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Abstract
Convolutional neural networks (CNN) have shown great potentials and have been proven
to be an effective tool for some image‐based deep learning tasks in the field of
computational electromagnetism (CEM). In this work, an energy‐based physics‐informed
neural network (EPINN) is proposed for low‐frequency electromagnetic computation.
Two different physics‐informed loss functions are designed. To help the network focus
on the region of interest instead of computing the whole domain on average, the mag-
netic energy norm error loss function is proposed. Besides, the methodology of energy
minimization is integrated into the CNN by introducing the magnetic energy error loss
function. It is observed that the introduction of the physics‐informed loss functions
improved the accuracy of the network with the same architecture and database. Mean-
while, these changes also cause the network to be more sensitive to some hyper-
parameters and makes the training process oscillate or even diverge. To address this issue,
the sensitivity of the network hyperparameters for both physics‐informed loss functions
are further investigated. Numerical experiments demonstrate that the proposed ap-
proaches have good accuracy and efficiency with fine‐tuned hyperparameters. Further-
more, the post‐test illustrates that the EPINN has excellent interpolation performance
and can obtain good extrapolation results under certain restrictions.
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1 | INTRODUCTION

Computational electromagnetism (CEM) is an important part
of the electrical engineering domain. A precise field solution is
necessary for the design and analysis of electromagnetic de-
vices [1, 2]. This problem can be described by Maxwell's
equations and calculated by numerical methods such as the
finite element method (FEM). However, employing FEM for
modelling and simulation about an electrical device can still
be a computationally expensive process, especially when
the studying object is geometrically complex or when there are
some material non‐linearities involved in the computation. The
computational burden grows exponentially with the increase in
degrees of freedom. To solve this problem, some surrogate

approaches such as reduced‐order modelling have been
developed to accelerate the computation and reduce compu-
tation time [3, 4]. However, due to several limitations, these
approaches are usually specific to a fixed problem and can only
describe systems with a few parameters. One of the biggest
limitations is that it is very difficult for these conventional
surrogate models to handle geometric variables or some other
variables that have significant nonlinearity, especially when
these variables vary over a wide range. As a result, such sur-
rogate models are limited to solving complex geometric feature
parameterization problems in electromagnetic device design.

On the other hand, with the development of the graphics
processing unit hardware and algorithm efficiency, deep
learning (DL) is poised to be a very powerful tool that can
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significantly increase our ability to conduct scientific research
[5] and has demonstrated good potentials for the application in
the field of computational electromagnetics [6]. DL has been
successfully applied in the design and optimization of electrical
devices such as motors [7], transformers [8, 9] and antennas
[10], with satisfactory results. Among the many DL networks,
in particular, the convolutional neural network (CNN), which
is a type of network that automatically detects important fea-
tures without any human supervision, has been widely used
and some state‐of‐the‐art performances acheived. Bayesian
CNN is adopted to test the magnetic field computation of
electromagnetic systems, as recently reported in [6]. CNN has
also been applied to fault detection and diagnosis in induction
motors based on electromagnetic signals [11, 12]. In addition,
CNN has been applied to topology optimization and efficiency
evaluation [13]. In [14], a deep residual convolutional and
recurrent network is adopted to estimate the temperature in-
side the motor. Although DL has achieved many satisfactory
results, the requirement for big data has greatly limited its
further application in electrical engineering, where the data
generally comes from complex experiments or expensive
computations. It does not make too much sense for the DL
application if its performance heavily relies on a large number
of training samples because it costs lots of experiments or
computation just to prepare these datasets, let alone the
training and tuning of the DL network itself. To solve this
problem, in our previous research, we have investigated the
feasibility and efficiency of CNN U‐net to the magneto‐
thermal coupling problem [15]. It is observed that due to its
excellent feature extraction capability, the CNN U‐net can be
effectively trained with a small dataset. Besides, to further
improve the efficiency of DL, we optimize the sample selection
strategy using the greedy algorithm [16]. Take the FEM
computation results as the ground truth, the CNN can be
applied in the training‐prediction manner: parts of FEM results
can be adopted as the training data to train the DL network by
minimizing the loss via gradient descent optimization algo-
rithms, such as Adam [17] and Adadelta [18] until the loss is
smaller than an expected threshold. Some other FEM results
can be utilized to validate the feasibility and accuracy of the
trained network. Once the DL network is effectively trained
and verified, rest of the samples can be predicted by the
effectively trained DL model without further FEM computa-
tion considering the complex physical context implicit in the
system.

So far DL has yielded some good performances in CEM,
especially in some image‐based tasks. Nevertheless, several new
issues have arisen along with the application of DL. One of the
limitations of the conventional image‐based CNN model is the
lack of physical constraints. In most practical applications of
CNN, the constructed network can be thought of overlooking
any possible underlying mathematical model expressing phys-
ical laws, and thus produces a model‐ignorant algorithm
because the network training process does not require any
knowledge of the underlying mathematical model. During the
DL network training procedure, loss functions are needed to
indicate and monitor the iterative convergence process of the

network, which is crucial for the network learning capacity.
Generally, the two most widely used loss functions in the field
of DL and computer vision are mean absolute error (MAE)
and mean square error (MSE). But these two loss functions
only describe the difference between the model output and the
ground truth from a pixel perspective, ignoring some implicit
relationships including physical laws. When we are dealing with
some traditional computer vision tasks, such as distinguishing
apples from pears [19], diagnosing damaged tissues in medicine
images [20] or traffic recognition systems for autonomous
vehicles on the highway [21], the research objects are generally
images without hidden laws that can be formulated, in these
cases the general loss function MAE or MSE can usually meet
our needs.

Whereas, when we face some problems involving physical
systems, including electromagnetic field problems, our goal is
often not simply classification or identification, but probably
some physical quantities or laws that are related to the
appearance, such as the magnetic energy implied behind the
magnetic field distribution. At this point, uniformly evaluating
the output from a pixel perspective by using traditional MAE
and MSE alone may give a fine result in terms of image pixels
after the network converges, but it may not necessarily achieve
a good prediction for the specific physical quantity we desired.
In addition, the magnetic flux density obtained from FEM is
based on the law of minimizing the error in the energy sense,
so the value at one certain pixel does not make too much sense;
the difference between the ground truth and the results ob-
tained by DL should be estimated in a global energy sense, for
instance, the magnetic energy norm.

The physics‐informed neural network (PINN), as intro-
duced in [22, 23], is an effective method to handle supervised
learning tasks while respecting any given law of physics
described by general nonlinear partial differential equations
(PDEs). By penalizing deviations from the target value and
properly weighting any given data, the physical rules and any
other constraints can be seamlessly integrated into the loss
function of the PINN. What's more, if some features of the
PDE solutions are known a priori, it is also possible to encode
them in the network architectures [24]. This allows the PINN
to take advantage of some prior knowledge related to a certain
physical system that has been overlooked in a conventional DL
network, hence improving the performance and generalization
of the DL network on this certain physical scenario.

