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Abstract: The pyrazole-pyridin-2-amine, as a tridentate pyrazole ligand, and its neutral Co(II)/pyrazole
complex were prepared using a direct method with a high yield. The desired pyrazole ligand and its
complex were subjected to several physicochemical and thermal analyses; moreover, the DFT-like
optimization of MEP, HOMO/LUMO, and TD-DFT correlated well with their experimental relatives.
Additionally, the oxidation catalytic activities of the Co(II)/pyrazole complex, such as the catecholase
of catechol to o-quinone and the phenoxazinone of 2-aminophenol to 2-aminophenoxazinone, were
also evaluated under mild RT conditions and atmospheric oxygen.

Keywords: cobalt(II); pyrazole; catecholase; phenoxazinone; DFT

1. Introduction

The pyrazoles, as N-donor compounds, have been inclusively matured as chelate
ligands for metal ions’ coordination [1]. N-pyrazole derivative ligands and their complexes
are used because of their stability, catalytic coordination abilities and versatility [1,2]. In
particular, Co(II)/pyrazole complexes have received attention in several applications, where
most researchers are using these complexes as catalysts, with an eye on their promising
medical role [3–7].

Catalysis has long been the main field of chemistry in several technological, phar-
maceutical and medicinal fields [8,9]. Among the catalysts studied are enzymes, which
are organic substances, produced by living cells. A number of these enzymes are able to
catalyze the activation of atmospheric oxygen in a variety of reactions [10]. One of these
enzymes is catechol oxidase [10,11] (copper enzyme), which catalyzes the aerobic oxidation
of diphenols to o-quinone [12,13].
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Catechol compounds are abundant in nature. They are used with different neurotrans-
mission functions [14,15], and their surface adhesion and crosslinking of catecholamine
proteins has been the subject of several catalytic studies, including some with the goal to
develop biomimetic catalysis of the oxidation of catechol to o-quinone [16–18].

Quinones are ubiquitous compounds in nature and one of the essential elements
in living organisms. They are particularly involved in the cellular respiratory chain to
transport electrons [11].

The efficiency and selectivity of Cu(II)-metalloenzymes in catechol oxidation have
recently been developed to enhance the catalytic and structural properties of such en-
zymes [19,20].

For the first time, a novel Co(II)/pyrazole complex has been prepared with sufficient
yield. Several physicochemical analyses were performed on the Co(II)/pyrazole complex,
and the results were successfully compared to their DFT theoretical counterparts. Under
mild conditions, the desired complex demonstrated a high degree of catalytic activity of
metalloenzyme catechol to o-quinone and aminophenol to phenoxazinone oxidase.

2. Materials and Methods
2.1. Materials

All materials were purchased from Sigma-Aldrich, USA, and used as received without
further purification, except for 1-hydroxymethyl-3,5-dimethylpyrazole, which was syn-
thesized. The materials used in this study were acetonitrile, methanol, tetrahydrofuran,
1-hydroxymethyl-3,5-dimethylpyrazole, 5-chloropyridin-2-amine, dihydroxy-1,2-benzene
(catechol), magnesium sulfate, dichloromethane and metal salt (CoCl2, 6H2O).

Several characterization methods were used on the prepared ligand and its com-
plex, such as Fourier transform infrared (FTIR) supported by pressed KBr pellets
(4500–400 cm−1); nuclear magnetic resonance (NMR) spectra were recorded on a Bruker-400
operating at 400 MHz for 1H spectra and on a UV-Vis UV 1800 PC Shimadzo spectrometer
operating at 101 MHz for 13C spectra; TGA and DTA were determined by utilizing DTG-
60; and X-ray diffraction results were obtained using an XRD-6000 X-ray diffractometer
(Shimadzu, Tokyo, Japan).

