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Abstract: The present study investigated the in vitro antibacterial, antibiofilm and anti-Quorum
Sensing (anti-QS) activities of canine bone marrow mesenchymal stem cell-conditioned media (cBM
MSC CM) containing all secreted factors <30 K, using a disc diffusion test (DDT), spectrophotometric
Crystal Violet Assay (SCVA) and Bioluminescence Assay (BA) with QS-reporter Escherichia coli
JM109 pSB1142. The results show a sample-specific bacterial growth inhibition (zones varied
between 7–30 mm), statistically significant modulation of biofilm-associated Staphylococcus aureus
and Escherichia coli bioluminescence (0.391 ± 0.062 in the positive control to the lowest 0.150 ± 0.096
in the experimental group, cf. 11,714 ± 1362 to 7753 ± 700, given as average values of absorbance
A550 ± SD versus average values of relative light units to growth RLU/A550 ± SD). The proteomic
analysis performed in our previous experiment revealed the presence of several substances with
documented antibacterial, antibiofilm and immunomodulatory properties (namely, apolipoprotein B
and D; amyloid-β peptide; cathepsin B; protein S100-A4, galectin 3, CLEC3A, granulin, transferrin).
This study highlights that cBM MSC CM may represent an important new approach to managing
biofilm-associated and QS signal molecule-dependent bacterial infections. To the best of our
knowledge, there is no previous documentation of canine BM MSC CM associated with in vitro
antibiofilm and anti-QS activity.

Keywords: quorum sensing; biofilm; Escherichia coli JM109 pSB1142; mesenchymal stem cells

1. Introduction

As antibiotic resistance has increased rapidly, thereby greatly limiting the medications available
to treat chronic bacterial infections in clinical practice, the development of a new antimicrobial agent,
especially one effective against multidrug resistant pathogens [1] and/or bacteria living in biofilm with
adaptation resistance, is an urgent issue [2].

As multipotent adult stem cells with the capacity to differentiate into multiple cell types [3,4]
and with a paracrine function, mesenchymal stem cells (MSCs) may be one of the options offering
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new prospects for the prevention and treatment of infections, for limiting the selection and spread of
antibiotic resistance, or for potentially acting as drug delivery vehicles and enhancing the effectiveness
of conventional antimicrobials. Recent data show that MSCs exert strong antimicrobial effects through
indirect and direct mechanisms, partially mediated by the secretion of antimicrobial peptides and
proteins (AMPs) [1,5–8]. Unlike human and mouse MSC counterparts, little is known about the
characterization and function of canine MSCs, and this knowledge gap impedes the development of
canine evidence-based MSC technologies [9].

Interest in mesenchymal stem cells (MSCs) for regenerative and reparative therapies, both in
human and animals, is emerging, as the current treatment options for several conditions often do not
result in either the desired clinical outcome or the patients’ return to normal function [10]. Canine
MSCs have been evaluated in some experimental and preclinical studies on the efficacy and safety
testing of novel treatments for humans, since dogs are considered as potential animal models for
human disease research (based on several reasons, such as a relatively long life span, large body
mass and natural disease onset) [11] and have a prevalent role in the development of new therapeutic
cell-based approaches. Many human immune-mediated diseases leading to inflammatory processes
have their canine homolog (such as canine atopic dermatitis, chronic gingivostomatitis, inflammatory
bowel disease and asthma, among others) [12]. In addition, dogs share many similar pathologies with
humans; they represent a perfect model for human conditions, a much better one than artificially
created diseases in laboratory animals. Thus, research on canine-derived MSCs may provide insight
into stem cell therapy not just for canines, but for humans as well [13].

Although these MSCs can be derived from several sources, clinical use has favored bone marrow
and adipose tissue because of their relative ease of stem cell recovery in large numbers and their
minimal donor-site morbidity [10]. Despite the fact that adipocyte-derived MSCs have a higher ability
of proliferation and are more readily available, BM MSCs showed a higher production of paracrine
factors [14,15].

Fibroblasts may serve as another attractive alternative to MSC, based on a larger number of cells
extracted from tissue and a shorter doubling time than MSC, allowing for less tissue culture media use
in their expansion and thus reducing the cost of production; but their various properties, such as their
decreased differentiation potential, proliferation capacity and immunomodulatory properties, prefer
to use MSCs [16].

Whilst various studies demonstrating the antimicrobial activity of MSCs and elucidating the
mechanisms underlying this effect exist, to our best knowledge relatively little attention has been
paid to investigating their impact on in vitro bacterial communication, Quorum Sensing (QS) in
connection with signal molecules and the regulation of virulence factors such as biofilm production.
The bacterial QS system is indispensable for biofilm formation in chronic drug-resistant infection and
the manifestation of bacterial virulence activity, so it provides a major target for antibiofilm therapy [17].
Nowadays, research is focused on the development of QS antagonists as a new treatment approach for
blocking communication between bacteria and for reducing virulence, therefore improving infection
control. Taking into consideration that MSCs may become very promising novel therapeutic tools,
and QS inhibitors in particular, the field is still unexplored and a number of experiments are required.
Moreover, the regulation of bacterial communication by means of QS-dependent mechanisms through
QS inhibitors that block signaling molecules provides a strategy to ‘disarm’ pathogenic microorganisms,
disrupt their biofilms, paralyze their virulence and restore their susceptibility to antibiotics [18].

With regard to this issue, the main objective of the present study was to examine the effect
of canine bone marrow mesenchymal stem cell-conditioned media (cBM MSC CM) on bacterial
growth, biofilm-associated Staphylococcus aureus and acyl homoserine lactone (AHL)-dependent QS in
Gram-negative bacteria.
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2. Materials and Methods

2.1. Strains And Growth Conditions

Escherichia coli (E. coli) JM109 pSB1142: luminescence-based QS-reporter strain responding to
long-chain AHLs (C10–C14) carrying the lasR and lasI promoter of Pseudomonas aeruginosa (P. aeruginosa)
fused to the luxCDABE cassette from Photorhabdus luminescens was cultured in Brain Heart Infusion
(BHI) agar (Oxoid, Basingstoke, Hampshire, UK) at 37 ◦C and maintained in tetracycline 20 µg/mL.

P. aeruginosa 45 (lasI, lasR, rhlI, rhlR, plcH, lasB PCR positive) clinical calf isolate was cultured in
Mueller–Hinton (MH) broth (Oxoid) at 37 ◦C overnight.

The biofilm-associated strains Staphylococcus aureus (S. aureus) 14 (hla, isdA, sdrE PCR positive)
and 11 (hla, isdA, isdB PCR positive) were incubated in Mannitol agar (Oxoid) at 37 ◦C overnight.

The standard reference strains (Streptococcus agalacticae CCM 6187, Staphylococcus aureus CCM
3953, Escherichia coli C 1971, Salmonella enteritidis CCM 4420, Bacillus cereus CCM 869) used for the
antibacterial activity of cBM MSC CM were incubated in MH agar at 37 ◦C overnight.

2.2. Preparation of cBM MSC CM

A bone marrow sample collection from six individual healthy adult dogs (large or middle-size dog
breeds, all males: Alaskan Malamute (2.0 years old), Labrador (2.3 years old), American Staffordshire
Terrier (2.6 years old), Poodle (2.4 years old), Eurohound (2.7 years old), Beagle (2.4 years old)) and
in vitro cultivation of cBM MSCs were performed at the University of Veterinary Medicine and Pharmacy
in Košice with informed consent of the dog owners, as described in detail by Humenik et al. [19].