The approach of embedding physical knowledge into the
PINN is very flexible, we can either design a specialized ar-
chitecture that implicitly enforces knowledge or impose such
constraints in a soft manner by appropriately penalizing the
loss function of PINN or a hybrid approach that mixed these
two. This flexibility allows researchers to develop different
variants of PINN to satisfy exactly the required constraints
such as initial conditions [25, 26] or different types of
boundary conditions [27, 28]. This is a fast‐moving field, in a
short period of time, lots of PINN variants have been pro-
posed for different physical systems. These variants have been
extensively applied to various engineering problems with
different kinds of physical laws hidden behind. In [29], a
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variational PINN is developed within the Petrov‐Galerkin
framework to lower the order of the differential operator to
reduce the training cost. In addition, a fractional PINN is
designed to solve space‐time fractional advection‐diffusion
equations [30]. The Bayesian neural network combined with
a PINN is proposed to solve forward and inverse nonlinear
problems described by PDE and noisy data [31]. Another work
employs the domain decomposition in the PINN framework
and puts forward a conservative PINN to provide more flex-
ibility in the multiscale problem [32, 33]. Besides, PINN is
employed to solve the radiative transfer equations and the
rigorous upper bounds on the generalization error of PINN
approximating solutions for PDE have been presented in [34,
35]. Furthermore, PINNs have achieved some satisficing per-
formance when facing heat transfer equations, Navier–Stokes
equations in fluid mechanics, high speed fluid flow and solid
mechanics [36, 37].

Although PINN has shown good potential in various
fields, it still has certain limitations. One of the main limi-
tations of PINN is the dependence on a large amount of
database, especially for some over‐parameterized PINN
models [38, 39], a significant amount of data is often
necessary to reinforce such physical knowledge and generate
predictions that satisfy certain physical laws such as sym-
metries and conservation rules. In this case, an immediate
difficulty relates to the cost of data acquisition, which for
many applications in the physical and engineering sciences
could be prohibitively large, as observational data may be
generated via expensive experiments or large‐scale computa-
tional models. Therefore, it is crucial to enhance the
convergence and accuracy of the network without increasing
a large number of samples. On the other side, while many
good application results have been obtained from PINN
applications; however, a lot of work stops at interpolation,
and only a few research studies have investigated the
extrapolation capability of PINN [31].

Based on a relatively small database, we applied an energy‐
based physics‐informed neural network (EPINN) to solve the
CEM problem with a wide range of geometrical parameters.
The main contributions of this work are as follows:

1. To the best of our knowledge, the application of PINN has
not been applied to low‐frequency CEM. Taking a typical
transformer magnetic problem as an example, take the
FEM computation results as ground truths, the EPINN
network is utilized for the evaluation of the magnetic field
of the transformer in a supervised manner. Physical infor-
mation is integrated into the DL network by modifying the
loss function. According to the characteristics of the elec-
tromagnetic field and inspired by our previous work on the
error estimation for the magnetostatic problem [40, 41], two
physics‐informed loss functions based on the magnetic field
energy are put forwarded for tasks with different re-
quirements, that is the magnetic energy norm error
(MENE) and the magnetic energy error (MEE). Among
them, the MENE can be seen as a specific MSE that is
weighted according to the material permeability, which can

help the EPINN to concentrate on the learning objective
which has higher energy density, that is, the quantity of
interest (QOI). As for the MEE, it is reinforced with the
energy minimization principle in the DL loss function,
considering that the principle of FEM computation is en-
ergy minimization, it is a reasonable strategy to evaluate the
magnetic field distribution results via magnetic field energy
instead of pure pixel error.

2. We discuss the implementation of various types of loss
functions. To investigate the effect of introducing the two
physics‐informed loss functions, this paper compares the
EPINN with the traditional CNN using MAE and MSE.
While keeping the network architecture, configurations, and
the database unchanged, these four loss functions are
respectively adopted to train the network. The numerical
experiments demonstrate that when compared to other loss
functions, the physics‐informed loss function developed for
a specific task can achieve better accuracy on that task. With
the introduction of the physics‐informed loss functions, the
neural network is more sensitive to the structural changes in
the windings because the magnetic energy is mainly
concentrated in the windings and the nearby air. This can
help the DL network to better concentrate on the QOI
instead of taking the same weight over the whole image
only from a pixel‐wise point of view.

3. We conduct a sensitivity analysis of EPINN to explore the
effect of hyperparameters on the model performance. The
physics‐informed loss function is a double‐edged sword.
While it improves the accuracy of the converged network
under the same database, it is also observed that it increases
the sensitivity of the DL network to the input information
and some corresponding network hyperparameters, espe-
cially, those that control the generation of Gaussian distri-
bution from the labelled geometric information.
Inappropriate hyperparameters can affect the learning ac-
curacy or even lead to divergence. To address this issue,
these network hyperparameters that become more sensitive
due to changing the loss function are investigated with the
two physical‐informed loss functions separately. In our
previous work, from the perspective of the network archi-
tecture, some investigation about the hyperparameter
sensitivity analysis has been performed for the magneto‐
thermal coupled problem [15]. Based on the hyper-
parameter investigation in our previous work, this paper
further extends the study of two other hyperparameters that
affect the network input Gaussian distribution image: the
standard deviation (STD) and the normalization range.
With proper hyperparameter configurations, the accuracy
and efficiency of the EPINN have been illustrated through
numerical experiments.

4. This work not only tests the interpolation ability of the
proposed EPINN model but also examines the extrapola-
tion performance: after the effective training process, the
trained model was utilized to predict the sample that outside
the training samples, whose input label variables vary
outside the training sample. Numerical experiment shows
that the EPINN has great potentials in generalization
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capability since it can achieve good results in interpolation.
As for extrapolation, good performance can be obtained for
these samples that are adjacent to the training samples. The
effective extrapolation range of the network is investigated.

The rest of the paper is organized as follows: In Section 2,
we presented the problem setup. Section 3 gives the method-
ology of the proposed method including a brief introduction
about the physical‐informed loss functions. Numerical exper-
iments are performed in Section 4, where various comparisons
are made between the CNN and EPINN methods. Finally, in
Section 5, we summarize our findings.

2 | CONSIDERED MAGNETOSTATIC
PROBLEM

Power transformers are indispensable parts of the modern
power grid. They transform power from one circuit to another
by changing the current without changing the frequency, which
can significantly reduce transmission line losses caused by the
resistance. When a transformer is operating, current flows in the
windings, which generates a magnetic field. Most of the mag-
netic flux passes through the core, but some of it inevitably
passes through the air, which is the leakage magnetic flux. These
leakage magnetic fluxes cause eddy current losses in the wires
and stray losses in other metal parts such as the oil tank, causing
local overheating which will damage insulation or even affect
the safe operation and the service life. Power transformer
generally operates at 50 Hz, so the low‐frequency magnetic
problem can be adopted to describe its internal magnetic field
distribution, which can be described by the following equation:

∇�H¼ Js ð1Þ

∇ ⋅ B¼ 0 ð2Þ

B¼ μðHÞH ð3Þ

where μ denotes the magnetic permeability, H represents the
magnetic field strength, B stands for the magnetic flux density,
Js is the current density vector.

This work concentrated on the magnetic flux density dis-
tribution inside the transformer with different geometries. For
the present example, a S13‐M‐100 kVA/10 kV transformer has
been chosen to carry out the numerical experiments, as
demonstrated in Figure 1. To simplify the computation, only
one phase of windings and iron core are taken into consider-
ation and the windings are simplified into 3 separate discs. In
addition, the FEM model is further simplified to an axisym-
metric model based on the structure of the winding, as shown
in Figure 2. The leakage magnetic flux distribution is given by
the axisymmetric cross‐sectional image. The phase of the
current in high‐voltage (HV) winding and low‐voltage (LV)
winding is opposite. The coils are made of copper and the
conductivity is set to be 5.7e7 S/m. The iron core is composed
of B27R90 silicon steel, which is considered to be nonlinear.

The magnetization curve of the B27R90 silicon steel is illus-
trated in Figure 3 [42].

