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A B S T R A C T   

Immunotherapy has emerged as a powerful therapeutic approach in many areas of clinical oncology and he-
matology. The approval of ipilimumab, a monoclonal antibody targeting the immune cell receptor CTLA-4, has 
marked the beginning of the era of immune checkpoint inhibitors. In the meantime, numerous antibodies tar-
geting the PD-1 pathway have expanded the class of clinically approved immune checkpoint inhibitors. 
Furthermore, novel antibodies directed against other immune checkpoints are currently in clinical evaluation. 
More recently, bispecific antibodies, which link T cells directly to tumor cells as well as adoptive T cell transfer 
with immune cells engineered to express a chimeric antigen receptor, have been approved in certain indications. 
Neurological complications associated with the use of these novel immunotherapeutic concepts have been 
recognized more and more frequently. Immune checkpoint inhibitors may cause various neurological deficits 
mainly by alterations of the peripheral nervous system’s integrity. These include radiculopathies, neuropathies, 
myopathies as well as myasthenic syndromes. Side effects involving the central nervous system are less frequent 
but may result in severe clinical symptoms and syndromes. 

The administration of chimeric antigen receptor (CAR) T cell is subject to rigorous patient selection and their 
use is frequently associated with neurological complications including encephalopathy and seizures, which 
require immediate action and appropriate therapeutic measures. 

Close clinical monitoring for neurological symptoms is key for early recognition of immunotherapy-related 
side effects. Comprehensive diagnostic work-up and adequate therapeutic measures are essential to avoid 
further clinical deterioration and residual neurological deficits.   

Cancer immunotherapy 

Immune checkpoint inhibitors 

Background and mode of action 
Immune checkpoint inhibitors (ICI) are a group of monoclonal an-

tibodies, which aim at restoring and boosting the anti-tumor activity of 
cytotoxic T cells. They act by interfering with inhibiting signals, which 
reduce the activity of T cells. This can be achieved by blocking immune 
cell receptors expressed on T cells or by binding to the respective ligand, 
which is present on antigen-presenting or tumor cells. The therapeutic 

efficacy of this concept has been demonstrated in many clinical trials 
across various types of cancer [1]. While the field is now dominated by 
drugs targeting the programmed cell death-1 (PD-1) pathway, the first 
ICI that obtained clinical approval was ipilimumab, which binds to 
cytotoxic T-lymphocyte antigen 4 (CTLA-4) and thereby abrogates the 
inhibiting function of this molecule. Ipilimumab has been approved for 
the treatment of advanced metastatic melanoma and therefore, most 
data on its clinical activity but also side effects and toxicity stem from 
melanoma patients. 

An increasing group of drugs target the immune cell receptor PD-1 or 
its major ligand PD-L1. The latter can be expressed by antigen- 
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presenting cells as well as tumor cells. Engagement of PD-1 by one of its 
ligand dampens T cell activity. The administration of drugs targeting 
either PD-1 or PD-L1 aims at allowing anergic but potentially cancer- 
targeting T cells to execute their function. PD-1/PD-L1 inhibitors have 
proven their clinical activity in various types of cancer. Therefore, an 
increasing use of PD-1/PD-L1 inhibitors has been seen in clinical 
oncology over the last years. Furthermore, novel drugs targeting other 
immune checkpoint molecules such as TIGIT, GITR or LAG3 are in 
clinical development [2]. While these new approaches have yielded 
promising results in clinical trials, it needs to be awaited which of these 
drugs will be approved for clinical use. 

Complications associated with the use of immune checkpoint inhibitors 
Already during early clinical development, various adverse effects 

attributed to the administration of ICI were observed. While it seems 
obvious that most, if not all, side effects might be due to overshooting T 
cell activation, the exact underlying pathophysiological mechanisms 
remain only partially understood [3]. Furthermore, it remains unclear if 
there are differences in the immune response in different organs in terms 

of timing, duration and intensity. ICI-associated side effects, frequently 
referred to as “immune-related adverse events” (irAE), are considered an 
inflammatory reaction which is promoted by different factors [4]. These 
include increasing T cell activity against antigens that are also expressed 
in healthy tissue [5]. This situation, with T cells recognizing antigens 
jointly expressed on tumor cells but also healthy tissue, may partially 
resemble classic paraneoplastic syndromes. Furthermore, checkpoint 
inhibition may also lead to elevated titers of preexisting autoantibodies 
which subsequently recognize and target antigens expressed on normal 
tissue [6]. Increased levels of pro-inflammatory cytokines may play an 
important role in the development of immune-related toxicities and 
serve as biomarkers [7]. Finally, activation of the complement system 
may also drive inflammation [8] (Fig. 1). 

