited 91.75%
(1.1 log) and 98.53% (1.8 log) antiviral efficiency, respectively, after 20 min of contact. Log
reductions observed on the textile without ADBAC correspond to the natural decay of the
virus when deposited on a surface. While exhibiting some virucidal activity, 0.4% w/v
ADBAC nanofibers did not reach a 2 log reduction before 4 h of contact time; in contrast,
at contact times of 1 h to 4 h, the antiviral activity of 1.4% w/v ADBAC nanofibers had
significant values ranging from 99% to 99.9% (2 to 3 log), which is comparable to other
antiviral textiles [68–70].
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4. Conclusions

The development of masks/air filters with advanced filtration and biocidal properties
plays a crucial role in protecting against pathogens, such as bacterial or viral threats such as
the coronavirus that recently caused the COVID-19 pandemic. In this study, we designed
a novel self-decontaminating electrospun PVA filter to be used as a biocidal layer in the
production of a face mask. To compensate for the low mechanical properties of electrospun
membranes, PVA-based nanofibers were collected on a meltblown polypropylene filter
M30. After electrospinning, PVA nanofibers were cured for provoking esterification and
crosslinking with BTCA in order to stabilize the nanofibrous network when exposed to
the damp air flow of respiration. Ammonium hypophosphite added to the electrospun
solution catalyzed the esterification and allowed the crosslinking of PVA fibers at a cur-
ing temperature of only 125 ◦C that preserved the polypropylene meltblown nonwoven
support. SEM experiments revealed that an electrospun membrane with a grammage of
2.13 g/m2 provided optimal coverage of the M30 support. Interestingly, this basis weight
of 2.13 g/m2 displayed an excellent filtration efficiency of 85.84%, 98.37%, and 99.79%
for PM0.3, PM0.5, and PM3.0, respectively, and a low-pressure drop of 49 Pa. Therefore, a
nanofiber grammage in the range of 2 g/m2 represented the ideal compromise between the
antagonist parameters of filtration efficiency and air permeability. Nanofibers containing
two ADBAC concentrations were tested in antibacterial and antiviral tests. The electrospun
nanofiber membrane obtained from solutions containing 0.4% w/v and 1.4% w/v ADBAC
were tested in microbiological and virological tests. Only samples with the highest ADBAC
content demonstrated significant antibacterial and antiviral activities, i.e., reductions of
1.9 and 2.5 log units from two hours of contact against both E. coli and S. aureus and reduc-
tions of 2.0 to 3.0 log units from one hour of contact against human coronavirus HCoV-229E
also exhibited a significant viral reduction of 99%.

Finally, the nonwoven-supported biocidal electrospun nanofibers developed here
could be used as a filtering layer for the manufacture of respiratory masks whose advanced
filtration and antimicrobial properties would ensure: (a) the enhanced individual protection
of the mask wearer against airborne vectorized pathogens, (b) the collective protection
through inactivation of pathogens expelled by contaminated persons and trapped in the
mask structure, and (c) the prevention of cross-contamination by used masks thrown on
scrapheaps thanks to the self-decontaminating properties [71].
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