In order to obtain cBM MSC CM, we cultivated cBM MSCs in Dulbecco’s modified Eagle medium
(DMEM) (Life Technologies, New York, NY, USA) deprived of fetal calf serum (FCS) and antibiotics.
Briefly, 1.2 × 106 MSCs at passage 3 were seeded in a T75 flask with DMEM containing FCS and
appropriate antibiotics, namely 100 units/mL penicillin, 100 mg/mL streptomycin and 2.5 µg/mL
amphotericin B (Gibco, Switzerland). After 48–72 h with a cell confluence at 80%, the medium was
removed, cell monolayers were rinsed twice with phosphate buffered saline solution (PBS, Thermo
Fisher Scientific, Waltham, MA, USA), and 10 mL DMEM free of FCS and antibiotics were added.
The resulting medium was collected 48 h later, centrifuged twice for 10 min at 300× g to remove cellular
debris, and frozen at −20 ◦C until further use in subsequent experiments. Concentrated cBM MSC CM
(four-fold) were obtained using a Vacufuge plus concentrator (Eppendorf), followed by centrifugation
at 7500× g for 40 min, applying a filter with a nominal molecular weight limit of 30,000 KDa (Amicon
Ultra-0.5 30 K, Millipore, Burlington, MA, USA). Equal volumes of media (antibiotics and FCS-free
DMEM) but without MSCs were handled under the same conditions and served as a negative control.

2.3. Anti-Bacterial Activity Test

The antimicrobial capacity of cBM MSC CM were screened against representative Gram-positive
and/or Gram-negative standard reference strains and two biofilm-associated S. aureus strains
(see Material and Methods—Strains and Growth conditions) using the Disc Diffusion Test (DDT),
according to the EUCAST Disc Diffusion Method for Antimicrobial Susceptibility Testing [20]. Each
bacterial suspension with 0.5 McFarland (1.5–3 × 108 CFU/mL) was inoculated onto MH agar plates by
spreading the microbial suspensions uniformly on the agar surface using cotton swabs. Sterile discs
with a diameter of 10 mm were spotted with 10 µL of the four-fold concentrated cBM MSC CM or
antibiotics and FCS-free DMEM (negative control–NC) and were loaded onto the plate. The plates
were incubated at 37 ◦C, and the zones of inhibition measured after 20 h were expressed in millimeters
(mm).

2.4. Biofilm Formation

Biofilm production was performed using SCVA, according to the previously published method
by O’Toole et al. [21], with slight modifications. In brief, the biofilm-producer S. aureus 14 was
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grown on BHI agar (Oxoid), and colonies were transferred to BHI broth (Oxoid) to reach a density
equivalent to 1.5–3 × 108 CFU/mL. A volume of 100 µL of these bacterial suspensions, without (positive
control–PC) or with the addition of 10-µL concentrated individual cBM MSC CM (containing all
factors secreted by MSCs < 30 K molecular weight cutoff–experimental groups) versus antibiotic-free,
FCS-free and MSC-free DMEM (negative control–NC) were inoculated into a 96-well Nunc polystyrene
microtiter plate (Thermo Fisher Scientific, Roskilde, Denmark) and were incubated for 24 h at 37 ◦C.
After incubation, sessile S. aureus was washed three times with PBS, fixed with methanol for 15 min,
then dried and stained with 0.1% crystal violet (Sigma-Aldrich) solution for 15 min. The adhering
dye was dissolved with 33% acetic acid. Eight replicates were used for each test condition/control.
The results were obtained by measurement of the absorbance at λ= 550 nm in a Synergy HT Multi-Mode
Microplate Reader (BioTek, Winooski, VT, USA).

2.5. Effect of cBM MSC CM on Cell Surface Hydrophobicity (CSH) of S. aureus

The effect of concentrated cBM MSC CM (10 µL containing all factors secreted by MSCs <30 K) on
the CSH of the tested S. aureus was determined using the hydrocarbon (n-hexadecan) buffer two-phase
system. Briefly, saline-washed S. aureus (1 mL, A570 = 0.8) without (PC) or with the addition of 10 µL of
concentrated individual cBM MSC CM (experimental groups) versus antibiotics and FCS-free DMEM
(NC) were incubated for 24 h. Overnight cultures in Mannitol broth at 37 ◦C were mixed with 1 mL of
n-hexadecan (Sigma-Aldrich, Germany). After one hour of phase separation, the aqueous phase was
removed, and the absorbance was measured at 570 nm using the Synergy HT Multi-Mode Microplate
Reader (BioTek). CSH was then expressed as the percentage of bacterial cells adhering to n-hexadecan
and was calculated using the formula:

CSH% = (A0 − A1)/A0 × 100 (1)

where A0 = initial absorbance and A1 = final absorbance.

2.6. Bioluminescence Assay (BA)

The QS reporter strain E. coli JM109 pSB1142 [long-chain (C10–C12) AHL biosensor] was used to
measure the bioluminescence in response to incubation with individual cBM MSC CMs. The cell-free
culture supernatant (CFCS) from P. aeruginosa 45, producing long-chain AHLs (C10–C14) and prepared
according to Bermudez–Brito et al. [22], was used for bioluminescence activation in the QS-based
reporter strain E. coli JM109 pSB1142.

Briefly, E. coli JM109 pSB1142 was inoculated into 2 mL of BHI broth (at a concentration of
1 McFarland) with 500 µL of P. aeruginosa 45 CFCS (PC). The individual concentrated cBM MSC CMs
(100 µL) were added to the QS-reporter strain with CFCS of P. aeruginosa 45 in experimental groups,
and all test tubes were incubated overnight. The 100 µL of antibiotics, FCS and MSC-free DMEM was
used as NC. Eight replicates were used for each test condition/control.

The expression of the E. coli JM109 pSB1142 bioluminescence was observed using the Fusion FX
(Vilber Lourmat) imaging system after overnight incubation at 37 ◦C and transferring of individual
samples to white 96-well immune plates (SPL Life Sciences), after which the luminescence was measured
using the Synergy HT Multi-Mode Microplate Reader (BioTek, USA). To exclude growth-dependent
effects, optical density measurements were recorded in order to normalize the bioluminescence
production to the cell density. The values were normalized according to bacterial growth (the absorbance
was measured at λ = 550 nm-A550) over the same period for each of the replicates, using the same
microplate reader.

2.7. Statistical Analysis

Statistical analyses were performed using the Statistica AXAZ software package (StatSoftCR,
Czech Republic). All experiments were performed in eight replicates. S. aureus biofilm formation was
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represented as the average of absorbance values measured at λ = 550 nm (A550) ± standard deviation
(SD) per well on 96-well Nunc polystyrene microtiter plates; bioluminescence after 24 h of growth for
the bioluminescence-based reporter E. coli pSB1142 exposed to P. aeruginosa supernatant producing
long-chain AHLs (C10–C14) was expressed as normalized bioluminescence treated and/or untreated
with cBM MSC CM. The average values were recorded as relative light units to bacterial growth
(RLU/A550)± SD. A one way ANOVA and Tukey’s post hoc test were used to detect significant differences
between the positive control and individual experimental groups, and a statistical significance was
accepted at p < 0.05 level.

3. Results

3.1. Antibacterial Disc Diffusion Testing

To assess the action of nonactivated cBM MSC CM on bacterial growth, DDT was applied to
selected reference-based and biofilm-associated strains.

The obtained results, when compared with control medium (NC), showed various effects evidently
dependent on the bacterial type that was used. The inhibition zones varied between 7–30 mm.

Four strains (biofilm-associated S. aureus 14; reference-based Escherichia coli C1971; Salmonella
enteritidis CCM 4420; and Bacillus cereus CCM 869) were resistant to all types of cBM MSC CM used
(Table 1).

Table 1. Antibacterial DDT.

MSCs CM
Samples

Inhibition Zone (mm)

SA
11

SA
14

S. aureus
CCM 3953

S. agalacticae
CCM 6187

E. coli
C 1971

S. enteritidis
CCM 4420

B. cereus
CCM 869

CM AM 25 R 10 10 R R R
CM L 30 R 8 8 R R R

CM AST 20 R 7 8 R R R
CM P 27 R 11 12 R R R
CM E 24 R 10 10 R R R
CM B 21 R 12 12 R R R
NC R R R R R R R

Legend: R—resistant isolates; inhibition zone in mm; NC—negative control; SA 14—Staphylococcus aureus 14;
SA 11—Staphylococcus aureus 11; S. agalacticae—Streptococcus agalacticae; S. enteritidis—Salmonella enteritidis;
B. cereus–Bacillus cereus. Conditioned Media (CM), Alaskan Malamute (AM), Labrador (L), American Staffordshire
Terrier (AST), Poodle (P), Eurohound (E), Beagle (B).

