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Computation of Industrial Applications
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The Darwin model attracts more and more attention in the research area recently, which simultaneously incorporates resistive,
capacitive, and inductive effects but neglecting the radiation one. For our industrial application needs, the finite element (FE)
system to solve derived from the Darwin model generally has a large size, which is out of the support of the direct solvers due
to the memory limitation. In this work, a specially designed formulation adopted with iterative solvers is proposed for industrial
applications. Moreover, a detailed comparison of different cases is carried on two different examples.

Index Terms—Darwin model, edge element, finite element analysis, linear solver

I. INTRODUCTION

He recent development towards the system with higher
integration of increasing power and information densities
brings up systems operating at the frequency in the middle
range, where the resistive, capacitive, and inductive effects
should be considered simultaneously. The modeling of the
capacitive phenomena including the inductive effects becomes
critical, especially in the case of a power converter with
high switching frequencies supplying an electrical device.
In this context, the Darwin model attracts more and more
attention recently in the research area [1|—[5]. In the literature,
the mixed vector/scalar potential A/¢ formulation of Darwin
model without gauge conditions is presented in [2[], where the
iterative solvers as BICGSTAB or the GMRES are applied for
the resulting non-symmetric and singular system. In case of a
large difference in the value of the material coefficients, the ill-
conditioning might decrease the performance of the iterative
solver significantly. To address the instability and the non-
symmetric issues, in our previous work, a stabilized Coulomb
gauged A /o formulation is proposed in [4]. The Coulomb-
type gauge has been additionally imposed as a third equation
by a Lagrange multiplier, which ensures the symmetry of
the matrix without any additional regularization. However,
the proposed formulation requires the use of direct solvers
since the resulting finite element (FE) system corresponds
to a saddle point problem, where the iterative solver is not
preferable.
At the point of view of industrial applications, it is still
a challenge to use the above formulation directly. Due to the
complex geometries considered in industrial problems, as well
as its operating frequency, the FE system to solve usually has

huge degrees of freedom (DoFs), which is out of the support
of the direct solver, even it is known that the advanced direct
solver can handle a system until 30 million DoFs nowadays.
Alternatively, the iterative solver is still a good choice because
it can solve a huge system beyond the limitation of direct
solvers. Due to the ill-conditioning, an adapted preconditioner
should be developed. However, to the best of the authors’
knowledge, a stable preconditioner is still an open problem
in the research area for the Darwin model.

To address this numerical issue arising in industrial appli-
cations of the Darwin model, a specially designed formulation
adopted with iterative solvers is proposed in this work. Inspired
by the use of double Lagrange multipliers [6], the proposed
formulation can be successfully applied to handle the huge
matrix system derived from the complex industrial applica-
tions. Besides, a detailed comparison of the performance of the
above-mentioned formulations with different solvers is carried
out on two different examples.

The paper is organized as follows: all the considered for-
mulations are recalled and presented in Section II. In Section
III, by considering two different examples, the comparison
between different cases is given. Finally, our conclusion is
given in Section IV.

II. NUMERICAL MODELS

In the following, the three above-mentioned formulations,
denoted F1, F2, and F3, respectively, will be presented in the
frequency domain.

A. FI Formulation
The classical A/ formulation of Darwin model without
entering the gauge conditions given in [2] reads
rot (vrot A) + o(JwA + V) + jweVyp = 0,
V: (—o(jwA 4+ Vo) — jweVp) =0
where v is the magnetic reluctivity (the inverse of the magnetic

permeability p), o and € are the electric conductivity and
permittivity, respectively.
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As no gauge is applied, the system (I)) does not have the
uniqueness of the solution for the magnetic vector potential
A, which means the system is singular. However, the physical
quantities (such as the magnetic flux density B and the electric
field E) are unique. To ensure the uniqueness of the potential
A, both the implicitly imposed Coulomb-type gauge by the
iterative solver [[7] or/and by the direct solver [8]], and the tree
gauge [9] will be applied in the following numerical part.

B. F2 Formulation

By introducing a Lagrange multiplier p and rewriting the
current continuity equation using the Coulomb gauge condi-
tion, the resulting matrix becomes symmetric as reported in
[4]. Then, the stabilized Coulomb gauged A/ formulation
reads

rot (vrot A) + o(jwA + V) + jweVp — jweVp = 0,
V- (—o0(jwA + V) — jweVy) — jwV - (¢A) =0,
JjwV - (eA) =0.
2)
It can be found that the resulting system is symmetric but is a
saddle point problem where ad-hoc solvers and precondition-

ers are needed [10]. The direct solver can provide an accurate
solution in this case.