Among the organs, which are frequently affected by irAE, are the 
skin, liver, gastrointestinal tract (mainly colon), different endocrine 
organs such as the thyroid and pituitary glands, but also lung, kidney, 
joints and muscles. There is an increasing body of literature suggesting 
that virtually all organs may be affected by irAE [9]. Overall, compli-
cations seem to be more frequent with the use of CTLA-4-targeting 

Fig. 1. Pathophysiology of immune-related neurological complications. The presumed mechanisms leading to neurological complications in the context of 
treatment with ICI, bispecific antibodies and CAR T cells are shown. Abbreviations: IL, interleukin; IFN, interferon; GM-CSF, granulocyte-macrophage colony- 
stimulating factor; VEGF, vascular endothelial growth factor. 
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agents compared to drugs, which interfere with the PD-1/PD-L1 axis. 
Furthermore, the toxicity of the anti-CTLA-4 antibody ipilimumab is 
dose-dependent with a higher incidence of adverse events observed in 
patients receiving a dose of 10 mg/kg compared to lower doses [10]. 
Combined approaches, which interfere with both pathways, have been 
reported to induce irAE more frequently and more severely compared to 

either treatment alone [9]. 
Compared to the frequency of other irAE, e.g., those involving the 

skin or the gastrointestinal tract, the incidence of neurological compli-
cations associated with the use of ICI is rather low (Table 1). It is in the 
range of 4–6% for monotherapy with anti-CTLA4 and anti-PD1 anti-
bodies, and around 12% for the combination [11]. In an analysis of more 

Table 1 
Clinical features, incidence, differential diagnosis and clinical work-up of immune-related neurological complications. ICI = immune checkpoint inhibitors, 
GBS = Guillain-Barré syndrome, CSF = cerebrospinal fluid, MRI = magnetic resonance imaging, IVIG = intravenous immunoglobulins, CK = creatine kinase, CAR =
chimeric antigen receptor.   

Clinical features Incidence Differential diagnosis Diagnostic work-up Management 

Peripheral nervous system 
Polyradiculopathies, 

neuropathies  
- Sensory deficits  
- Motor deficits  
- Areflexia  
- Facultative involvement 

of cranial nerves (may be 
isolated) 

ICI: Overall ~ 1.3%; 
GBS-like syndrome: 
0.1–0.2% [74,75]  

- GBS (postinfectious, 
paraneoplastic cases 
reported [76]  

- Chronic 
inflammatory 
demyelinating 
polyneuropathy  

- Chemotherapy- 
associated 
neuropathy  

- Electrophysiological work-up  
- Laboratory diagnostics including 

CSF: “albuminocytological 
dissociation” (elevated protein 
without pleocytosis) may not be 
present in ICI-related GBS-like syn-
drome [77]  

- MRI: contrast-enhancing nerve roots 
or peripheral nerves  

- Steroids  
- IVIG 

Myasthenic syndromes  - Ocular myasthenia: 
bilateral ptosis, diplopia  

- Generalized myasthenia: 
generalized weakness, 
dysphagia, dyspnea  

- May be accompanied by 
myositis, myocarditis 

ICI: 0.12–1.16%  
[74,75]  

- Myasthenia gravis  - Acetylcholine receptor 
autoantibodies in 60% (more 
frequent in Myasthenia gravis)  

- Acetylcholine 
esterase inhibitors 
(such as 
pyridostigmine)  

- Steroids (risk of 
initial clinical 
deterioration)  

- IVIG  
- Plasmapheresis 

Myopathies  - Muscle pain  
- Progressive limb 

weakness (typically 
proximally accentuated)  

- Necrotizing autoimmune 
myositis, 
dermatomyositis and 
polymyositis  

- Cardiac involvement 
more frequent than in 
idiopathic 
dermatomyositis/ 
polymyositis (up to 
30%) 

ICI: 0.58–1.67%  
[74,75]  

- Dermatomyositis  
- Polymyositis  

- Laboratory diagnostics: Increased 
serum CK  

- Muscle biopsy: lymphocyte 
infiltration  

- Electroneuromyography  
- Cardiological workup if suspected 

cardiac involvement  
- Autoantibodies less frequently 

observed than in dermatomyositis 
and polymyositis [78]  