Different magnetic field distributions are obtained by
changing the geometry of the windings. The dimension
changes are demonstrated in Table 1. As an example, three
geometric variables of the transformer winding are taken into
consideration: x1, x2 and y, which, respectively, represent the
distance between the LV winding and the iron core, the dis-
tance between the LV winding and the HV winding and the
gap between the copper coils which are the same in the HV
and LV winding. Multiple samples can be generated by auto-
mation via geometric variation. Each variable takes 10 values
uniformly across the range of values, generating a total of 1000
samples. These samples will constitute the database for the DL
process in the following sections. All the FEM computations
shown are realized by the free scientific computing software
Freefem++ [43].

F I GURE 1 S13‐M‐100 kVA/10 kV transformer

F I GURE 2 Geometry of the considered 2D transformer
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3 | METHODOLOGY

3.1 | The EPINN

With ground truth data obtained from FEM being repre-
sented as magnetic flux density distributions, EPINN, a
CNN with physics embedded into the loss function is uti-
lized to extract hidden features and is trained in a supervised
manner. Adopting the aforementioned three geometric vari-
ables as labels, the relationship between the magnetic field
distribution and corresponding geometric parameters is
established via DL. Using part of the database to train the
network, once the network converges, the effectively trained
EPINN can be used to predict the magnetic field distribu-
tion with other geometric parameters without further FEM
computations. The schematic diagram of the presented
EPINN is shown in Figure 4. First and foremost, we
establish the physical model according to the research ob-
jectives, as shown in Figure 4b, after setting the material
parameters, boundary conditions and initial conditions, etc.,
we use the geometric parameters as variables and perform
FEM computation to obtain the corresponding magnetic
field distribution. These FEM computation results are dis-
played via 256 £ 256 £ 3 red‐green‐blue (RGB) images and
employed as the database, as shown in Figure 4a. Samples
are labelled according to the corresponding geometric pa-
rameters x1, x2, and y. Let us denote ~z1, ~z2, ~z3 the vector
composed by the normalization data for different value is-
sues from the labels x1, x2, and y, the Gaussian distributions
are generated from these geometric variables and used as
input for the DL network, as shown in Figure 4d. The input
consists of three layers of mutually independent Gaussian

distributions, and each layer is controlled by parts of the
geometric variables, denoted by fi(1 ≤ i ≤ 3), where

f i zj; zk
� �

¼ exp −
zj − μ

~z j

� �2
þ zk − μ

~zk

� �2

2σ2

0

B
@

1

C
A ð4Þ

with 1 ≤ j < k ≤ 3, where j ≠ i and k ≠ i, μ
~z i
is the average

value of all the components for ~z ið1 ≤ i ≤ 3Þ. Taking the
corresponding magnetic field distribution with different geo-
metric parameters as the output (as shown in Figure 4f), the
EPINN is adopted to establish the hidden relationship be-
tween the input and output.

The architecture and the baseline configuration of the DL
network applied are shown in Figure 4e and Table 2. The
main network framework is described in detail in [15]. The
architecture is made up of successive encoder layers and
decoder layers, and each layer includes an activation function,
a batch normalization, and a convolution or up‐convolution.
Furthermore, a dropout layer is employed between the
encoder and decoder as a regularization technique to prevent
the network from overfitting. In our previous studies, from
the perspective of the network architecture, the influences of
hyperparameters on the training curve and convergence are
investigated, with four most dominant factors: training sam-
ple size, learning rate, batch size, and optimization algorithm
which detailed discussed in detail for the low frequency
magneto‐thermal coupled problem. Adopting the network
architecture and the baseline set of hyperparameters obtained
for the magnetic field evaluation in [15], the loss function is
adjusted so that some prior physical information and con-
straints can be embedded into the EPINN thus helping the
network to achieve better learning performance. Meanwhile,
the physics‐informed loss function also makes the DL
network more sensitive to the input and relevant hyper-
parameters and easier to diverge. Two hyperparameters that
affect the input Gaussian distribution are investigated in
Section 4.1, namely the STD and the normalization range.
Finally, the loss functions embedded with physical informa-
tion based on the research model, as shown in Figure 4c, are
used to evaluate the learning performance of the EPINN in
the post‐test.

3.2 | The training and post‐test procedure

The training and post‐test procedure of the proposed approach
are illustrated in Figure 5. One thousand database samples are
generated and indexed as #1 to #1000 by incremental iteration
of the three geometric parameters one by one in the order x1, x2,
y. All samples are labelled according to their geometric param-
eters and divided into 10 groups according to the single digit of
the index number. The 10 groups are indexed as #0 to #9, with
100 samples in each group. The 10 groups of samples are divided
into three categories: training samples, validation samples and
test samples to participate in the network training and post‐test

F I GURE 3 Magnetization curve of the B27R90 silicon steel

TABLE 1 The range of variation of geometric variables

Parameters Min value (mm) Max value (mm)

x1 10 60

x2 20 50

Y 15 65

GONG AND TANG - 657

 17518679, 2022, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/elp2.12183 by C

ochrane France, W
iley O

nline L
ibrary on [24/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



process. To begin with, training samples are employed to train
the network. The EPINN is trained by minimizing the residual
of the evaluation losses, and the weight of the network is iter-
atively updated according to the gradient descent algorithm and
backpropagation of the error.

After the trained network converges to the training sam-
ples, validation samples are introduced to verify the trained
network to see if it meets the error requirement on validation
samples. If not, continue to update the network with training
samples until the trained model converges in the validation
sample. Test samples are not involved in the training procedure
of the network, but only introduced to validate the effective-
ness and accuracy of the trained network in the post‐test. It
should be mentioned here that the capability of the interpo-
lation is evaluated when the post‐test samples are inside the
training samples and validation samples. On the other hand,
the capacity of extrapolation is assessed when the post‐test

samples are different from those who participated in the pre-
vious training phase.

3.3 | The loss evaluator

DL networks are trained to solve supervised learning tasks by
minimizing the residual of the evaluation losses. In the process
of training a feedforward neural network, the iteration is
generally based on the gradient descent and backpropagation
algorithm: the backpropagation algorithm works by computing
the gradient of the loss function with respect to each weight by
the chain rule, iterating backward from the last layer and up-
date the weights along with the inverse of the corresponding
error gradient to minimize the loss. Therefore, choosing the
proper loss function is crucial for DL networks to have a good
performance on a certain task.

MAE and MSE are two of the most common evaluators
employed to measure accuracy for computer vision tasks. The
MAE represents the average of the absolute difference be-
tween the actual and predicted values in the dataset. For the
magnetic flux distribution prediction, the target is the magnetic
flux density:

MAE¼
1
N

XN

i¼1
jjBdlðiÞj − jBfemðiÞjj ð5Þ

where N represents the number of pixels in an image, which is
256 � 256 = 65,536 in our case, Bdl stands for the DL pre-
diction result of the magnetic flux density distribution, Bfem is

F I GURE 4 The schematic diagram of the energy‐based physics‐informed neural network (EPINN). (a) Grounth truth: FEM computation results.
(b) Physical model. (c) The energy‐based physical‐informed loss functions. (d) Network input: Gaussian distribution. (e) The architecture of EPINN.
(f) Network output: magnetic distribution

TABLE 2 Baseline configuration of the EPINN hyperparameters

Hyperparameters Value

Index of training samples 400 (#2, #4, #6, #8)

Index of validation samples 100 (#7)

Learning rate 1e−4

Batch size 4

Optimization algorithms Adam

β1 0.9

Abbreviation: EPINN, energy‐based physics‐informed neural network.
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the magnetic flux density distribution obtained from FEM. It
measures the average of the residuals in the dataset. As a
contrast, the MSE represents the average of the squared dif-
ference between the original and predicted values in the
dataset:

MSE¼
1
N

XN

i¼1
jjBdlðiÞj − jBfemðiÞjj2 ð6Þ

It measures the variance of the residuals. These two loss
functions have their own advantages and disadvantages: MSE
penalizes the large prediction errors compare to MAE, but
MAE is more robust to data with outliers. These two com-
plement each other and have conquered many tasks in the field
of machine learning and computer vision. Nevertheless, for

some problems involving physical systems, they have the
common insurmountable drawback that the error can only be
calculated from the perspective of the image pixels on average,
without focussing on the QOI or taking into account the
physical context implied behind this consideration.