2.2. Synthesis of Tridentate Pyrazole Ligand

In a flask fitted with a magnetic stirrer, one equivalent of 1-hydroxymethyl-3,5-
dimethylpyrazole (5 g) in 40 mL of acetonitrile was mixed with one equivalent of 5-
chloropyridin-2-amine in 20 mL of acetonitrile (Scheme 1). The reaction was stirred at
room temperature for 120 h, and then the mixture was dried over MgSO4, filtered and
concentrated with a rotavapor and purified by CH2Cl2/H2O extraction [21–23].
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2.3. DFT Calculations

All species in this work were optimized using the MN15L Minnesota functional [24]
and the 6-31+G(d,p) basis set. The MN15L functional performed excellently in describ-
ing similar systems in previous works [25–28]. Frequency calculations were performed
following the optimization to ensure the expected frequencies were found. The Co con-
figuration in the complex was found to have a square pyramidal structure with a spin
multiplicity of 2 (doublet). Therefore, unrestricted SCF was used by adding the prefix –u
to the Gaussian input. The molecular orbitals of the complex were probed as previously
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described [25,29,30]. All calculations were carried out using Gaussian 16 Rev C.01 [31] and
viewed using GaussView [32].

2.4. Synthesis of Co(II)/Pyrazole Complex

The methanolic solution (5 mL) of CoCl2.6H2O (49.965 mg, 0.21 mmol) was added
to CH3CN solution (10 mL) of 5-chloro-N-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)pyridin-
2-amine (50 mg, 0.21 mmol). A product in blue solution was filtered to remove the solid
impurities and then left to evaporate at room temperature. After almost a week, a blue
powder of Co(II)/pyrazole was formed.

2.5. Catecholase Studies

The experiments were carried out in methanol under ambient conditions on a UV-Vis
UV 1800 PC Shimadzo spectrometer (Multidisciplinary Faculty of Nador). The measure-
ment of the absorbance of o-quinone over time (from 0 to 65 min) followed at 390 nm. Before
that, to prepare the complex formed in situ, we mixed successively 0.15 mL of a solution
(2 × 10−3 mol/L) of the metal with 0.15 mL of a solution of the ligand (2 × 10−3 mol/L)
or 0.3 mL of the solution of the prepared complex (2 × 10−3 mol/L). Afterward, we added
2 mL of the catechol solution with a concentration of 10−1 mol/L. We have discussed three
oxidative transformations in this article (Scheme 1): catecholase, tyrosinase and oxidation
of 2-aminophenol.

3. Results
3.1. Synthesis, EDX, PXRD and DFT-Optimization

Mixing 1-hydroxymethyl-3,5-dimethylpyrazole with 4-chloropyridin-2-amine under
vigorous stirring for 5 days in acetonitrile empowered the formation of the tridentate
pyrazole ligand at a high yield and with water as the only bi-product, as can be seen
in Scheme 2. One equivalent of the synthesized ligand was treated with CoCl2·4H2O,
resulting in a spontaneous green color appearing. Such a change in the color strongly
supported the tri-chelate of the ligand via the 3N coordinated Co(II) center to form the
square pyramidal Co(II)/pyrazole complex, as can be seen in Scheme 1.
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Scheme 2. Catalyzed catecholase and phenoxazinone processes.

To confirm the presence of five coordination bonds around the Co(II) center in the
absence of XRD-crystal and NMR measurements, Job’s method of titration was applied.
The UV-Vis Job’s method produced a one-to-one metal-to-ligand stochiometric ratio, which
supported the presence of the expected 5 coordination structure since the ligand is consid-
ered to be tridentate. Additionally, several publications that have recently succeeded in
resolving the XRD structures of similar complexes were used to support our assessment of
whether the expected structure could be found [33–36]. To support the purity of the desired
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Co(II) complex, energy-dispersive X-ray (EDX) and PXRD analyses were performed, as can
be seen in Figure 1. EDX (Figure 1a) reflected the presence of only five types of atoms in
the complex backbone, while the presence of a Co center was confirmed by energy signals
at 0.8, 6.9 and 7.6 KeV. Meanwhile, the C, N and Cl atoms appeared at signals with 0.1, 0.25
and 2.5 KeV positions, respectively, as can be seen in Figure 1a. Since the Co(II)/pyrazole
complex does not crystallize to a degree suitable for XRD single crystal analysis, PXRD
was performed only to check the purity and crystallinity of the complex. The percentage of
sharp, long-range atomic order patterns without broad scattering band peaks supported
the high purity. Moreover, all the possible diffraction peaks were observed, leading us to
surmise that the Co(II)/pyrazole complex is a polycrystalline type containing thousands of
crystallite systems with different ratios, but with a monoclinic predominant lattice, as can
be seen in Figure 1b.
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Figure 1. (a) EDX analysis of the Co(II)/pyrazole complex, (b) PXRD spectra of cobalt complex,
(c) DFT-optimization and (d) geometry.