- Steroids  

Central nervous system 
Hypophysitis  - Fatigue  

- Generalized weakness  
- Headaches 

ICI: 1.00% [75]  - Metastasis  
- Pituitary apoplexy  

- Hormonal diagnostics  - Hormone 
replacement 
therapy 

Aseptical meningitis  - Neck stiffness  
- Headache  
- Fever  
- Nausea 

ICI: 0.36% [75]  - Bacterial/viral 
meningitis  

- Neoplastic 
meningitis  

- CSF: lymphocytosis, absence of 
neoplastic cells/infectious agents  

- MRI: meningeal contrast 
enhancement  

- Steroids  
- IVIG  
- Plasmapheresis 

Encephalitis  - Confusion  
- Fever  
- Headache  
- Seizures 

ICI: 0.84% [75]  - Paraneoplastic 
encephalitis  

- Infectious 
encephalitis  

- Metabolic 
derangement  

- Laboratory diagnostics: elevated IL-6 
may be seen; exclusion of metabolic 
etiology  

- Paraneoplastic autoantibodies: anti- 
Ma2, anti-Hu, anti-NMDA  

- CSF: absence of tumor cells or 
infectious agents  

- MRI: T2/FLAIR hyperintensities, 
contrast-enhancing spots  

- Steroids  
- IVIG  
- Plasmapheresis  
- Rituximab (anti- 

CD20) 

Cytokine release 
syndrome (CRS)  

- Encephalopathy: Altered 
consciousness, dizziness, 
confusion, headache, 
tremor  

- Fever, tachycardia, 
tachypnea, hypotension, 
hypoxia 

blinatumomab: 
11–14.2% (≥grade III: 
0.8–5%); CAR-T cells: 
18–100% (≥grade III: 
8–46%) [79]  

- Immune effector cell- 
associated neurotox-
icity syndrome 
(ICANS)  

- Elevated serum C-reactive protein, 
ferritin, IL-6 [80]  

- Steroids  
- Tocilizumab (anti- 

IL-6R)  
- Siltuximab (anti-IL- 

6) 

Immune effector cell- 
associated 
neurotoxicity 
syndrome (ICANS)  

- Encephalopathy 
including delirium, 
hallucinations and 
seizures  

- Cerebral edema, 
ischemia, hemorrhage 

CAR-T cells: 21–64% 
(≥grade III: 12–31%)  
[81]  

- Cytokine release 
syndrome (CRS)  

- EEG: encephalopathic pattern  
- MRI: unspecific T2/FLAIR 

hyperintensities  

- Steroids  
- Antiepileptic drugs  
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than 1′800 patients, the frequency of severe (grade 3–5) neurological 
adverse events was 2.2% among patients treated with CTLA-4 inhibitors, 
1.0% among patients receiving PD-1/PD-L1 inhibitors and 2.8% among 
patients receiving combined treatment with drugs targeting the PD-1 
and CTLA-4 pathways [12]. A series of 649 patients receiving mono-
therapy with a PD-1 inhibitor reported an incidence of neurological 
adverse events of 2.6%. Compared to patients who did not experience 
neurological side effects, no difference was seen for age and sex [13]. 
Some analyses suggest that neurological irAE are more frequent in pa-
tients suffering from melanoma compared to other types of cancer 
[13,14]. While neurological complications may occur at any time during 
ICI, their onset is most frequent in the first 3–4 months after treatment 
initiation. Myasthenic syndromes may occur earlier than other neuro-
logical complications [11,14,15]. 

Diagnostic work-up and differential diagnosis 
Despite the well-known side effects of ICI, all patients who present 