In this case, there is a vast amount of prior knowledge that
are not being utilized in the above DL practice. These prior
information can act as a regularization agent that constrains the
solutions. In return, encoding such structured information into
a learning algorithm results in amplifying the information
content of the data that the algorithm sees, enabling it to
quickly steer itself towards the right solution and generalize
well in the post‐test. Take the considered magnetostatic
problem as an example, the ground truths we obtain from
FEM are computed following the magnetic energy

F I GURE 5 The flowchart of the training and test processes of the energy‐based physics‐informed neural network
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minimization principle. For a magnetostatic system, the mag-
netic field energy E stored in a magnetic field, the energy per
unit in a region of permeability μi containing the magnetic field
B is:

E¼
XN

i¼1

1
2
jBðiÞj2

μi
ð7Þ

where μi denotes the magnetic permeability in the ith pixel.
Therefore, naturally, when it comes to the magnetic

problem, researchers can be more interested in magnetic en-
ergy than magnetic flux density distribution. In this situation,
utilizing loss functions that are only considered from the
perspective of pixels, we can only measure the difference in
magnetic flux density distribution between the predicted results
and the dataset, but ignore the meaning of the FEM based on
the principle of minimum magnetic energy. To enforce this
point, inspired by our previous work about error estimates in
the low‐frequency problem [40, 41], we try to introduce the
energy sense into the EPINN network for the prediction of
the magnetic field distributions by modifying the loss function.
In addition, when modelling a physical system, instead of the
whole computation domain, researchers are tended to be more
interested in a particular region based on some prior infor-
mation or experience. For instance, when analysing the trans-
former magnetic leakage problem and the corresponding stray
losses, we are most concerned with the leakage magnetic flux
in the windings and nearby air as a QOI, which dominantly
affects the eddy current losses, and less interested in the flux
distribution inside the core. In this case, using MAE and MSE,
we can only measure the difference in magnetic flux density
distribution between the predicted results and the dataset on
average, and cannot pay more attention to the area of interest.

Hence, we introduce two loss evaluators that informed
with physical laws and the idea of QOI, the first one being the
MENE loss function:

MENE¼
1
N

XN

i¼1
δQOI

1
2
1
μi
jjBdlðiÞj − jBfemðiÞjj2 ð8Þ

where δQOI is the characteristic function of the QOI. As the
name implies, the loss function is a norm designed from the
perspective of magnetic energy. It determines the weights
assigned to each region of the magnetic flux density distribu-
tion through the magnetic permeability, which makes the
magnetic flux distribution of the winding and the surrounding
air take up a larger proportion of the loss function. In addition,
different weights can be attached to the special QOI according
to specific requirements, as illustrated in [41]. The MENE can
be seen as a variant of MSE after weighting by material pa-
rameters and the QOI characterizes the function.

The MENE can help the DL network to concentrate more
on the region of interest by introducing some prior physical
information. However, the evaluation of loss is still from the
perspective of pixels. As we mentioned before, when it comes
to magnetic field analysis, since the magnetic flux density

computed by FEM is based on the minimization of magnetic
energy, the value within a specific pixel alone does not make
too much sense to evaluate the accuracy of the entire FEM
magnetic field computation. Instead, the difference between
the ground truth and the results obtained by DL should be
interpreted in a global energy sense. In this situation, utilizing
loss functions that are only considered from the perspective of
pixels, we can only measure the difference in magnetic flux
density distribution between the predicted results and the
dataset, but ignore the meaning of the FEM based on the
principle of minimum magnetic energy. To address this issue,
we propose another physical‐informed loss function from the
perspective of magnetic field energy, that is, the MEE loss
function:

MEE¼
1
N

XN

i¼1
δQOI

1
2
1
μi
kBdlðiÞj2 − jBfemðiÞj2j ð9Þ

The EPINN with MEE can naturally encode some un-
derlying physical laws as prior information into the DL
network. In this way, during the network training procedure,
the target is no longer simply the magnetic field distribution,
but the implied magnetic field energy.

The MENE and MEE are adopted as the loss function
for the hyperparameter investigation in Section 4.1. With
fine‐tuned hyperparameters, the EPINN can be effectively
trained and the converged model can be used to predict the
magnetic field distribution. As a comparison, with the same
network architecture and hyperparameter configuration, MAE
and MSE are respectively utilized to train the DL network
from the same database with the same training‐validation
strategy. The performances of the magnetic field pre-
dictions of the networks trained by these four loss functions
are respectively evaluated by the MENE and MEE loss
function in the post‐test.

4 | NUMERICAL EXPERIMENTS AND
DISCUSSION

As mentioned before, there are pros and cons to introducing
the physics‐informed loss functions into the EPINN. On the
one hand, physics‐informed learning has the advantage of
strong generalization in the small data regime: by embedding
physics, the EPINN is more effectively concentrated on the
regions or physical quantities that we are interested in, thus
improving the accuracy of the converged DL network with the
same database. On the other hand, it is observed that it can
make the DL network more sensitive to the input data and
some of the relevant network hyperparameters. As discussed in
[15], one of the necessary premises for a DL network to
achieve good accuracy and reproducibility is a proper set of
hyperparameters. Before comparing the learning performance
of the EPINN and traditional CNN, we must first ensure its
convergence. In all the following numerical experiments, the
δQOI is set to be 1 which means the weights are assigned by the
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material magnetic permeability, and it can also be defined as a
special QOI according to different tasks.

4.1 | The investigation of hyperparameters

The network hyperparameters play a crucial role in the
convergence of the DL network. To analyse the performance
of the proposed EPINN approach, we shall discuss the effect
of these hyperparameters on the predictive accuracy of the
solution of the low‐frequency magnetic problem. On the basis
of the CNN U‐net, from the perspective of network archi-
tecture, some of the most dominant hyperparameters have
been investigated in our previous work. The baseline config-
uration of the EPINN hyperparameters is shown in Table 2.

On this basis, this article adjusts the DL network by modi-
fying the loss function to introduce prior physical information.
In order to focus on the QOI during the training process instead
of uniformly obtaining the global error, we introduce the
MENE. For the sake of considering the loss from the perspec-
tive of magnetic field energy, we adopt the MEE. Through nu-
merical experiments, it is found that the sensitivity of the two
hyperparameters is different from the previous work, that is, the
two key hyperparameters that affect the Gaussian distribution
generated from the sample geometric information. As illustrated
in Figure 4, solving of the magnetic problem via DL has been
transformed into a task for the image‐to‐image EPINNnetwork
to find the hidden relationship between the input image and the
output image, that is, the relationship between the Gaussian
distribution and themagnetic flux density distribution.Naturally,
the generation process of the Gaussian distribution will also
influence the learning performance of the DL network. The
generation of Gaussian distribution is mainly controlled by the
following two parameters: the STD and the normalization range.
The former controls the size and gradient of bright spots on the
Gaussian distribution and the latter determines the movement
range and step size of the bright spot. Among them, the
normalization range consists of two numbers that are often in
the range between 0.0 and 1.0, which determines the upper and
lower limits of the moving position of the bright spot in the
Gaussian distribution map. Taking values of 0.0 and 1.0 means
that the centre of the bright spot moves from the leftmost to the
rightmost and from the top to the bottom of the picture in the
1000 Gaussian distribution input database.