To acquire more knowledge about the structure around the Co(II) center in the desired
neutral Co(II)/pyrazole complex, DFT-optimization was carried out. The molecular struc-
ture, together with the structural parameter, are illustrated in Figure 1c and Table 1. The
DFT reflected a Co(II)/pyrazole complex with a square pyramid geometry favored over a
trigonal bipyramid geometry, as can be seen in Figure 1d. Moreover, the square pyramid
was found to be slightly distorted, with a dihedral angle of N7-N12-N3-Cl19 = 2.8◦, as
shown in Figure 1d. The angles and the bond lengths around the Co(II) were found to have
the expected values, as can be seen in Table 1.
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Table 1. DFT structural parameters.

No. Bond Å No. Angle (◦ ) No. Angle (◦ )

1 C1 C2 1.3985 1 C2 C1 C6 120.7 23 N7 N11 C10 109.57
2 C1 C6 1.3967 2 C2 C1 Cl16 118.76 24 N7 N11 C13 114.48
3 C1 Cl16 1.7782 3 C6 C1 Cl16 120.54 25 C10 N11 C13 134.35
4 C2 N3 1.3432 4 C1 C2 N3 117.93 26 C4 N12 C13 120.26
5 N3 C4 1.3579 5 C2 N3 C4 121.96 27 C4 N12 Co17 89.11
6 N3 Co17 1.9101 6 C2 N3 Co17 141.77 28 C13 N12 Co17 105.77
7 C4 C5 1.3717 7 C4 N3 Co17 96.24 29 N11 C13 N12 103.1
8 C4 N12 1.4737 8 N3 C4 C5 122.93 30 N3 Co17 N7 141.71
9 C5 C6 1.4084 9 N3 C4 N12 104.6 31 N3 Co17 N12 70.04
10 N7 C8 1.3819 10 C5 C4 N12 132.46 32 N3 Co17 Cl19 89.87
11 N7 N11 1.4364 11 C4 C5 C6 116.5 33 N3 Co17 Cl20 108.4
12 N7 Co17 1.8122 12 C1 C6 C5 119.98 34 N7 Co17 N12 85.79
13 C8 C9 1.3949 13 C8 N7 N11 106.46 35 N7 Co17 Cl19 93.17
14 C8 C15 1.4899 14 C8 N7 Co17 139.58 36 N7 Co17 Cl20 105.99
15 C9 C10 1.4108 15 N11 N7 Co17 113.06 37 N12 Co17 Cl19 143.67
16 C10 N11 1.3608 16 N7 C8 C9 108.13 38 N12 Co17 Cl20 104.09
17 C10 C14 1.49 17 N7 C8 C15 123.31 39 Cl19 Co17 Cl20 111.03
18 N11 C13 1.4638 18 C9 C8 C15 128.51
19 N12 C13 1.5166 19 C8 C9 C10 109.06
20 N12 Co17 1.994 20 C9 C10 N11 106.71
21 Co17 Cl19 2.2143 21 C9 C10 C14 128.81
22 Co17 Cl20 2.2204 22 N11 C10 C14 124.45

3.2. IR Analysis

The infrared spectra of the synthesized ligand, together with its complex, are illustrated
in Figure 2. In both ligand and complex spectra, the N–H band has been recorded. The
slightly lower shift in the vibration of N–H in the complex (31,205 cm−1) compared with
the free ligand (3260 cm−1) supported the coordination and the formation of a Co(II)–N
bond. Moreover, such a bond was also supported by the evidencing of a new signal at
490 cm−1 [9]. The band at 1619 cm−1, which corresponded to C=N of the ligand, shifted to
a lower wavenumber (1602 cm−1) on Co(II) coordination compared with its position in the
ligand. These observations indicate the participation of the pyrazole ring in coordination
with the metal ion through the nitrogen atom [16]. Moreover, all the other function groups
in both the ligand and its complex were sited in their expected regions [33], as can be seen
in Figure 2.