with neurological symptoms require a thorough work-up to exclude 
other underlying reasons. The lack of well-established diagnostic criteria 
for immune-related complications has remained a general challenge. 
While some complications of ICI have been rather well characterized, 
the diagnosis of an immunotherapy-related complication should only be 
rendered upon careful exclusion of other possible causes, which may 
require a different therapeutic management (Table 1). Depending on the 
clinical presentation of the patient, the cancer diagnosis, comorbidities, 
cardiovascular risk factors and concomitant medication as well as other 
reasons must be considered. The list of differential diagnosis therefore 
comprises tumor progression, e.g., solid tumor manifestations affecting 
structures of the central or peripheral nervous system as well as tumor 
cell spread to the cerebrospinal fluid (CSF) compartment, vascular 
complications such as ischemia or bleeding, metabolic or toxic condi-
tions, infections, epilepsy as well as side effects due to previous or 
ongoing systemic therapies. Therefore, appropriate diagnostic measures 
like imaging, CSF diagnostic, electrophysiological assessments such as 
electroencephalography and electromyoneurography as well as addi-
tional laboratory assessments need to be initiated depending on the 
clinical picture (Table 1). Importantly, only a comprehensive and rapid 
diagnostic work-up will preclude that treatment with ICI is prematurely 
and unnecessarily stopped. In contrast, if neurological complications are 
attributed to immunotherapy, continued treatment can increase the risk 
of severe and potentially irreversible neurological deficits. 

Therapeutic management 
Despite the broad use of ICI and the increasing knowledge about 

incidence, clinical presentation and severity of irAE, there is no gener-
ally accepted approach regarding their management. Several guidelines 
have become available but data from prospective trials are lacking [16]. 
The situation is even more unsatisfactory for neurological irAE, which 
were only recognized more recently. Most data and information relies on 
anecdotal reports and case series. As a general principle, the manage-
ment of these patients aims at preventing further clinical deterioration 
and avoiding the manifestation of irreversible neurological deficits. 
Close clinical monitoring may be sufficient in patients suffering from 
very mild symptoms. However, there is a general consensus that treat-
ment with ICI should be discontinued rather early in the event of 
neurological symptoms attributed to this treatment. Furthermore, pa-
tients with increasing symptom burden require additional treatment. 
Here, the administration of steroids, aiming at suppressing the inflam-
matory immune reaction, is the next therapeutic step. At most centers, 
intravenous high-dose steroids, e.g., methylprednisolone, are used fol-
lowed by oral continuation and tapering. Patients who are refractory to 
this treatment may require even more intense immunosuppressive 
therapy. Again, no standards have been established in clinical trials and 
several approaches have been described such as the use of intravenous 
immunoglobulins or plasmapheresis, treatment with the B cell-depleting 
antibody rituximab or immunsuppressive drugs such as 

cyclophosphamide or methotrexate [17,18]. There are anecdotal reports 
on even more experimental strategies including the use of natalizumab 
or tacrolimus [19,20]. For some neurological complications, additional 
therapeutic measures should be evaluated (Table 1). These specific 
considerations are mentioned in the following section for the corre-
sponding clinical syndromes. 

Immune checkpoint-inhibitor-associated complications involving the 
peripheral nervous system 

The majority of neurological irAE affects the peripheral nervous 
system. Here, basically all anatomical structures may be impaired 
including nerve root, peripheral nerve, neuromuscular junction, and 
muscle. 

Polyradiculopathies and neuropathies 
Among the more frequently reported neurological complications of 

ICI therapy are clinical symptoms caused by an impairment of the nerve 
root and/or the peripheral nerve. They have been observed in patients 
treated with CTLA-4 as well as PD-1/PD-L1 antagonists [21,22]. The 
clinical spectrum of radiculopathies, neuropathies or the combination, 
that is, polyradiculoneuropathy (also referred to as Guillain-Barré-like 
syndrome), is characterized by sensory and/or motor deficits typically 
affecting the extremities, areflexia as well as impairment of cranial 
nerves, which mostly present symmetrically. Isolated cranial mono-
neuropathies have also been observed [23,24]. Neuropathies may pre-
sent with an affection of small sensory-type fibers or reflect chronic 
inflammatory demyelinating polyneuropathy. Importantly, the broad 
spectrum of other pathologies and factors which may underlie the 
development of (radiculo)neuropathies must be carefully ruled out 
which typically requires appropriate electrophysiological work-up and 
laboratory diagnostics, including CSF analysis, as recommended by 
standard guidelines [25]. “Albuminocytological dissociation”, which is 
characterized by normal cell count and increased protein levels, has 
been described in patient suffering from polyradiculitis [26]. MRI can 
show contrast enhancement of the nerve roots or peripheral nerves 
(Fig. 2). The administration of steroids may result in clinical improve-
ment. In patients who respond insufficiently, intravenous immuno-
globulins (IVIG) or plasmapheresis should be considered [4]. 