Based on the network baseline configuration as shown in
Table 2, these two hyperparameters are respectively investigated
with the two proposed loss functions. For consistency, other
hyperparameters of the network are fixed during the study of a
particular hyperparameter. The training procedure has been
described in detail in Section 3, where four groups of samples
(400 samples) are adopted as the training sample and one group
of samples is used as the validation sample. The training loss
and validation loss are calculated separately at the end of each
epoch until both losses are small than the expected threshold,
and we consider that the DL network converges. Starting with
the MENE, the training curves of EPINN with different STD
and normalization ranges are demonstrated in Figure 6.

From Figure 6, we can find that STD has little effect on the
training loss, but it has a greater impact on the validation loss.
When the STD is greater than 10, the training performance of
the EPINN is better. Considering that the training procedure is
highly stochastic due to the variance caused by estimation via
Adam, random dropout and random weight initialization. We
replicated the training procedure 10 times and record the
mean, minimum and maximum value of training loss and
validation loss observed over 10 replications. These results
about training loss and validation loss are demonstrated
respectively in Tables 3 and 4.

The training loss is smaller and more stable than the vali-
dation loss. The difference of training loss between the
maximum and minimum in these 10 replications is very small,
which means the repeatability of training loss is very good. In
contrast, validation loss is larger and the upper and lower limits
fluctuate greatly, especially when the STD is smaller than 10.
For instance, when STD is set to be 5, the maximum validation
loss is 1.05e−3, while the minimum validation loss is 3.66e−4.
This indicates that the network has oscillations during the
training process. When STD takes a value between 10 and 100,
the training process of the network is more stable and the
training loss and validation loss perform more or less the same.
To sum up, the optimal STD for magnetic field learning with
EPINN with MENE is about 10–100. The normalization
range is investigated using the same approach as STD. The
training curves are illustrated in Figure 6a,b.

Figure 7 shows the training curve of EPINN with MENE
with different normalization ranges. Similar to the results of
STD, the normalization range has little influence on the training
loss, and the training curve converges steadily for different
values. On the other hand, the normalization range has a sig-
nificant effect on the validation loss. Unsuitable values will not
only cause convergence oscillations and affect the learning ac-
curacy, but even lead to divergence. Once again, in order to
prevent the randomness in the learning process from affecting
our conclusion, the training procedure is repeated 10 times for
each value. The average, maximum and minimum losses of
these training results are recorded and shown in Tables 5 and 6,
respectively, for the training loss and validation loss.

We can observe that the normalization range has a greater
impact on the training procedure than STD. An inappropriate
range of values will oscillate the training process and invalidate
the model. To sum up, consistent with our previous analysis,
for the EPINN with MENE, both STD and normalization
range influence the convergence curve of the DL network.
Among them, relatively speaking, the normalization range has
a greater impact on network errors after convergence. When
the STD value is too small, the network's training process
suffers, and the proper STD for magnetic field learning with
MENE is about 10–100. As for the normalization range, when
they take a wide range of values and the bright spot in the
Gaussian distribution map moves over a wide range,
the network converges less well, and the approximate range of
the good training performance is between 0.25 and 0.6. It
needs to be mentioned here that the purpose of hyper-
parameter investigation is not to propose the optimal solution,
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but to provide a “possible best” range for each hyperparameter
through numerical experiments to ensure the effectiveness of
the DL training.

Next, we consider the EPINN in the sense of magnetic
energy by replacing the loss function from MENE to MEE.
Repeat the above hyperparameter investigation process,

F I GURE 6 Training curve with different standard deviation (magnetic
energy norm error)

TABLE 3 The MENE training loss of the EPINN with different
STDs

STD Average Minimum Maximum

1 1.80e−4 1.70e−4 1.88e−4

2 1.80e−4 1.70e−4 1.95e−4

5 1.78e−4 1.70e−4 1.90e−4

10 1.78e−4 1.72e−4 1.82e−4

20 1.77e−4 1.68e−4 1.88e−4

40 1.76e−4 1.68e−4 1.88e−4

60 1.76e−4 1.69e−4 1.83e−4

100 1.77e−4 1.68e−4 1.83e−4

Abbreviations: EPINN, energy‐based physics‐informed neural network; MENE,
magnetic energy norm error; STD, standard deviation.

TABLE 4 The MENE validation loss of the EPINN with different
STDs

STD Average Minimum Maximum

1 6.93e−4 4.27e−4 8.85e−4

2 6.15e−4 5.10e−4 7.98e−4

5 5.40e−4 3.66e−4 1.05e−3

10 2.91e−4 2.75e−4 3.03e−4

20 2.78e−4 2.73e−4 2.91e−4

40 2.83e−4 2.63e−4 2.98e−4

60 2.68e−4 2.59e−4 2.72e−4

100 2.61e−4 2.56e−4 2.70e−4

Abbreviations: EPINN, energy‐based physics‐informed neural network; MENE,
magnetic energy norm error; STD, standard deviation.

F I GURE 7 Training curves with different normalization ranges
(magnetic energy norm error)
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keeping the DL network architecture, other hyperparameters
and the training strategy unchanged. Figure 8 shows the
training curves of EPINN with different STDs. Consistent
with the research about MENE, for the EPINN with the
MEE loss function, STD has basically no effect on the
training loss, but has some effect on the validation loss, and
the network performance is more stable when STD is
greater than 10. As before, the above training process was
repeated 10 times and the average, maximum and minimum
training loss and validation loss are illustrated in Table 7
and Table 8.

Similar to MENE, we can observe that the convergence
process of the training sample is better than the validation
samples. Different values of STD have little effect on the
training loss. On the other hand, the validation loss will be
affected by the STD, but the convergence performance of
MEE is more stable than MENE, and the difference between
the upper and lower bounds of validation loss with the same
STD is smaller. Taking the STD value of 5 as an example, the
minimum value over 10 replications is 4.32e−3 and
the maximum value is 6.22e−3. As for EPINN with MENE,
the maximum value of the validation loss can be up to 3 times

the minimum value. Like MENE, MEE also converges steadier
when STD takes values between 10 and 100.

Figure 9 shows the training curve of EPINN with MEE
with different normalization ranges. The normalization range

TABLE 5 The MENE training loss of the EPINN with different
normalization ranges

Normalization range Average Minimum Maximum

0.0–1.0 1.86e−4 1.75e−4 1.96e−4

0.09–0.9 1.79e−4 1.74e−4 1.90e−4

0.2–0.8 1.75e−4 1.65e−4 1.83e−4

0.25–0.7 1.76e−4 1.70e−4 1.87e−4

0.3–0.6 1.81e−4 1.67e−4 1.88e−4

0.25–0.475 1.78e−4 1.72e−4 1.82e−4

0.42–0.57 1.79e−4 1.69e−4 1.85e−4

0.5–0.55 1.87e−4 1.77e−4 1.98e−4

Abbreviations: EPINN, energy‐based physics‐informed neural network; MENE,
magnetic energy norm error.