3.2. Anti-Biofilm SCVA

SCVA and biofilm-producer S. aureus 14 resistant to all the used cBM MSC CM was applied to
examine their antibiofilm activity.

The results revealed a statistically significant biofilm inhibition in all six experimental groups
(0.391 ± 0.062 in PC to the lowest 0.150 ± 0.096 in the experimental group cBM MSC CM P, and/or to
the highest 0.274 ± 0.133 in the experimental group cBM MSC CM AM, given as average values of A550

± SD; p value < 0.001; p value < 0.05), representing a 30–62% reduction in biofilm formation (Table 2).
No differences between PC and NC was expected, which meant no biofilm inhibition in DMEM free of
antibiotics, FCS and MSCs.
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Table 2. Antibiofilm SCVA, anti-CSH and anti-QS activities of cBM MSC CM.

Indices cBM MSC CM Effects

Anti-Biofilm a (A550 ± SD) Anti-CSH b (A570 ± SD) Anti-QS c (RLU/A550 ± SD)

PC 0.391 ± 0.062 0.331 ± 0.022 (59%) 11,714 ± 1362
NC 0.346 ± 0.099 0.349 ± 0.054 (56%) 12,253 ± 332

CM AM 0.274 ± 0.133 * 0.437 ± 0.032 (45%) *** 7753 ± 700 ***
CM L 0.197 ± 0.092 *** 0.440 ± 0.025 (45%) *** 10,294 ± 387 *

CM AST 0.246 ± 0.055 * 0.440 ± 0.052 (45%) *** 7803 ± 162 ***
CM P 0.150 ± 0.096 *** 0.450 ± 0.040 (44%) *** 9735 ± 547 ***
CM E 0.215 ± 0.047 ** 0.451 ± 0.053 (44%) *** 10,230 ± 532 **
CM B 0.257 ± 0.183 ** 0.556 ± 0.053 (31%) *** 8920 ± 237 ***

a average values of absorbance ± SD are presented, A550–absorbance at λ = 550 nm; SA 14–Staphylococcus aureus 14
treated and/or untreated with conditioned media (CM) from canine bone marrow mesenchymal stem cell (cBM
MSC). b average values of absorbance after adherence to n-hexadecan from eight replicate measurements ± SD are
presented, A570–absorbance at λ = 570 nm; SA 14 treated and/or untreated with canine bone marrow mesenchymal
stem cell-conditioned media (cBM MSC CM). Optical density before adding n-hexadecane was adjusted to 0.8.
The hydrophobicity was expressed as the percentage of bacterial cells adhering to n-hexadecan. c normalized
bioluminescence [Relative Light Units (RLU/A550 ± SD)] after 24 h growth for the bioluminescence reporter E. coli
pSB1142 exposed to P. aeruginosa CFCS producing long-chain AHLs (C10–C14) treated and/or untreated with cBM
MSC CM. Alaskan Malamute (AM), Labrador (L), American Staffordshire Terrier (AST), Poodle (P), Eurohound €,
Beagle (B). A one way ANOVA and Tukey’s post hoc test were used to detect significant differences between the
positive control and individual experimental groups, and a statistical significance was accepted at * p value < 0.05,
** p value < 0.01 and *** p value < 0.001

3.3. Effects of cBM MSC CM on CSH of S. aureus

CSH of S. aureus 14 in PC and/or NC showed 59% versus 56% adherence to n-hexadecane,
respectively. In order to check the ability of cBM MSC CM to cause changes in the cell surface properties
of S. aureus 14, the latter was exposed to n-hexadecane with the six individual types of cBM MSC
CM. Type B CM produced the greatest reduction in S. aureus cell membrane hydrophobic properties,
decreasing its hydrophobic nature by almost half when compared with that of PC, while the other five
CM types had a lower effect on the bacterial surface hydrophobicity (approximately 25% reduction of
adherence to hexadecane) (Table 2). The results obtained regarding CSH and/or biofilm cBM MSC
CM-related changes indicate a relationship between the mentioned indices.

3.4. Quantification of Bioactivity of cBM MSC CM Exposed to P. aeruginosa CFCS Producing Long-Chain
AHLs (C10–C14) Using Luminescence-Based Reporter E. coli JM109 pSB1142

The E. coli JM109 pSB1142 reporter strain was applied to quantify the residual bioactivity of cBM
MSC CM-treated AHLs from P. aeruginosa CFCS. To exclude growth-dependent effects, optical density
measurements were recorded in order to normalize the bioluminescence production to the cell density.

Table 2 shows the normalized bioluminescence results for long-chain AHLs after 24 h of incubation
with the reporter strain E. coli JM109 pSB1142. Positive control (PC) containing the reporter strain in
BHI with CFCS from P. aeruginosa and negative control (NC), as previously described with DMEM
instead of cBM MSC CM, were used as blanks. The results demonstrated the ability of CM to modulate
bacterial communication in terms of inhibiting bioluminescence in E. coli JM109 pSB1142, indicating
AHL degradation. All six experimental cBM MSC CM groups showed a statistically significant
bioluminescence inhibition with a varying force of action (11,714 ± 1362 in PC group to the lowest
7753 ± 700 in experimental cBM MSC CM AM, and/or to the highest 10,294 ± 387 in experimental cBM
MSC CM L; given as average values of RLU/A550 ± SD; p value < 0.001; p value < 0.05). These results
indicate a bioluminescence reduction in QS-related E. coli JM109 pSB1142 ranging from 11% to 34%
(Table 2). These results suggest the capacity of cBM MSC CM to modify and degrade AHL autoinducers,
thereby attenuating QS-dependent virulence in Gram negative P. aeruginosa. The obtained results
regarding the anti-QS potential showed a differing force of action between MSCs from various
individual canine samples, probably reflecting their sample-specific differences.



Microorganisms 2020, 8, 1478 7 of 14

4. Discussion

The urgent need for new strategies in combating multiresistant bacterial biofilm-associated
infections requires the discovery of resources other than antibiotics, and a promising strategy in the
fight against pathogens appears to be to treat or control infection using QS inhibitory compounds that
block the bacterial communication system, a key regulator in the production of virulence factors and
biofilm formation, rather than through the direct killing of bacteria [23]. QS-therapeutic inhibitors
that interfere with small molecule-controlled bacterial communication pathways could have longer
functional shelf lives than second and third generation antibiotics [24], and could, moreover, reduce
the evolutionary pressure to develop bacterial resistance.

The wide range of anti-QS compounds from various sources that act against QS includes
halogenated furanones from marine red macroalgae Delisea pulchra [25,26]; N-acyl homoserine
lactone acylase from Streptomyces species [27]; N-acyl homoserine lactonases from Bacillus species [28];
other unknown AHL-interfering compounds reported from various plant sources [29]; and a few marine
microbes as well [30,31]. However, another attractive, insufficiently explored anti-QS supplement and
cofactor to antibiotics could be MSCs possessing an immunomodulatory property that could endow
them with several therapeutic and clinical applications. Recent studies have demonstrated that MSCs
attenuate inflammatory responses, enhance bacterial clearance [5,32] and produce specific factors
responsible for antimicrobial action. These findings suggest that MSCs, primarily safer MSC-derived
secretomes (avoiding the harmful side-effects of MSC-based therapy, such as the risk of tumor formation
and immunogenicity, and used in so-called cell-free stem cell therapy), could be a promising novel
therapeutic modality, especially for difficult-to-treat biofilm-associated antibiotic-resistant bacterial
infections. Considering that biofilm and other virulence factor productions are closely related to bacterial
communication through the QS system, the question arises of whether MSC-derived secretomes might
affect bacterial biofilm and signaling molecules. With regard to this, we evaluated the antibacterial,
antibiofilm and anti-QS activity of cBM MSC CM that was nonactivated with bacterial preconditioning.