C. F3 Formulation

Inspired by our previous work [6], to avoid solving the
saddle point problem, based on the F2 formulation, the double
Lagrange multiplier method is applied here, which consists in
duplicating the scalar p into two scalar unknowns denoted pq
and po with p; = pso. By rewriting the F2 formulation, our
proposed formulation reads

rot (vrot A) + o(jwA + V) + jweVe

—jweVp; — jweVps = 0,

V:(—o(jwA 4+ V) — jweVy) — jwV - (¢A) =0,
JwV - (eA) +p1 —p2 =0,

JwV - (eA)+p2—p1 =0.

3)

It can be seen that the resulting FE system is also symmetric
and gauged.

Regarding the DoFs for all three formulations, F2 has an
additional nodal unknown p in comparison with F1, which
introduces normally 1/6 DoFs, while F3 has two additional
nodal unknowns, namely p; and po. It should be mentioned
here, the proposed formulation is not an “optimal” one in
theory, but rather a possibly good one that can break the
bottleneck we meet in industrial applications.

III. NUMERICAL RESULTS

In this part, the performance of three formulations will be
illustrated under different cases for two different examples.

For the computational configurations, as summarized in
Table [l MUMPS is used as the direct solver to solve the
linear system derived from F1 and F2 formulations while
BiCGSTAB is used as the iterative solver for both F1 and F3

formulations, with a classical Split-Jacobi preconditioner. Fur-
thermore, as the F1 formulation is not gauged, the tree gauge
and the implicitly imposed Coulomb gauge are considered for
both direct and iterative solvers.

TABLE I
DIFFERENT CASES FOR THE STUDIED FORMULATIONS.

Solving Methods

Formulations  pinGoTAB MUMPS
i 7 7
) - 7
& 7 -

Two different numerical examples are considered here: a
first academic one with analytical solution [3|] and a second
industrial one with measurement [[11]. All the above formu-
lations have been implemented in our software code_Carmelﬂ
to provide the numerical simulation results.

A. Parallel-Plate Capacitor

Firstly, we consider an academic example as given
in Fig. Eka), which is well studied for the Darwin model.
A sinusoidal voltage excitation with a magnitude V; =1 V
is applied at the plate terminals. The frequency interval to
investigate is [1 : 10°] Hz. The electric conductivity of the
conductor is taken as 50 kS/m. For the relative permittivity,
it is set as 1 for the conductor (grey part) and 10 for the
dielectric (green part), while the relative permeability is set
as 10% and 1, respectively. The used mesh features 100,626
elements including 17,073 nodes and 118,141 edges, as shown

in Fig. [I[b).
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Fig. 1. Geometry and considered mesh of the parallel-plate capacitor.

1) Global results

The magnitude of the current flowing out of the terminal
of the capacitor as a function of the frequency is plotted in
Fig. |ZL for all the cases with F1, F2, and F3 formulations.
As reported in [3[], the current is proportional to the input
voltage frequency. Indeed, the current increases linearly as a
function of the frequency (black curve). The results obtained
by different cases are very close in the interval [1 : 107] Hz,
showing the stability of all the formulations/solvers in this
interval. However, from 10 MHz, the difference between
different solutions can be observed as shown in the zoom part

of Fig. 2]
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Fig. 2. Magnitude of currents with respect to frequencies using BICGSTAB
iterative solver (in red) and MUMPS direct solver (in blue) in [1 : 109] Hz.

Globally, the accuracy of the solutions with the direct solver
(in blue) is better than the one with the iterative solver (in red).
With the direct solver, the F1 formulation has exactly the same
solution as the F2 formulation. But as F1 is non-symmetric,
the computational time is much more, which can be verified
in Fig. 3

Now, regarding the results with the iterative solver, it can
be found that our proposed F3 formulation is better than both
cases with the F1 formulation. In addition, the F1 formulation
with tree gauge provides more precision than the ungauged
case (which is totally in contrast with the direct solver).
However, the use of tree gauge for the magnetic vector
potential A suffers from the deterioration of the condition
number of the matrix [12]], as shown in Fig. 3] Despite that
the gauged formulations need to take more computational time,
they can provide a more accurate solution than ungauged ones.