TABLE 6 The MENE validation loss of the EPINN with different
normalization ranges

Normalization range Average Minimum Maximum

0.0–1.0 1.38e−3 1.30e−3 1.47e−3

0.09–0.9 1.30e−3 1.03e−3 1.43e−3

0.2–0.8 1.08e−3 9.04e−4 1.23e−3

0.25–0.7 4.67e−3 1.75e−3 6.83e−3

0.3–0.6 7.19e−4 6.45e−4 8.85e−4

0.25–0.475 2.91e−4 2.75e−4 3.03e−4

0.42–0.57 2.99e−4 2.55e−4 3.61e−4

0.5–0.55 2.72e−4 2.63e−4 3.01e−4

Abbreviations: EPINN, energy‐based physics‐informed neural network; MENE,
magnetic energy norm error.

F I GURE 8 Training curve with different standard deviations
(magnetic energy error)

TABLE 7 The MEE training loss of the EPINN with different STDs

STD Average Minimum Maximum

1 3.33e−3 3.25e−3 3.44e−3

2 3.33e−3 3.28e−3 3.38e−3

5 3.31e−3 3.26e−3 3.38e−3

10 3.31e−3 3.25e−3 3.40e−3

20 3.30e−3 3.24e−3 3.39e−3

40 3.32e−3 3.28e−3 3.36e−3

60 3.30e−3 3.18e−3 3.33e−3

100 3.31e−3 3.24e−3 3.36e−3

Abbreviations: EPINN, energy‐based physics‐informed neural network; MEE,
magnetic energy error; STD, standard deviation.
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has little effect on the training loss, as the training curve
converges smoothly for varied values, similar to the results of
STD. On the other hand, it has a considerable impact on the
validation loss. Tables 9 and 10 demonstrated the average,
maximum and minimum losses over 10 replications. To sum-
marize, similar to the findings of the previous studies for
MENE, the training process of the EPINN with MEE
network is affected by both the STD and normalization range.
Like MENE, the proper STD value for the EPINN with MEE
is 10–100 as well. Unlike MENE, the EPINN based on MEE
is more sensitive to the normalization range and more likely to
lead to network divergence due to improper hyperparameter.
The suitable normalization range is smaller, about 0.25–0.475.

In order to ensure that the EPINN with both loss func-
tions can be effectively trained, in the following post‐test
procedure, all these networks are trained with the STD set to
be 10 and the normalization range ia set to be 0.25–0.475. The
fine‐tuned DL network can be effectively trained by only 50%
of the datasets (40% samples for training, 10% samples for
validation), the successfully trained EPINN models can be
used to predict the distribution of the magnetic flux density
with different geometry parameters, hence accelerating the
computation. Comparison of the magnetic field distribution
around the transformer windings computed by FEM and the
corresponding DL prediction results are demonstrated in
Figures 10 and 11. It can be observed that the DL predictions
differ little from the FEM computations, the errors mainly
come from the winding area, which is where the magnetic field
distribution is concentrated. The relative errors are below 4%
for both physical‐informed loss functions. In addition, in order
to compare systematically the DL performance and general-
ization capacity of EPINN with different loss functions in
detail, post‐tests will be performed to test the interpolation and
extrapolation in the next section.

4.2 | Post‐test with MENE

After the training of the network, and taking the geometric
label parameters as input, the corresponding magnetic field

distribution is generated using the trained EPINN network and
compared with the ground truth to calculate the error. What's
more, in order to compare the performance of EPINN and

TABLE 8 The MEE validation loss of the EPINN with different
STDs

STD Average Minimum Maximum

1 4.97e−3 4.67e−3 5.23e−3

2 5.58e−3 4.57e−3 7.66e−3

5 5.03e−3 4.32e−3 6.22e−3

10 4.03e−3 3.99e−3 4.06e−3

20 4.04e−3 3.97e−3 4.12e−3

40 4.07e−3 3.97e−3 4.22e−3

60 3.95e−3 3.90e−3 3.99e−3

100 3.96e−3 3.89e−3 4.06e−3

Abbreviations: EPINN, energy‐based physics‐informed neural network; MEE,
magnetic energy error; STD, standard deviation.

F I GURE 9 Training curve with different normalization ranges
(magnetic energy error)

TABLE 9 The MEE training loss of the EPINN with different
normalization ranges

STD Average Minimum Maximum

0.0–1.0 3.52e−3 3.46e−3 3.58e−3

0.09–0.9 3.36e−3 3.31e−3 3.42e−3

0.2–0.8 3.28e−3 3.23e−3 3.34e−3

0.25–0.7 3.27e−3 3.16e−3 3.34e−3

0.3–0.6 3.30e−3 3.21e−3 3.35e−3

0.25–0.475 3.31e−3 3.25e−3 3.40e−3

0.42–0.57 3.31e−3 3.22e−3 3.35e−3

0.5–0.55 3.43e−3 3.37e−3 3.51e−3

Abbreviations: EPINN, energy‐based physics‐informed neural network; MEE,
magnetic energy error; STD, standard deviation.
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traditional CNN, based on the above hyperparameter config-
urations, MAE, MSE, MENE and MEE are utilized as the loss
function to respectively train the DL network from the same
training sample and validation sample, as illustrated in Table 3.

As mentioned before, when facing the transformer wind-
ing leakage field problem, researchers tend to focus more on
the magnetic field distribution near the winding than the other
regions. Therefore, the error evaluation between the DL pre-
diction results and the database ground truth is calculated
using the MENE loss function. It should be mentioned here
that the capability of the interpolation is evaluated when the
test samples are inside the training samples and validation
samples. On the other hand, the capacity of extrapolation is
evaluated when the test samples are outside the target. In order
to evaluate the generalization capacity of the EPINN in a

TABLE 10 The MEE validation loss of the EPINN with different
normalization ranges

STD Average Minimum Maximum

0.0–1.0 8.30e−3 7.90e−3 8.70e−3

0.09–0.9 7.79e−3 7.28e−3 8.24e−3

0.2–0.8 6.90e−3 6.58e−3 7.04e−3

0.25–0.7 1.71e−2 1.41e−2 1.95e−2

0.3–0.6 6.53e−3 6.11e−3 7.07e−3

0.25–0.475 4.03e−3 3.99e−3 4.06e−3

0.42–0.57 4.15e−3 3.78e−3 4.84e−3

0.5–0.55 3.99e−3 3.93e−3 4.06e−3

Abbreviations: EPINN, energy‐based physics‐informed neural network; MEE,
magnetic energy error; STD, standard deviation.

F I GURE 1 0 Comparison of finite element method results and deep learning predictions (magnetic energy norm error)
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comprehensive and systematic way, we performed the post‐test
on different kinds of samples in the following. For clarity, we
have tabulated the data after each graph for comparison.

To begin with, the validation samples (i.e. Group #7) are
used to compute the post error. The Gaussian distribution
generated by the test sample labels is fed into the four separate
network models trained with different loss functions to obtain
the corresponding outputs, and then the MENE is utilized to
calculate the error between these four sets of prediction results
that output from the DL network with different loss functions
and the corresponding ground truth in the database. The post‐
test evaluation results of the DL model that trained with MAE,
MSE, MENE and MENE in functions of the sample index are
separately shown in Figure 12. As we can see, among the 100
samples in Group #7, except a few, the network trained by
MENE generates the best performing output with the smallest
post error, as the blue line plots in Figure 12.

F I GURE 1 1 Comparison of finite element method results and deep learning predictions (magnetic energy error)

F I GURE 1 2 The post‐test magnetic energy norm error loss of Group
#7
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The same with the aforementioned hyperparameter
investigation process, in order to avoid the influence of
randomness on the conclusion, the same set of networks is
trained 10 times with the same hyperparameters and the same
database, then the post‐test error is calculated for these 10
trained model respectively. The results are shown in Table 11,
each cell reports the mean (min, max) of summary perfor-
mance calculated over 10 times post‐test.