The main results of our study are that (a) cBM MSC CM are able to inhibit the growth of some
selected bacteria (predominantly Gram-positive Streptococcus agalacticae CCM 6187, Staphylococcus
aureus CCM 3953, S. aureus 11) and that this activity is dependent on the bacterial type that is used;
(b) cBM MSC CM reduce the S. aureus biofilm-formation capacity without affecting bacterial growth,
which points to the presence of molecules that are able to influence the bacterial-surface interaction
by changing the surface area and the bioavailability of hydrophobic substrates able to modify the
microbial surface hydrophobicity, thus affecting microbial adhesion and detachment from abiotic
surfaces, or by inhibiting signal molecules responsible for bacterial communication and coordination in
Gram-positive microbes; (c) cBM MSC CM attenuate AHL-dependent QS of the reporter strain E. coli
JM109 pSB1142 with sample-specific suppression differences, and this inhibition of signal molecules
may block the production of virulence factors, thus preventing bacterial pathogenesis and the success
of the infection process.

Little is currently known about the precise mechanism underlying the antibacterial effects of MSCs.
Recent data suggest that MSCs exert strong antimicrobial effects through indirect and direct mechanisms:
indirectly, through their role in the host immune response against pathogens, especially in the dynamic
coordination of the immune system [33–36] or by increasing the activity of phagocytes [6,32,37,38];
and directly, through the secretion of antimicrobial peptides and proteins (AMPs) [1,5–8]. Moreover,
MSCs have been found to release circular membrane fragments called microvesicles (MVs), containing
numerous proteins, mRNAs, microRNAs, organelles and lipids involved in cell-cell communication
and the transfer of cellular material. Studies evaluating the presence of AMPs in the cargo of MVs are
underlined as perspective opportunities for developing new drug delivery tools [7].

Most of the data about the antimicrobial properties of MSCs (with or without bacterial
preconditioning) have been obtained from in vitro studies with bacteria. For both unstimulated
and stimulated MSCs, a direct antimicrobial effect has been described.
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The existing studies [1,5,39] suggest that some paracrine molecules, such as keratinocyte growth
factor, antimicrobial polypeptide LL-37, or lipocalin 2, secreted by MSCs upon stimulation by bacterial
preconditioning, mediate the specific antibacterial effects of MSCs. However, they admit that the
antimicrobial activity of MSCs might also be associated with the other mechanisms, including the
effects on phagocytosis. These variations in the antimicrobial spectrum of MSCs might be a specific
response of MSCs in order to produce the most effective AMPs against a specific type of pathogen
challenge or a larger quantity of unspecific molecules.

AMPs can also be active against pathogens that are resistant to conventional antibiotics, such as
multidrug-resistant biofilm associated bacteria, which cause difficult-to-treat chronic diseases. Many
AMPs are bactericidal as opposed to bacteriostatic, and it is unlikely that bacteria will be able to
respond to these AMPs by adopting resistance strategies. These advantageous features make AMPs
good candidates for drug development, although their clinical and commercial development still
needs to overcome challenges, such as the route of administration, potential toxicity and stability [40].
For therapeutic use, naturally occurring AMPs may be a more practical and cost-effective substitute to
synthetic ones for traditional antibiotic therapy.

To the best of our knowledge, only a few articles have, to date, studied canine MSC immune
modulation [41–43], and no canine-derived MSC-related AMPs have been studied. Harman et al. [44]
described the presence of four distinct AMPs produced by equine MSCs, namely cystatin C, elafin,
lipocalin 2 and cathelicidin. With the exception of elafin, first described in the abovementioned research
article, others have been documented as being produced by MSCs from other sources and species
(predominantly human and murine). Similarly, canine MSCs could produce diverse antimicrobial
molecules. To date, more than 3244 antimicrobial peptides from six kingdoms (364 bacteriocins/peptide
antibiotics from bacteria, 5 from archaea, 8 from protists, 21 from fungi, 360 from plants and 2406
from animals, including some synthetic peptides) have been registered in the Antimicrobial Peptide
Database (APD, http://aps.unmc.edu/AP/main.php; Last updated: Aug 20, 2020), including 115 that
are human host defense peptides [7].

Three out of our six examined cBM MSC CM were submitted to proteomic analyses kindly
provided by the Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM,
in France (the results of these proteomic analyses are shown in the research article by Humenik et al. [19],
in Supp. Data 1 – List of the proteins identified). Among the proteins specified after 48 h of cBM MSC
cultivation were the following: apolipoprotein B (apoB), apolipoprotein D (apoD), amyloid-β peptide
(Aβ), cathepsin B and protein S100-A4, all of which can be considered to be AMPs. Apolipoproteins
are generally considered to be sources of bioactive peptides known as “host defence peptides”
(HDPs), on the basis of their wide range of biological activities, such as multispecies antibiofilm
properties, modulation of the innate immune response, and anticancer, analgesic, antioxidant and
anti-inflammatory activities. HDPs are short, cationic amphipathic peptides playing a key role in the
response to infection and inflammation in all complex life forms. Gaglione et al. [45] described two
novel HDPs identified in human ApoB (residues 887–922), with a broad spectrum of antimicrobial
activity against both Gram-positive and Gram-negative strains. However, it has to be underlined
that ApoB-derived peptides were found to be ineffective against some S. aureus strains and Salmonella
enteriditis, and this observation is in agreement with previous findings indicating that most natural
cationic antimicrobial peptides do not appear to be highly optimized for direct antimicrobial activity,
since it is likely that multiple modestly active peptides with a concomitant immunomodulatory activity
work effectively in combination and/or when induced or specifically delivered to sites of infection.
The bacterial isolates treated with cBM MSC CM examined by us demonstrated various effects that
were evidently dependent on the bacterial type used. Four strains (among them also S. aureus and
Salmonella enteritidis) were resistant to all cBM MSC CM used by us, and these results correlate with the
already-mentioned previously published facts described above for HDPs.

http://aps.unmc.edu/AP/main.php
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ApoD is an extracellular glycoprotein of the lipocalin protein family, involved in various functions
such as immune response, cell proliferation regulation, chemoreception, retinoid metabolism, axon
growth and proteolysis regulation [46].

Aβ is a key protein in Alzheimer’s disease pathology; however, many of the physiochemical
and biological properties previously reported for Aβ are similar to those of a group of biomolecules
collectively known as AMPs (see above, p. 8), which function in the innate immune system. AMPs are
potent, broad-spectrum antibiotics targeting Gram-negative and Gram-positive bacteria, mycobacteria,
enveloped viruses, fungi, protozoans and, in some cases, transformed or cancerous host cells, and they
are also potent immunomodulators mediating cytokine release and adaptive immune responses.

The three main families of mammalian AMPs are the defensins, histatins and cathelicidins.
Only one member of the cathelicidin family has been identified in humans, the LL-37 peptide, and only
this one exhibits striking similarities to Aβ. Kumar et al. [47] and Soscia et al. [48] made findings
showing that Aβpossessed an antimicrobial activity and might function in vivo as an AMP, thus playing
a role as an effector molecule of innate immunity.

The next important contributors responding to infection as antimicrobial agents and as immune
modulators (found in our CMs) are serine and cysteine proteases, for example cathepsin B [49].
Although serine proteases can kill microbes by virtue of their antimicrobial activity, unrelated to
their digestive potential, these enzymes can also restrain microbial growth through the processing of
microbial and host proteins. For example, they cleave virulence factors of enterobacteria or liberate
host antimicrobial peptides from their precursor proteins [50].

The other, no less substantial antimicrobial superintendent detected in our CMs was one of a
family of small cationic proteins, Protein S100-A4, previously reported to have proinflammatory and
bactericidal properties [51].