Myasthenic syndromes 
The neuro-muscular junction is the anatomical bridge between the 

peripheral nerve and the muscle. Classical myasthenia gravis is the 
result of autoantibodies binding to acetylcholine receptors at the pre-
synaptic membrane. There is an increasing number of reports describing 
myasthenic syndromes in patients being treated with ICI. The clinical 
picture typically involves bilateral ptosis and diplopia, resembling 
ocular myasthenia. Generalized myasthenia is characterized by weak-
ness of further muscle groups, dysphagia and dyspnea, even requiring 
intensive care treatment in some patients. 

During treatment with checkpoint inhibitors, most patients have 
new-onset myasthenia, but aggravation of a pre-existing disorder has 
also been observed [27]. Myasthenic symptoms were more commonly 
observed following PD-1 blockade, but anti-CTLA-4 therapy-associated 
cases were also described and most patients became clinically symp-
tomatic within 6–8 weeks after initiation of immunotherapy [28]. 
However, only approximately 60% of patients had antibodies to the 
acetylcholine receptor. Preliminary data suggest that interleukin (IL)-17 
may play a role in the development of myasthenic syndromes upon ICI 
therapy [29]. Importantly, myasthenic syndromes may be accompanied 
by myositis and myocarditis (see below) [14,30]. 

Patients suffering from myasthenic syndromes may benefit from the 
administration of an acetylcholinesterase inhibitor such as pyridostig-
mine [31]. Similar to classical myasthenia gravis, the additional 
administration of steroids may be beneficial but poses the risk of a 
transient clinical deterioration upon treatment initiation. If these 
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approaches are insufficient, IVIG or plasmapheresis can be used as an 
escalating treatment strategy. 

Myopathies 
Myopathies belong to the most frequently reported neurological 

complications associated with the use of ICI. Histological analyses 
typically demonstrate an infiltration of the muscle tissue with lympho-
cytes and creatine kinase (CK) levels in the blood are elevated. Necro-
tizing autoimmune myositis, dermatomyositis and polymyositis have 
been described [31,32]. Accordingly, patients may also require derma-
tological and rheumatological evaluations. Most patients complain 
about muscle pain, which may be accompanied by progressing weak-
ness, typically affecting the proximal limbs. Dysarthria and dysphagia as 
well as diplopia and ptosis have also been reported [31]. Importantly, 
ICI-induced myositis may involve the heart in up to 30% of patients 
[30,33]. Therefore, patients should be examined for possible signs of 
myocarditis and have cardiological work-up as considered appropriate. 
Increased serum CK levels may trigger further diagnostics including 
electroneuromyography, showing myopathic abnormalities, and muscle 
biopsy. Clinical benefit from steroid therapy has been reported [26,34]. 
The prognosis is variable but seems to be rather favorable with many 
patients experiencing full recovery [34]. 

Immune checkpoint inhibitor-associated complications involving the 
central nervous system 

The central nervous system (CNS) is only rarely affected by side ef-
fects due to ICI treatment. However, patients suffering from CNS toxicity 
may require immediate diagnostic work-up as well as rapid therapeutic 
measures including management on an intensive care unit, depending 
on the severity of the clinical symptoms. 

Hypophysitis 
While CNS complications in the context of ICI treatment are overall 

rare, hypophysitis has been frequently observed and is well character-
ized. Anti-CTLA-4 therapy is associated with hypophysitis in approxi-
mately 10% of patients and is typically diagnosed 6–8 weeks or later 
after initiation of therapy [35]. In contrast, it seems much less frequent 
in patients receiving anti-PD-1/PD-L1 treatment. There is a broad range 
of largely unspecific symptoms that may occur in patients affected by 
hypophysitis, including fatigue, muscular weakness, headaches and 

others [36]. Endocrine work-up includes hormone analyses in the blood 
and imaging (MRI) to evaluate the function and integrity of the pituitary 
gland and exclude differential diagnoses such as tumor metastasis or 
pituitary apoplexy (Fig. 3). Steroids are mostly not beneficial and ther-
apeutic strategies should mainly focus on appropriate hormone 
replacement [37]. 

Aseptic meningitis 
There are several anecdotal reports on the occurrence of an aseptic 

meningitis in patients who are on ICI therapy. Meningitis may present 
with neck stiffness, headache as well as fever and may be accompanied 
by encephalitis (see below). Sterile CSF with lymphocytosis and imaging 
demonstrating meningeal contrast enhancement are key diagnostic 
findings [38]. 