Next, four groups of training samples are adopted as test
samples to carry out the post‐test, which is to evaluate the
interpolation capability of the network. The results of Group
#2, Group #4, Group #6 and Group #8 are shown in
Figure 13. Consistent with the test results of Group #7, these
results demonstrate that the MENE performs significantly
better than the other three loss functions in all four training
groups, as the blue line indicated. The summary of these four
groups of training samples is shown in Table 12. The results
suggest that the EPINN trained with MENE has better
interpolation performance compared with the other three loss
functions. This means that the desired physical information has
been integrated into the learning objectives and takes a greater
weight in the error estimation process during the DL training
by adjusting the loss function. Naturally, better performance
can be obtained in the post‐test when using the corresponding
physical‐informed loss function as the error evaluator. In other
words, we get the same results as theoretically expected. In
addition, we can also find that the interpolation performance
of the network is very stable. For all the five groups of samples
involved in the training procedure, including the training
samples and validations samples, the post‐test loss with
MENE is in the range from 1.5e−4 to 3e−4, with little dif-
ference in the results between groups. This indicates that the
network performs well in the interpolation test after effective
convergence.

The above five groups of samples are all involved in the
training process to update the weight of the EPINN network.
The post‐test process is to test the interpolation capacity of
the network after effectively training. The purpose of
employing DL is to provide an efficient surrogate model for
complex and time‐consuming computations, utilizing parts of
the computation results as the database to train the DL
network and then using the trained model to predict the
results of subsequent samples, thus accelerating the compu-
tation and reducing the cost. Therefore, the generalization
ability and the extrapolation capacity of the model are also
crucial for evaluating the performance of a DL network.
Hence, we select four groups from the samples that have not
participated in the network training process, that is, other
than the training samples and validation samples, to perform
the post‐test process described above. The post‐test error
computation results of Group #1, Group #3, Group #5 and
#9 are shown in Figure 14. The summary of these results in
10 replications are shown in Table 13.

The results can be observed as follows: the EPINN
trained with MENE has advantages in the extrapolation
post‐test as well, as the blue line illustrated in Figure 14. We
can observe two findings from these results. First, the

performance of extrapolation is much worse than interpola-
tion; the post‐test MENE loss for these four groups of other
samples is in the range from 2.7e−4 to 1.5e−3, as a com-
parison, the interpolation error of the five groups of the
training sample and validation sample is in the range from
1.5e−4 to 3e−4, which is much less than the extrapolation
error. Second, the performance of extrapolation is unstable
and is strongly related to the values of the input variables.
All 1000 samples are arranged in ascending order of the
labelled variables, which means that the variables of group
#3 take values between group #2 and group #4, and simi-
larly, the variables of group #5 take values between group
#4 and group #6. Their input labels take values within the
range of variable values of the training samples, and this is
the reason for their better extrapolation performance. On the
other hand, for group #1 and group #9, their input variables
take values outside the training samples. Hence, the extrap-
olation results of these two groups are much worse than
group #3 and group #5. This indicates that for EPINN with
MENE, good extrapolation performance can only be ob-
tained for samples within the vicinity of the training samples,
and the applicability of extrapolation is limited. As we
defined in Equation (8), the MENE loss function can be
seen as a specially designed MSE whose weights have been
determined by the material permeability and the QOI. This
increases the proportion of magnetic leakage flux error in the
MENE loss due to the high permeability of the iron core.
Different from MSE, instead of considering an average ac-
curacy of the magnetic flux density, more attention has been
paid to the accuracy of the leakage flux during the learning
process.

4.3 | Post‐test with MEE

The EPINN with MENE can directly integrate the physical
information into the DL procedure by properly weighting the
given data and have shown good potentials in accuracy and
generalizability in the post‐tests. However, there are some
more complex physical contexts that cannot be characterized
only by weighting the input data. For example, noting that
during the FEM computations, researchers prefer to concen-
trate on the magnetic energy rather than merely on the mag-
netic flux distribution, and it makes sense that the error
between the DL prediction results and the FEM computation
results through the perspective of magnetic energy, that is, the

TABLE 11 The summary of the post‐test MENE loss of Group #7

Training loss function Post‐test loss (#7)

MAE 6.32e−4 (5.34e−4, 7.48e−4)

MSE 4.72e−4 (4.17e−4, 5.02e−4)

MENE 3.57e−4 (3.50e−4, 3.65e−4)

MEE 5.23e−4 (4.32e−4, 7.32e−4)

Abbreviations: MAE, mean absolute error; MEE, magnetic energy error; MENE,
magnetic energy norm error; MSE, mean square error.
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F I GURE 1 3 The post‐test magnetic energy norm error loss of training samples (interpolation)

TABLE 12 The post‐test MENE loss of
training samples

Training loss function Post‐test loss (#2) Post‐test loss (#4)

MAE 2.08e−4 (1.85e−4, 2.44e−4) 2.28e−4 (2.02e−4, 2.53e−4)

MSE 2.01e−4 (1.88e−4, 2.20e−4) 2.19e−4 (2.03e−4, 2.36e−4)

MENE 1.68e−4 (1.61e−4, 1.72e−4) 1.85e−4 (1.76e−4, 1.94e−4)

MEE 2.15e−4 (1.94e−4, 2.58e−4) 2.30e−4 (2.17e−4, 2.56e−4)

Training loss function Post‐test loss (#6) Post‐test loss (#8)

MAE 2.98e−4 (2.80e−4, 3.29e−4) 4.50e−4 (4.05e−4, 4.92e−4)

MSE 2.73e−4 (2.52e−4, 2.84e−4) 3.71e−4 (3.59e−4, 3.92e−4)

MENE 2.32e−4 (2.23e−4, 2.42e−4) 3.34e−4 (3.14e−4, 3.46e−4)

MEE 2.84e−4 (2.66e−4, 3.33e−4) 4.03e−4 (3.88e−4, 4.47e−4)

Abbreviations: MAE, mean absolute error; MEE, magnetic energy error; MENE, magnetic energy norm error; MSE,
mean square error.
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F I GURE 1 4 The post‐test magnetic energy norm error loss of other samples (extrapolation)

TABLE 13 The post‐test MENE loss of
other samples

Training loss function Post‐test loss (#1) Post‐test loss (#3)

MAE 2.23e−3 (2.09e−3, 2.43e−3) 5.31e−4 (4.82e−4, 5.78e−4)

MSE 1.75e−3 (1.58e−3, 2.10e−3) 3.90e−4 (3.56e−4, 4.31e−4)

MENE 1.34e−3 (1.22e−3, 1.45e−3) 2.94e−4 (2.71e−4, 3.15e−4)

MEE 2.17e−3 (2.01e−3, 2.63e−3) 4.27e−4 (3.87e−4, 4.91e−4)

Training loss function Post‐test loss (#5) Post‐test loss (#9)

MAE 3.41e−4 (3.28e−4, 3.61e−4) 2.27e−4 (2.08e−4, 2.48e−4)

MSE 3.23e−4 (3.05e−4, 3.42e−4) 1.90e−4 (1.72e−4, 2.13e−4)

MENE 2.81e−4 (2.73e−4, 2.88e−4) 1.42e−4 (1.34e−4, 1.52e−4)

MEE 3.47e−4 (3.29e−4, 3.99e−4) 2.28e−4 (2.14e−4, 2.54e−4)

Abbreviations: MAE, mean absolute error; MEE, magnetic energy error; MENE, magnetic energy norm error; MSE, mean
square error.
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MEE loss function. Same as the post‐test process with MENE,
firstly, we use validation samples in the network training pro-
cess to perform the test. The MEE is adopted to compute the
error between these four sets of DL predictions and the cor-
responding FEM results. The errors of 100 samples from
Group #7 are illustrated in Figure 15. As we can see, among
the 100 samples in Group #7, EPINN with MEE performs
the best in the post‐test in the energy sense, as the pink line
plots in Figure 15.