The next important antimicrobial agents revealed by the proteomic analysis were: galectin-3,
with an affinity for beta-galactosides and with an exhibition of antimicrobial activity against bacteria
and fungi, as described by Feeley et al. [52]; peptides derived from C-type Lectin Domain Family 3
Member A (CLEC3A) [53]; transferrins, comprising a family of proteins that include iron-binding
polypeptides and contributing to the defense against microbial infection by targeting H+-ATPase and
interfering with H+ translocation, yielding a lethal effect in vitro [54]; and granulins, known as growth
factors and cell communication molecules with diverse biological functions [55].

Our second task was to evaluate the antibiofilm activity of cBM MSC CM using SCVA, and our
obtained results revealed a statistically significant reduction of biofilm-associated S. aureus 14 without
the influence of bacterial growth. It may be possible that MSCs secrete molecules with the function
of regulating biofilm architecture because they exhibit a broad spectrum of biofilm-inhibiting or
biofilm-diffusing activities, including affecting the S. aureus two-component QS system encoded by
the agr locus, which is involved in the coordination of the biofilm-formation process and bacterial
virulence activities. Consequently, QS inhibitors have emerged as important promising candidates
for the inhibition of biofilm formation and the expression of virulence factors through the blocking
of signaling molecules. The use of these compounds alone or in combination with antibiotics may
aid in the more rapid healing of chronic wounds and tissue regeneration. Another possibility for
influencing bacterial-surface interaction and S. aureus biofilm reduction seems to be more closely related
to modifications of CSH, as evidenced by our obtained results, presented in Table 2. These results
indicate a relationship between the mentioned indices (biofilm production and CSH) in terms of a
reduction in S. aureus cell membrane hydrophobic properties, decreasing its hydrophobic nature and
leading to a statistically significant biofilm inhibition.

Specific cationic HDPs have recently been described as possessing a multispecies antibiofilm
activity, which is independent of their effect against planktonic bacteria. The abovementioned authors,
Gaglione et al. [45], pointed out that the ApoB-derived peptides examined by them displayed a
significant antibiofilm activity, with, moreover, an extraordinary ability to interfere with various stages
of the biofilm growth mode and simultaneously maintain bacterial viability. ApoB-derived peptides
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were found to be effective against biofilm formation and attachment, and were also found to strongly
affect preformed biofilm. Interestingly, ApoB-derived peptide antibiofilm activity was detected even
on bacterial strains that were not sensitive to direct antimicrobial activity by peptides. ApoB contains
two low-density lipoprotein (LDL) receptor binding domains, namely region A (ApoB3147-3157) and
region B (ApoB3359-3367), and very low-density, as well as low-density, lipoproteins play an important
role in the innate immune system by interfering with the QS system, which upregulates genes required
for invasive S. aureus infection. The mechanism of antagonism entails binding ApoB to an S. aureus
autoinducer pheromone, preventing signaling through its receptor. For this reason, mice deficient in
ApoB are more susceptible to invasive bacterial infection [56].

In our third task, we focused on the effects of cBM MSC CM with regard to the inhibition of
bioluminescence in the reporter strain E. coli JM109 pSB1142. P. aeruginosa 45 produces long-chain
AHLs (C10–C14) for the activation of bioluminescence in the reporter strain E. coli JM109 pSB1142.

We assume that cBM MSC CM contain Quorum Quenching (QQ) molecules able to degrade these
parent long-chain AHLs and destroy Las system signaling molecules, resulting in the attenuation of
AHL-dependent QS signaling. A similar statement for nonthermal plasma appears in the research
article by Flynn et al. [57], who confirmed QS signaling inhibition through the chemical modification
and degradation of the parent AHL molecules. QQ is a process by which QS signal molecules are
enzymatically cleaved in order to inhibit their activity [58,59]. One such example is the degradation
of AHL molecules by AHL lactonases and AHL acylases, which respectively cleave the homoserine
lactone rings and the amide bonds of AHL molecules [60]. For example, three lactonases are present in
humans: PON1, PON2 and PON3; of these, only PON2 is expressed in all tissues, and it appears to
be involved in the first step of defense against bacterial infection. P. aeruginosa uses acyl-homoserine
lactone (HSL) quorum-sensing molecules, prevalently N-(3-oxododecanoyl)-l-homoserine lactone
(3O-C12-HSL), to regulate the expression of genes implicated in virulence and biofilm formation.
It has been shown that all the human PONs can deactivate 3O-C12-HSL [61]. Lactonase hydrolyzes
the ester bond in the homoserine lactone ring of acylated homoserine lactones. By hydrolyzing the
lactone bond, lactonase prevents these signaling molecules from binding to their target transcriptional
regulators, thus inhibiting quorum sensing [62]. Two other enzymes, AHL oxidase and AHL reductase,
do not cleave the AHL molecule, but modify its activity. As pointed out by Teiber et al. [63], various
mammal tissue and cells express a broad range of enzymes, such as carboxylesterases, amidases,
acylases, proteases, oxidases and reductases, which could potentially deactivate 3O-C12-HSL, as well
as other AHLs.

The results presented in this study demonstrate for the first time that, beyond the well-characterized
antimicrobial effects of MSC CM, these conditioned media can be used to attenuate S. aureus biofilm
production and modulate bacterial QS directly in Gram-negative bacteria. We assume that AHL
molecules are altered after cBM MSC CM exposure, giving rise to AHL derivatives and, ultimately,
to the complete attenuation and inhibition of signaling. This study offers the first insights into how
MSC CM can rapidly alter QS signaling. At the same time, to the best of our knowledge, this is the first
report on canine BM MSC CM associated with in vitro antibiofilm and anti-QS activities.

Overall, our findings suggest, first, that canine BM MSC CM inhibit the growth of some
representative, predominantly Gram-positive bacteria, such as Streptococcus agalacticae CCM 6187,
Staphylococcus aureus CCM 3953 and S. aureus 11, although some others, namely biofilm-associated
S. aureus 14, reference-based Escherichia coli C 1971, Salmonella enteritidis CCM 4420 and Bacillus cereus
CCM 869, remained resistant. Second, they attenuate the biofilm formation of Gram-positive S. aureus,
and, moreover, the presented data demonstrate for the first time that cBM MSC CM exposure rapidly
alters the ability of AHL to elicit QS signaling in the bacterial reporter strain E. coli JM109 pSB1142.
These potentially vary between MSCs from various individual canine specimens and probably reflect
their sample-specific differences. Furthermore, the proteomic analysis of the selected three cBM
MSC CM revealed the presence of some substances of a protein character considered to be AMPs, or,
more precisely, having a previously-described bactericidal effect, immunomodulation capacity and
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antibiofilm activity, and we assume that they are most likely responsible for the in vitro antibacterial,
antibiofilm and anti-QS activities of cBM MSC CM. Although further studies will be required to give a
full account of the diverse antibacterial, antibiofilm and anti-QS activity mechanisms of cBM MSC
CM, these preliminary findings suggest that such conditioned media may represent an important new
approach to managing biofilm-associated and QS signal molecule-dependent bacterial infections.