3.3. Thermal Analysis

In this study, thermal analyses with either thermogravimetric (TGA) or differential
thermal (DTA) analysis were performed to evaluate the thermal stability behavior of both
ligands and their complexes under a heating rate of 10 ◦C/min and an open atmosphere.
The free ligand reflected a simple thermal behavior since the thermal decomposition is
one-step in the range of 110–400 ◦C (Figure 3a) with TDTA = 120 ◦C and zero mass residue
(Figure 3b). Meanwhile, the complex was decomposed in three steps. The first step was
de-structuring the water solvent from the lattice in the range of 70–100 ◦C (Figure 3a) with
TDTA = 82 ◦C (Figure 3b). The second step was mainly the decomposition of the ligand
from the Co(II)/pyrazole to produce a necked CoCl2 compound in the range of 280–440 ◦C
(Figure 3a) with TDTA = 430 ◦C (Figure 3b). The third step was decomposing CoCl2
to cobalt oxide as a stable final product in the range of 570–665 ◦C (Figure 3a) with
TDTA = 655 ◦C (Figure 3b).
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3.4. MEP

The molecular electrostatic potential (MEP) in the range from −7.62 × 10−2 to
7.62 × 10−2 eV was used to identify electronic status sites for each of the functional groups
in Co(II)/pyrazole complex 2223. The calculated electrostatic potential was obtained by
using the Gaussian calculations of the prepared complex in Figure 4. The MEP showed
the existence of nucleophilic, electrophilic and neutral areas, highlighted in red, blue and
green colors, respectively. As expected, the chloro ligands possess a high e-rich center;
meanwhile, the H of amine, H of CH2 and H of Me proton are distinguished by their e-poor
centers, and the other atoms are in a green color, denoting that they had a neutral center
with a minimum value of about −7.62 × 10−2 eV. In addition, the positive region or the
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electron-depleted zone (blue) is located on the hydrogen atom of the aliphatic amine and
the two hydrogen atoms linked to C13 with a maximum value of about 7.62 × 10−2 eV, and
the neutral region (green) covers the rest of the molecule. Because the complex contains
both electrophilic and nucleophilic sites, intermolecular forces are expected to be found
with high intensity in the lattice of the complex.
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3.5. HOMO/LUMO, DFT and TD-DFT

For the Co(II)/pyrazole complex, unrestricted SCF HOMO/LUMO shapes are illus-
trated in Figure 5a. The electronic density in HOMO was localized on the medial of the
CoN5Cl2 complex’s center more so than on the pyridine ring of the pyrazole rings, while the
electronic density was found in the whole complex, meaning that the electronic situation
supported the NNN ligand as a strong electron donor since it is a strong sigma donor and
bi acceptor (Figure 5a).
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TD-DFT/Vis electronic behavior was theorized and compared to the experimental
behavior when using MeOH as a solvent, as illustrated in Figure 5b. The electronic transfers
appeared in both the UV (~200–350 nm) and the visible areas (~400–650 nm). Herein, we
concentrate only on the d-to-d electron transfer band because it is visible to the naked eye.
The experimental spectrum of the desired complex exhibited a sharp peak at λmax = 555 nm,
whereas TD-DFT exhibited broad absorption at λmax = 565 nm. As shown in Figure 5b,
there appears to be a high degree of congruence between the theoretical and experimental
measurements. Theoretical electronic transition lines for the eight highest energy levels are
represented, along with their energy values, wavelengths, oscillator strengths (f) and major
contributions of orbitals. Signals with f-values less than 0.01 were excluded, as represented
in Table 2.

Table 2. Main TD-DFT bands with their parameters.

No. λnm f Major Contributions

1 685.1 0.024 HOMO(A)- > LUMO(A) (97%)

2 597.9 0.004 HOMO(B)- > LUMO(B) (71%)

3 562.11 0.016 H-2(A)- > LUMO(A) (25%), H-2(B)- > L + 1(B) (38%),
H-1(B)- > L + 1(B) (23%)

4 501.7 0.014 H-1(B)- > LUMO(B) (74%)

5 482.2 0.013 H-2(B)- > LUMO(B) (51%), HOMO(B)- > L + 2(B) (13%),
HOMO(B)- > L + 3(B) (22%)

6 472.1 0.012 H-2(B)- > LUMO(B) (32%), HOMO(B)- > L + 2(B) (13%),
HOMO(B)- > L + 3(B) (39%)