---F1 + Iterative
#-F1 + Iterative (Tree Gauge)
-®-F3 + Iterative

-—=F1 + Direct

4 F1 + Direct (Tree Gauge)
[®F2 + Direct

Time (s)
5!\)
T

Frequence (Hz)

Fig. 3. Computational time for different cases with respect to frequencies.

In the following, to investigate the stability of the F3
formulation on the mesh, five meshes with different global
refinement levels are considered. The numerical results are
compared with the results obtained by F2. The magnitude of
the current flowing out of the terminal of the conductor with
different meshes is presented in Table [[Il It can be observed

that, with different meshes, our proposed formulation can get
close results with the F2 formulation. Furthermore, it can
handle the huge mesh as 30 million DoFs where the direct
solver is not available.

TABLE II
THE PERFORMANCE OF DIRECT SOLVER (MUMPS) AND ITERATIVE
SOLVER (BICGSTAB) WITH A SPLIT-JACOBI PRECONDITIONER VERSUS
THE NUMBER OF ELEMENTS FOR f = 1 MHZ.

Number of Elements  F2 Iro (A) F3 Ir3 (A)
50k v/ 8966x1075 v 8898 x 1075
500k v/ 8950x107° v 8938 x107°
oM v/ 8943 x1075 v 8928 x107°
15M v/ 8939x1075 v 8892 x107°
30M - - v/ 8.886x 1075

2) Local results

The local results are compared in the following by consid-
ering a mesh of 2,607,495 tetrahedrons with 433,986 nodal
unknowns and 3,036,297 edge unknowns. As shown in Fig. El
and Fig. [5] the magnetic and the electric fields simulated with
F2 and F3 formulations are compared for f = 1 MHz.

6.3e-11 1.8e-07

(a) MUMPS

5.6e-11

(b) BiCGSTAB

1.80-07

Fig. 4. Magnitude of the magnetic field B for f = 1 MHz simulated with
both F2 and F3 formulations.
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Fig. 5. Magnitude of the electric field E for f = 1 MHz simulated with both
F2 and F3 formulations.

Due to the skin effect at f = 1 MHz, the magnetic field
is restricted to a small layer and shows close results with the
two cases. Similarly, in both cases, a high field strength with
the same amplitude appears in the dielectric region between
the two conductors.

B. Industrial transformer

Secondly, an industrial case [[11] is considered in this part
represented by two windings wounds in the same direction



around a toroidal core as shown in Fig. [f] The conductor
used for the windings (in gold color) is made of copper,
which is insulated by the enamel material. The toroid used
for this experiment is of material N30 presented in gray in
Fig. [7] where the thickness of the blue part is 0.25 mm. More
information about the different materials can be found in [[TT].

Fig. 6. Toroidal core with two windings.

Coating

Magnetic core (N30)

8 mm
10 mm

R—r=525mm

Fig. 7. 3-D model of the transformer.

Two meshes with different refinement levels are considered
in this example. On the one hand, since the direct methods
suffer from limitations in terms of DoFs, a first mesh with
about 8 million elements is used, which features 7,924,176
tetrahedrons including 1,388,382 nodes and 9,315,509 edges.
As shown in Fig.[8] two numerical computations are done with
F2 and F3 formulations represented in black and green colors,
respectively. On the other hand, in order to perfectly handle the
skin effect at high frequencies, a second mesh with about 30
million elements, features 29,832,477 tetrahedrons including
5,257,323 nodes and 35,093,396 edges, is considered. The
numerical computation is done only with the F3 formulation.
The results are represented in red in Fig. [§] The measurement
results (in blue) have been provided to validate the simulation
results obtained with the Darwin model for three cases.

The modulus of the impedance Z as well as the phase, as a
function of the frequency obtained from the Darwin model,
are presented in Fig. [§] The modulus of Z obtained with
the different cases shows a good agreement in the range of
intermediate frequencies, in particular, around the resonant
frequency. Besides, with the refined mesh, the F3 formulation
shows a closer agreement with the measurements compared to
the other cases.

IV. CONCLUSION

The applications of the Darwin model on the industrial
problems introduce huge FE systems to solve. To break
the computational limitations linked to the huge DoFs of
industrial problems, a specially designed formulation with
iterative solvers is proposed. The proposed symmetric Darwin
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Fig. 8. Modulus of impedance and the phase computed with respect to
frequencies.

formulation using a Coulomb gauge and double Lagrange
multipliers exhibits robust behavior in a wide frequency
range. Furthermore, a systematic comparison between different
solvers and different formulations is given for two examples.
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