5. Conclusions

For future studies, we can conclude that cBM MSC CM, or rather their individual identified
antibacterial, antibiofilm and anti-QS components, could be investigated in vivo for an evaluation of
their biological activity as potent drugs in the eradication of chronic biofilm-associated drug-resistant
infections in dogs, along with the therapies frequently used against them. All these observations
associated with their multifunctional properties open up interesting perspectives regarding the
therapeutic applications of these media.
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13. Krešić, N.; Šimić, I.; Lojkić, I.; Bedeković, T. Canine Adipose Derived Mesenchymal Stem Cells Transcriptome
Composition Alterations: A Step towards Standardizing Therapeutic. Stem Cells Int. 2017, 2017, 4176292.
[CrossRef] [PubMed]

14. Villatoro, A.J.; Alcoholado, C.; Martín-Astorga, M.C.; Fernández, V.; Cifuentes, M.; Becerra, J. Comparative
Analysis and Characterization of Soluble Factors and Exosomes from Cultured Adipose Tissue and Bone
Marrow Mesenchymal Stem Cells in Canine Species. Vet. Immunol. Immunopathol. 2019, 208, 6–15. [CrossRef]
[PubMed]

15. Voga, M.; Adamic, N.; Vengust, M.; Majdic, G. Stem Cells in Veterinary Medicine—Current State and
Treatment Options. Front. Vet. Sci. 2020, 7, 278. [CrossRef] [PubMed]

16. Bautista-Hernández, L.A.; Gómez-Olivares, J.L.; Buentello-Volante, B.; Bautista-de Lucio, V.M. Fibroblasts:
The Unknown Sentinels Eliciting Immune Responses against Microorganisms. Eur. J. Microbiol. Immunol.
2017, 7, 151–157. [CrossRef]

17. Kumar, P.; Koul, S.; Patel, S.K.S.; Lee, J.-K.; Kalia, V.C. Heterologous Expression of Quorum Sensing Inhibitory
Genes in Diverse Organisms. In Quorum Sensing vs. Quorum Quenching: A Battle with No End in Sight;
Kalia, V.C., Ed.; Springer: New Delhi, India, 2015; pp. 343–356. [CrossRef]

18. Bjarnsholt, T.; Jensen, P.Ø.; Burmølle, M.; Hentzer, M.; Haagensen, J.A.J.; Hougen, H.P.; Calum, H.;
Madsen, K.G.; Moser, C.; Molin, S.; et al. Pseudomonas Aeruginosa Tolerance to Tobramycin, Hydrogen
Peroxide and Polymorphonuclear Leukocytes Is Quorum-Sensing Dependent. Microbiology 2005, 151, 373–383.
[CrossRef]

19. Humenik, F.; Cizkova, D.; Cikos, S.; Luptakova, L.; Madari, A.; Mudronova, D.; Kuricova, M.; Farbakova, J.;
Spirkova, A.; Petrovova, E.; et al. Canine Bone Marrow-Derived Mesenchymal Stem Cells: Genomics,
Proteomics and Functional Analyses of Paracrine Factors. Mol. Cell. Proteom. 2019, 18, 1824–1835. [CrossRef]

20. EUCAST. Disk Diffusion Method for Antimicrobial Susceptibility Testing Version 6.0; European Society of Clinical
Microbiology and Infectious Diseases: Basel, Switzerland, 2017.

21. O’Toole, G.A. Microtiter Dish Biofilm Formation Assay. JoVE 2011, 47, 2437. [CrossRef]
22. Bermudez-Brito, M.; Muñoz-Quezada, S.; Gomez-Llorente, C.; Matencio, E.; Bernal, M.J.; Romero, F.; Gil, A.

Cell-Free Culture Supernatant of Bifidobacterium Breve CNCM I-4035 Decreases Pro-Inflammatory Cytokines
in Human Dendritic Cells Challenged with Salmonella Typhi through TLR Activation. PLoS ONE 2013,
8, e59370. [CrossRef]

23. BosgelmezTinaz, G. Disruption of Bacterial Cell-to-Cell Communication (Quorum Sensing): A Promising
Novel Way to Combat Bacteria-Mediated Diseases. Musbed 2013, 1, 1. [CrossRef]

24. Rutherford, S.T.; Bassler, B.L. Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control.
Cold Spring Harb. Perspect. Med. 2012, 2, a012427. [CrossRef] [PubMed]

25. Manefield, M.; de Nys, R.; Naresh, K.; Roger, R.; Givskov, M.; Peter, S.; Kjelleberg, S. Evidence That
Halogenated Furanones from Delisea Pulchra Inhibit Acylated Homoserine Lactone (AHL)-Mediated Gene
Expression by Displacing the AHL Signal from Its Receptor Protein. Microbiology 1999, 145, 283–291.
[CrossRef] [PubMed]

26. Hentzer, M.; Riedel, K.; Rasmussen, T.B.; Heydorn, A.; Andersen, J.B.; Parsek, M.R.; Rice, S.A.; Eberl, L.;
Molin, S.; Høiby, N.; et al. Inhibition of Quorum Sensing in Pseudomonas Aeruginosa Biofilm Bacteria by a
Halogenated Furanone Compound. Microbiology 2002, 148, 87–102. [CrossRef]

27. Park, S.Y.; Kang, H.O.; Jang, H.S.; Lee, J.K.; Koo, B.T.; Yum, D.Y. Identification of Extracellular
N-Acylhomoserine Lactone Acylase from a Streptomyces Sp. and Its Application to Quorum Quenching.
AEM 2005, 71, 2632–2641. [CrossRef]

28. Dong, Y.H.; Gusti, A.R.; Zhang, Q.; Xu, J.L.; Zhang, L.H. Identification of Quorum-Quenching N-Acyl
Homoserine Lactonases from Bacillus Species. AEM 2002, 68, 1754–1759. [CrossRef]

http://dx.doi.org/10.1080/01652176.2013.873963
http://dx.doi.org/10.4252/wjsc.v7.i3.556
http://www.ncbi.nlm.nih.gov/pubmed/25914763
http://dx.doi.org/10.1186/s12917-019-2087-2
http://www.ncbi.nlm.nih.gov/pubmed/31640767
http://dx.doi.org/10.1155/2017/4176292
http://www.ncbi.nlm.nih.gov/pubmed/28246532
http://dx.doi.org/10.1016/j.vetimm.2018.12.003
http://www.ncbi.nlm.nih.gov/pubmed/30712794
http://dx.doi.org/10.3389/fvets.2020.00278
http://www.ncbi.nlm.nih.gov/pubmed/32656249
http://dx.doi.org/10.1556/1886.2017.00009
http://dx.doi.org/10.1007/978-81-322-1982-8_28
http://dx.doi.org/10.1099/mic.0.27463-0
http://dx.doi.org/10.1074/mcp.RA119.001507
http://dx.doi.org/10.3791/2437
http://dx.doi.org/10.1371/journal.pone.0059370
http://dx.doi.org/10.5455/musbed.20130910085643
http://dx.doi.org/10.1101/cshperspect.a012427
http://www.ncbi.nlm.nih.gov/pubmed/23125205
http://dx.doi.org/10.1099/13500872-145-2-283
http://www.ncbi.nlm.nih.gov/pubmed/10075410
http://dx.doi.org/10.1099/00221287-148-1-87
http://dx.doi.org/10.1128/AEM.71.5.2632-2641.2005
http://dx.doi.org/10.1128/AEM.68.4.1754-1759.2002


Microorganisms 2020, 8, 1478 13 of 14

29. Musthafa, K.S.; Ravi, A.V.; Annapoorani, A.; Packiavathy, I.S.V.; Pandian, S.K. Evaluation of
Anti-Quorum-Sensing Activity of Edible Plants and Fruits through Inhibition of the N-Acyl-Homoserine
Lactone System in Chromobacterium Violaceum and Pseudomonas Aeruginosa. Chemotherapy 2010, 56, 333–339.
[CrossRef]

30. Nithya, C.; Aravindraja, C.; Pandian, S.K. Bacillus Pumilus of Palk Bay Origin Inhibits Quorum-Sensing-
Mediated Virulence Factors in Gram-Negative Bacteria. Res. Microbiol. 2010, 161, 293–304. [CrossRef]

31. Musthafa, K.S.; Saroja, V.; Pandian, S.K.; Ravi, A.V. Antipathogenic Potential of Marine Bacillus Sp. SS4 on
N-Acyl-Homoserine-Lactone-Mediated Virulence Factors Production in Pseudomonas Aeruginosa (PAO1).
J. Biosci. 2011, 36, 55–67. [CrossRef]

32. Kim, J.; Hematti, P. Mesenchymal Stem Cell–Educated Macrophages: A Novel Type of Alternatively Activated
Macrophages. Exp. Hematol. 2009, 37, 1445–1453. [CrossRef]