7 448.3 0.011 H-1(A)- > LUMO(A) (24%), HOMO(A)- > L + 1(A) (10%),
HOMO(B)- > L + 2(B) (13%), HOMO(B)- > L + 3(B) (30%)

8 432.7 0.016 HOMO(A)- > L + 1(A) (26%), H-2(B)- > L + 2(B) (39%),
H-1(B)- > L + 1(B) (14%)

9 417.7 0.014 H-3(A)- > LUMO(A) (25%), H-2(B)- > L + 1(B) (26%),
H-1(B)- > L + 1(B) (11%), H-1(B)- > L + 2(B) (20%)

10 365.9 0.0411 H-2(A)- > L + 1(A) (83%)

3.6. Catalytic Activity toward Catecholase and Phenoxazinone

The oxidation ability of the desired Co(II)/pyrazole complex was evaluated through
the catecholase of catechol to o-quinone and the phenoxazinone of 2-aminophenol to
2-phenoxazinone, as can be seen in Scheme 2.

The processes were performed in an open O2 atmosphere and using MeOH as solvent.
The reactions were monitored by UV-Vis; the final products were isolated individually
and confirmed by NMR. In both processes, no oxidation reaction or color changes were
observed in the absence of the Co(II)/pyrazole complex. The reacting of 0.4 M of cate-
chol (catecholase) and 2-aminophenol (phenoxazinone) individually in the presence of
2 × 10−3 M of Co(II)/pyrazole complex dissolved in 10 mL of MeOH (with1cat.:200 sub-
strate) allowed both processes to be completed in no more than one hour, as can be seen
in Figure 6. For catecholase, the appearance of a new single peak with λmax = 390 nm
supported the formation of pure o-quinone [37–41], as can be seen in Figure 6a. The process
reached full complexness with >99% conversion within the first 45 min (Figure 6b); mean-
while, the appearance of new peaks with λmax = 433 nm during the phenoxazinone process
confirmed the formation of 2-aminophenoxazinone [38–47], as can be seen in Figure 6c; this
process reached full completeness with >99% conversion after 70 min (Figure 6d). Thus, the
Co(II)/pyrazole complex catalyzed the catecholase process better than the phenoxazinone
process, as can be seen in Figure 6.
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Figure 6. Co(II)/pyrazole catalytic processes: (a) o-quinone λmax absorption (time: 5 min each run),
(b) catecholase processing over time, (c) 2-phenoxazinone λmax absorption (time: 5 min each run),
and (d) 2-phenoxazinone processing over time.

Since the Co(II)/pyrazole complex acted as a good catalyst for the catecholase pro-
cess, a kinetic study of o-quinone was conducted using the initial rate method under the
same catecholase condition. To obtain both Vmax and Km kinetic parameters of cate-
cholase when catalyzed by the desired Co(II)/pyrazole complex, the Michaelis–Menten
and Lineweaver−Burk models were applied, as can be seen in Figure 7a,b, respectively.

Figure 7. Co(II)/pyrazole catalyzed catecholase of o-quinone in a MeOH and open O2-RT condition:
(a) Michaelis–Menten correlation, and (b) Lineweaver−Burk plot.
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The Vmax value was found to be 0.631 µmol·L−1·min−1 and Km = 0.007 mol·L−1.
These kinetic parameters values are compatible with the results of others using similar
complexes [3–11]. In addition, by comparing this with results from the literature, one can
classify the desired Co(II)/pyrazole complex as working well in the catecholase process in
the absence of an oxidizing agent besides atmospheric oxygen.

4. Conclusions

In conclusion, the pyrazole ligand and Co(II)/pyrazole complex were prepared by
straightforward and rapid methods with high yields. The structures of the free ligand
and its complex were analyzed via several physical analyses such as NMR, IR, UV-Vis. P-
XRD and EDX. Additionally, DFT optimization, MEP and DFT/TD-DFT were successfully
compared to their experimental values. Under mild RT open room conditions, the desired
Co(II)/pyrazole complex had strong catalytic oxidation properties with the catecholase and
phenoxazinone processes. Catecholase was processed with Vmax = 0.631 µmol·L−1·min−1

and Km = 0.007 mol·L−1, showing a fast complete oxidation speed.
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