Similar to the post‐test with MENE, we now repeat the
post‐test with MEE as well. The summary of these replication
results are demonstrated in Table 14. Similar to the results of
MENE, MEE also showed advantages in the corresponding
post‐test. The average loss of the EPINN trained with MEE is
4.32e−3, while the losses of networks that trained with these
conventional loss functions without physical meanings are all
above 5e−3.

Following that, four groups of training samples are adop-
ted to carry out the post‐test, and the MEE losses of Group
#2, Group #4, Group #6 and Group #8 are shown in
Figure 16. In all these groups, the results show that the MEE
performs better than the other three loss functions. Table 15
depicts the post‐test summary of these groups. Compared to
MENE, EPINN with MEE have less advantage in the post‐
test with training samples, but the advantages are still non‐
negligible, implying that EPINN trained with MEE has
better interpolation performance than the other three loss

functions in the magnetic field energy sense. Besides, the
interpolation performance of MEE, like MENE, is very stable
as well, and the post‐test errors difference between training
sample groups are very small.

To verify the generalization ability and the extrapolation
capacity of the EPINN with MEE, 4 groups of samples
outside the training samples and validation samples are selected
to test the trained model. The MEE losses of Group #1,
Group #3, Group #5 and Group #9 are shown in Figure 17.
The summary of these four groups are shown in Table 16.
From the results it can be observed that the EPINN trained
with MEE has advantages in the extrapolation test as well. In
addition, the two findings in the extrapolation of MENE are
also working in the EPINN with MEE, which are: (1)
extrapolation performance is generally worse than the inter-
polation; (2) the effective range of extrapolation is limited and
good results can be obtained for the sample around the
training samples.

The above numerical experiments about the EPINN with
MENE and MEE manifest that it is effective to adjust the
DL networks by introducing physical information into the
loss function. The physics‐informed loss function designed
for a specific task can obtain better performance on the
corresponding task compared with other loss functions. With
fine‐tuned hyperparameters, the EPINN with these two
physics‐informed loss functions has good accuracy in the
interpolation test. In terms of extrapolation, good general-
ization ability can be guaranteed by ensuring that the
extrapolation samples do not differ significantly from the
training samples. The farther the extrapolation range, the
poorer the accuracy.

5 | CONCLUSION

In this paper, an EPINN network has been presented to solve
the low‐frequency magnetic problem of transformers with
different geometries. Physical information are integrated into
the DL network by modifying the loss function. Extra terms
are included in the loss function to incorporate the physical
model as an additional constraint, guaranteeing that the
network outputs satisfy the physical model as well. This
approach can be viewed as a special form of target‐specific
DL, in which a DL model is forced to match the ground
truth while also producing predictions that roughly comply
with a set of physical restrictions. Two loss functions are
proposed for tasks with different physical meanings, namely
MENE and MEE.

From the numerical example, it can be found that the
physics‐informed loss functions can improve the network
performance while increasing the sensitivity of some network
hyperparameters, which makes the DL model easier to
diverge. These hyperparameters that become more sensitive
due to changing the loss function are investigated in detail. In
addition, to verify the enhancement of the physics‐informed
loss functions, as a comparison, conventional CNN using
MAE and MSE and the EPINN were respectively utilized to

F I GURE 1 5 The post‐test magnetic energy error loss of Group #7

TABLE 14 The summary of the post‐test MEE loss for Group #7

Training loss function Post‐test loss (#7)

MAE 5.18e−3 (4.75e−3, 5.81e−3)

MSE 5.01e−3 (4.63e−3, 5.26e−3)

MENE 5.27e−3 (4.72e−3, 6.65e−3)

MEE 4.32e−3 (4.23e−3, 4.41e−3)

Abbreviations: MAE, mean absolute error; MEE, magnetic energy error; MENE,
magnetic energy norm error; MSE, mean square error.
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F I GURE 1 6 The post‐test magnetic energy error loss of training samples (interpolation)

TABLE 15 The post‐test MEE loss of
the training samples

Training loss function Post‐test loss (#2) Post‐test loss (#4)

MAE 3.32e−3 (3.22e−3, 3.42e−3) 3.31e−3 (3.21e−3, 3.40e−3)

MSE 3.75e−3 (3.48e−3, 3.98e−3) 3.76e−3 (3.56e−3, 4.01e−3)

MENE 3.46e−3 (3.40e−3, 3.60e−3) 3.48e−3 (3.34e−3, 3.69e−3)

MEE 3.33e−3 (3.19e−3, 3.40e−3) 3.28e−3 (3.25e−3, 3.31e−3)

Training loss function Post‐test loss (#6) Post‐test loss (#8)

MAE 3.88e−3 (3.73e−3, 3.97e−3) 5.12e−3 (5.01e−3, 5.32e−3)

MSE 4.03e−3 (3.82e−3, 4.31e−3) 4.98e−3 (4.80e−3, 5.07e−3)

MENE 3.93e−3 (3.74e−3, 4.20e−3) 5.19e−3 (4.96e−3, 5.25e−3)

MEE 3.66e−3 (3.59e−3, 3.71e−3) 4.61e−3 (4.52e−3, 4.67e−3)

Abbreviations: MAE, mean absolute error; MEE, magnetic energy error; MENE, magnetic energy norm error; MSE, mean
square error.
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F I GURE 1 7 The post‐test magnetic energy error loss of other samples (extrapolation)

TABLE 16 The post‐test MEE loss of
other samples

Training loss function Post‐test loss (#1) Post‐test loss (#3)

MAE 9.53e−3 (9.28e−3, 9.87e−3) 4.99e−3 (4.64e−3, 5.40e−3)

MSE 8.93e−3 (8.75e−3, 9.19e−3) 4.42e−3 (4.05e−3, 4.81e−3)

MENE 9.22e−3 (8.65e−3, 9.95e−3) 4.72e−3 (4.18e−3, 5.12e−3)

MEE 8.60e−3 (8.25e−3, 8.83e−3) 4.09e−3 (3.88e−3, 4.27e−3)

Training loss function Post‐test loss (#5) Post‐test loss (#9)

MAE 3.91e−3 (3.90e−3, 3.93e−3) 9.54e−3 (9.11e−3, 9.95e−3)

MSE 4.25e−3 (4.10e−3, 4.53e−3) 9.19e−3 (8.84e−3, 9.88e−3)

MENE 3.99e−3 (3.92e−3, 4.15e−3) 9.56e−3 (8.98e−3, 1.04e−2)

MEE 3.82e−3 (3.74e−3, 3.87e−3) 8.60e−3 (8.23e−3, 8.83e−3)

Abbreviations: MAE, mean absolute error; MEE, magnetic energy error; MENE, magnetic energy norm error; MSE,
mean square error.

672 - GONG AND TANG

 17518679, 2022, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/elp2.12183 by C

ochrane France, W
iley O

nline L
ibrary on [24/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



train from the same database with the same network archi-
tecture and configurations. The numerical experiments
demonstrate that the designed physics‐informed loss func-
tions MENE and MEE have significant advantages over
conventional DL loss functions MAE and MSE in terms of
prediction for magnetic field distribution. Besides, the
EPINN has shown good potential and stability can obtain
outstanding performance in interpolation tests. As for the
extrapolation, the prediction performance of the network is
limited by the input label values of the test samples; good
results can be obtained only for samples with label values in
the vicinity of the training samples.
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