33. Raffaghello, L.; Bianchi, G.; Bertolotto, M.; Montecucco, F.; Busca, A.; Dallegri, F.; Ottonello, L.; Pistoia, V.
Human Mesenchymal Stem Cells Inhibit Neutrophil Apoptosis: A Model for Neutrophil Preservation in the
Bone Marrow Niche. Stem Cells 2008, 26, 151–162. [CrossRef] [PubMed]

34. Cassatella, M.A.; Mosna, F.; Micheletti, A.; Lisi, V.; Tamassia, N.; Cont, C.; Calzetti, F.; Pelletier, M.; Pizzolo, G.;
Krampera, M. Toll-Like Receptor-3-Activated Human Mesenchymal Stromal Cells Significantly Prolong the
Survival and Function of Neutrophils. Stem Cells 2011, 29, 1001–1011. [CrossRef] [PubMed]

35. Maqbool, M.; Vidyadaran, S.; George, E.; Ramasamy, R. Human Mesenchymal Stem Cells Protect Neutrophils
from Serum-Deprived Cell Death. Cell Biol. Int. 2011, 35, 1247–1251. [CrossRef] [PubMed]

36. Cortés-Araya, Y.; Amilon, K.; Rink, B.E.; Black, G.; Lisowski, Z.; Donadeu, F.X.; Esteves, C.L. Comparison of
Antibacterial and Immunological Properties of Mesenchymal Stem/Stromal Cells from Equine Bone Marrow,
Endometrium, and Adipose Tissue. Stem Cells Dev. 2018, 27, 1518–1525. [CrossRef] [PubMed]

37. Hall, S.R.R.; Tsoyi, K.; Ith, B.; Padera, R.F.; Lederer, J.A.; Wang, Z.; Liu, X.; Perrella, M.A. Mesenchymal
Stromal Cells Improve Survival During Sepsis in the Absence of Heme Oxygenase-1: The Importance of
Neutrophils. Stem Cells 2013, 31, 397–407. [CrossRef] [PubMed]

38. Lee, J.W.; Krasnodembskaya, A.; McKenna, D.H.; Song, Y.; Abbott, J.; Matthay, M.A. Therapeutic Effects of
Human Mesenchymal Stem Cells in Ex Vivo Human Lungs Injured with Live Bacteria. Am. J. Respir. Crit.
Care Med. 2013, 187, 751–760. [CrossRef] [PubMed]

39. Zhu, Y.; Feng, X.; Abbott, J.; Fang, X.; Hao, Q.; Monsel, A.; Qu, J.; Matthay, M.A.; Lee, J.W. Human
Mesenchymal Stem Cell Microvesicles for Treatment of Escherichia Coli Endotoxin-Induced Acute Lung
Injury in Mice: MSC MV Attenuates ALI in Part Through KGF. Stem Cells 2014, 32, 116–125. [CrossRef]

40. Seo, M.-D.; Won, H.-S.; Kim, J.-H.; Mishig-Ochir, T.; Lee, B.-J. Antimicrobial Peptides for Therapeutic
Applications: A Review. Molecules 2012, 17, 12276–12286. [CrossRef]

41. Park, S.A.; Reilly, C.M.; Wood, J.A.; Chung, D.J.; Carrade, D.D.; Deremer, S.L.; Seraphin, R.L.; Clark, K.C.;
Zwingenberger, A.L.; Borjesson, D.L.; et al. Safety and Immunomodulatory Effects of Allogeneic Canine
Adipose-Derived Mesenchymal Stromal Cells Transplanted into the Region of the Lacrimal Gland, the Gland
of the Third Eyelid and the Knee Joint. Cytotherapy 2013, 15, 1498–1510. [CrossRef]

42. Lee, W.S.; Suzuki, Y.; Graves, S.S.; Iwata, M.; Venkataraman, G.M.; Mielcarek, M.; Peterson, L.J.; Ikehara, S.;
Torok-Storb, B.; Storb, R. Canine Bone Marrow-Derived Mesenchymal Stromal Cells Suppress Alloreactive
Lymphocyte Proliferation in Vitro but Fail to Enhance Engraftment in Canine Bone Marrow Transplantation.
Biol. Blood Marrow Transplant. 2011, 17, 465–475. [CrossRef]

43. Kang, J.W.; Kang, K.-S.; Koo, H.C.; Park, J.R.; Choi, E.W.; Park, Y.H. Soluble Factors–Mediated Immunomodulatory
Effects of Canine Adipose Tissue–Derived Mesenchymal Stem Cells. Stem Cells Dev. 2008, 17, 681–694. [CrossRef]
[PubMed]

44. Harman, R.M.; Yang, S.; He, M.K.; Van de Walle, G.R. Antimicrobial Peptides Secreted by Equine Mesenchymal
Stromal Cells Inhibit the Growth of Bacteria Commonly Found in Skin Wounds. Stem Cell Res. Ther. 2017,
8, 157. [CrossRef] [PubMed]

45. Gaglione, R.; Dell’Olmo, E.; Bosso, A.; Chino, M.; Pane, K.; Ascione, F.; Itri, F.; Caserta, S.; Amoresano, A.;
Lombardi, A.; et al. Novel Human Bioactive Peptides Identified in Apolipoprotein B: Evaluation of Their
Therapeutic Potential. Biochem. Pharmacol. 2017, 130, 34–50. [CrossRef] [PubMed]

46. Kelly, B.A.; Harrison, I.; McKnight, Á.; Dobson, C.B. Anti-Infective Activity of Apolipoprotein Domain
Derived Peptides in vitro: Identification of Novel Antimicrobial Peptides Related to Apolipoprotein B with
Anti-HIV Activity. BMC Immunol. 2010, 11, 13. [CrossRef] [PubMed]

http://dx.doi.org/10.1159/000320185
http://dx.doi.org/10.1016/j.resmic.2010.03.002
http://dx.doi.org/10.1007/s12038-011-9011-7
http://dx.doi.org/10.1016/j.exphem.2009.09.004
http://dx.doi.org/10.1634/stemcells.2007-0416
http://www.ncbi.nlm.nih.gov/pubmed/17932421
http://dx.doi.org/10.1002/stem.651
http://www.ncbi.nlm.nih.gov/pubmed/21563279
http://dx.doi.org/10.1042/CBI20110070
http://www.ncbi.nlm.nih.gov/pubmed/21649586
http://dx.doi.org/10.1089/scd.2017.0241
http://www.ncbi.nlm.nih.gov/pubmed/30044182
http://dx.doi.org/10.1002/stem.1270
http://www.ncbi.nlm.nih.gov/pubmed/23132816
http://dx.doi.org/10.1164/rccm.201206-0990OC
http://www.ncbi.nlm.nih.gov/pubmed/23292883
http://dx.doi.org/10.1002/stem.1504
http://dx.doi.org/10.3390/molecules171012276
http://dx.doi.org/10.1016/j.jcyt.2013.06.009
http://dx.doi.org/10.1016/j.bbmt.2010.04.016
http://dx.doi.org/10.1089/scd.2007.0153
http://www.ncbi.nlm.nih.gov/pubmed/18717642
http://dx.doi.org/10.1186/s13287-017-0610-6
http://www.ncbi.nlm.nih.gov/pubmed/28676123
http://dx.doi.org/10.1016/j.bcp.2017.01.009
http://www.ncbi.nlm.nih.gov/pubmed/28131846
http://dx.doi.org/10.1186/1471-2172-11-13
http://www.ncbi.nlm.nih.gov/pubmed/20298574


Microorganisms 2020, 8, 1478 14 of 14

47. Kumar, D.K.V.; Choi, S.H.; Washicosky, K.J.; Eimer, W.A.; Tucker, S.; Ghofrani, J.; Lefkowitz, A.; McColl, G.;
Goldstein, L.E.; Tanzi, R.E.; et al. Amyloid-β Peptide Protects against Microbial Infection in Mouse and
Worm Models of Alzheimer’s Disease. Sci. Transl. Med. 2016, 8, 340ra72. [CrossRef]

48. Soscia, S.J.; Kirby, J.E.; Washicosky, K.J.; Tucker, S.M.; Ingelsson, M.; Hyman, B.; Burton, M.A.; Goldstein, L.E.;
Duong, S.; Tanzi, R.E.; et al. The Alzheimer’s Disease-Associated Amyloid β-Protein Is an Antimicrobial
Peptide. PLoS ONE 2010, 5, e9505. [CrossRef]

49. Arockiaraj, J.; Kumaresan, V.; Chaurasia, M.K.; Bhatt, P.; Palanisamy, R.; Pasupuleti, M.; Gnanam, A.J.; Kasi, M.
Molecular Characterization of a Novel Cathepsin B from Striped Murrel Channa striatus: Bioinformatics
Analysis, Gene Expression, Synthesis of Peptide and Antimicrobial Property. Turk. J. Fish. Aquat. Sci. 2014,
14, 379–389. [CrossRef]

50. Majewski, P.; Majchrzak-Gorecka, M.; Grygier, B.; Skrzeczynska-Moncznik, J.; Osiecka, O.; Cichy, J.
Inhibitors of Serine Proteases in Regulating the Production and Function of Neutrophil Extracellular
Traps. Front. Immunol. 2016, 7, 1–10. [CrossRef]

51. Bian, L.; Strzyz, P.; Jonsson, I.M.; Erlandsson, M.; Hellvard, A.; Brisslert, M.; Ohlsson, C.; Ambartsumian, N.;
Grigorian, M.; Bokarewa, M. S100A4 Deficiency Is Associated With Efficient Bacterial Clearance and Protects
Against Joint Destruction During Staphylococcal Infection. J. Infect. Dis. 2011, 204, 722–730. [CrossRef]

52. Feeley, E.M.; Pilla-Moffett, D.M.; Zwack, E.E.; Piro, A.S.; Finethy, R.; Kolb, J.P.; Martinez, J.; Brodsky, I.E.;
Coers, J. Galectin-3 Directs Antimicrobial Guanylate Binding Proteins to Vacuoles Furnished with Bacterial
Secretion Systems. Proc. Natl. Acad. Sci. USA 2017, 114, E1698–E1706. [CrossRef]

53. Elezagic, D.; Mörgelin, M.; Hermes, G.; Hamprecht, A.; Sengle, G.; Lau, D.; Höllriegl, S.; Wagener, R.;
Paulsson, M.; Streichert, T.; et al. Antimicrobial Peptides Derived from the Cartilage-Specific C-Type Lectin
Domain Family 3 Member A (CLEC3A)—Potential in the Prevention and Treatment of Septic Arthritis.
Osteoarthr. Cartil. 2019, 27, 1564–1573. [CrossRef] [PubMed]

54. Andrés, M.T.; Fierro, J.F. Antimicrobial Mechanism of Action of Transferrins: Selective Inhibition of
H+-ATPase. AAC 2010, 54, 4335–4342. [CrossRef] [PubMed]

55. Bruhn, O.; Grötzinger, J.; Cascorbi, I.; Jung, S. Antimicrobial Peptides and Proteins of the Horse—Insights
into a Well-Armed Organism. Vet. Res. 2011, 42, 98. [CrossRef] [PubMed]

56. Peterson, M.M.; Mack, J.L.; Hall, P.R.; Alsup, A.A.; Alexander, S.M.; Sully, E.K.; Sawires, Y.S.; Cheung, A.L.;
Otto, M.; Gresham, H.D. Apolipoprotein B Is an Innate Barrier against Invasive Staphylococcus Aureus
Infection. Cell Host Microbe 2008, 4, 555–566. [CrossRef] [PubMed]

57. Flynn, P.B.; Busetti, A.; Wielogorska, E.; Chevallier, O.P.; Elliott, C.T.; Laverty, G.; Gorman, S.P.; Graham, W.G.;
Gilmore, B.F. Non-Thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing
and Virulence. Sci. Rep. 2016, 6, 26320. [CrossRef] [PubMed]

58. Kalia, V.C.; Purohit, H.J. Quenching the Quorum Sensing System: Potential Antibacterial Drug Targets.
Crit. Rev. Microbiol. 2011, 37, 121–140. [CrossRef] [PubMed]

59. Sharma, R.; Jangid, K. Fungal Quorum Sensing Inhibitors. In Quorum Sensing vs. Quorum Quenching: A Battle
with No End in Sight; Kalia, V.C., Ed.; Springer: New Delhi, India, 2015; pp. 237–257.

60. Huma, N. Diversity and Polymorphism in AHL-Lactonase Gene (AiiA) of Bacillus. J. Microbiol. Biotechnol.
2011, 21, 1001–1011. [CrossRef]

61. Mandrich, L.; Porzio, E.; Andrenacci, D.; Manco, G. Exploring Paraoxonases/Lactonases as a Tool to Interfere
with Pseudomonas Aeruginosa Infection. Biotechnol. Biomater. 2014, 3, 5. [CrossRef]

62. Dong, Y.H.; Wang, L.H.; Xu, J.L.; Zhang, H.B.; Zhang, X.F.; Zhang, L.H. Quenching Quorum-Sensing-
Dependent Bacterial Infection by an N-Acyl Homoserine Lactonase. Nature 2001, 411, 813–817. [CrossRef]

63. Teiber, J.F.; Horke, S.; Haines, D.C.; Chowdhary, P.K.; Xiao, J.; Kramer, G.L.; Haley, R.W.; Draganov, D.I.
Dominant Role of Paraoxonases in Inactivation of the Pseudomonas Aeruginosa Quorum-Sensing Signal
N-(3-Oxododecanoyl)-l-Homoserine Lactone. IAI 2008, 76, 2512–2519. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1126/scitranslmed.aaf1059
http://dx.doi.org/10.1371/journal.pone.0009505
http://dx.doi.org/10.4194/1303-2712-v14_2_08
http://dx.doi.org/10.3389/fimmu.2016.00261
http://dx.doi.org/10.1093/infdis/jir369
http://dx.doi.org/10.1073/pnas.1615771114
http://dx.doi.org/10.1016/j.joca.2019.06.007
http://www.ncbi.nlm.nih.gov/pubmed/31279936
http://dx.doi.org/10.1128/AAC.01620-09
http://www.ncbi.nlm.nih.gov/pubmed/20625147
http://dx.doi.org/10.1186/1297-9716-42-98
http://www.ncbi.nlm.nih.gov/pubmed/21888650
http://dx.doi.org/10.1016/j.chom.2008.10.001
http://www.ncbi.nlm.nih.gov/pubmed/19064256
http://dx.doi.org/10.1038/srep26320
http://www.ncbi.nlm.nih.gov/pubmed/27242335
http://dx.doi.org/10.3109/1040841X.2010.532479
http://www.ncbi.nlm.nih.gov/pubmed/21271798
http://dx.doi.org/10.4014/jmb.1105.05056
http://dx.doi.org/10.4172/2155-952X.S1.028
http://dx.doi.org/10.1038/35081101
http://dx.doi.org/10.1128/IAI.01606-07
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Strains And Growth Conditions 
	Preparation of cBM MSC CM 
	Anti-Bacterial Activity Test 
	Biofilm Formation 
	Effect of cBM MSC CM on Cell Surface Hydrophobicity (CSH) of S. aureus 
	Bioluminescence Assay (BA) 
	Statistical Analysis 

	Results 
	Antibacterial Disc Diffusion Testing 
	Anti-Biofilm SCVA 
	Effects of cBM MSC CM on CSH of S. aureus 
	Quantification of Bioactivity of cBM MSC CM Exposed to P. aeruginosa CFCS Producing Long-Chain AHLs (C10–C14) Using Luminescence-Based Reporter E. coli JM109 pSB1142 

	Discussion 
	Conclusions 
	References