Encephalitis 
Encephalitis is a rare but potentially severe and life-threatening 

complication and has been described in an increasing number of case 
reports and small series in patients receiving ipilimumab, PD-1/PD-L1 
inhibitors or combinations thereof [39–44]. It may occur within weeks 
but also months after treatment initiation [23]. In a series of 9 lung 
cancer patients developing encephalitis upon treatment with PD-1/PD- 
L1 inhibitors, confusion (78%), fever (45%) and cerebellar ataxia 
(33%) were the most frequent symptoms but patients also suffered from 
headache, seizures and other deficits [45]. Three patients required 
intensive care. All patients but one survived without sequelae. MRI 
imaging may demonstrate T2/FLAIR hyperintensities and contrast- 
enhancing spots (Fig. 4) but normal imaging findings do not exclude 
the diagnosis of an encephalitis. Increased levels of IL-6 and paraneo-
plastic antibodies such as anti-Ma2, anti-Hu and anti-NMDA have been 
described [17,39,46]. Diagnostic work-up needs to rule out other un-
derlying pathologies including infections, tumor cell spread to the CSF 
or brain parenchyma or metabolic alterations. Steroids, intravenous 
immunoglobulins and plasmapheresis have been applied [47,48]. 
Beyond these strategies, natalizumab, a drug directed against the α4 
integrin, and the CD20-targeting antibody rituximab have been pro-
posed as experimental approaches [17,19]. 

Other complications in the CNS 
Multiple sclerosis is an autoimmune disease, which is characterized 

by demyelinating lesions in the brain and the myelon and may also 

Fig. 2. Immune checkpoint inhibitor-associated polyradiculoneuropathy. Immune checkpoint inhibitor-associated polyradiculopathy in a 77-year-old female 
patient with a malignant melanoma treated with ipilimumab and nivolumab. Sagittal (A) and axial (B) T1 weighted MRI after intravenous gadolinium application 
demonstrates contrast enhancement of the nerve roots of the cauda equina (arrows) in the lumbar spine. 

P. Roth et al.                                                                                                                                                                                                                                     



Cancer Treatment Reviews 97 (2021) 102189

6

involve the optic nerve. Patients with known multiple sclerosis may 
experience more frequent and severe relapse under the influence of ICI 
[49]. Furthermore, newly diagnosed CNS demyelination has been 
described in patients receiving ICI therapy [50,51]. While the causal 
relationship remains poorly understood, the mechanism of action of ICI 
may be associated with increased inflammation and subsequent 
demyelination. 

Furthermore, there is an increasing number of anecdotal reports on 
additional neurological complications in the context of ICI therapy. This 
includes patients with a diagnosis of neurosarcoidosis or CNS vasculitis 
[52–54]. Because of the rarity of these events, the analysis of larger 
datasets needs to be awaited to clarify if there is more than co-incidence 
but rather a direct link between cancer immunotherapy and these CNS 
complications. 

Immune checkpoint inhibitors in the context of brain tumors 
Questions have been raised if ICI may be associated with an 

increased risk of complications in the CNS in patients suffering from a 
brain tumor. Accordingly, and similar to the development of many other 
drugs, patients with primary or secondary brain tumors were not eligible 
in early trials exploring the activity of ICI because of the fear that these 
patients may be more prone to neurological complications [55]. In the 
meantime, both CTLA-4 and mainly PD-1 inhibitors were assessed in 
patients with brain metastases as well as primary brain tumors such as 
glioblastoma. While there were encouraging findings regarding the 
clinical activity of these drugs against brain metastasis [56], the results 
in patients with glioblastoma have remained disappointing [57]. 
Treatment with checkpoint inhibitors was typically well tolerated and 
the safety and toxicity profile was comparable to patients with cancer 
outside the CNS. A retrospective series identified intracranial lesions at 

the start of PD-1 therapy as a factor associated with a higher rate of 
neurological complications [13]. However, in most larger trials, no 
additional neurotoxicity was observed in patients with brain tumors. 
While continued awareness is mandatory, there are so far no specific 
concerns regarding the safety and neurological tolerability of ICI in 
patients with brain tumors, which allows further clinical investigation in 
these patients [58]. 

Bispecific antibodies 

Background and mode of action 
Bispecific constructs represent a novel class of antibody therapeutics 

in the field of immunotherapy. The term bispecific refers to 2 binding 
domains which recognize different target antigens. Typically, bispecific 
antibodies bind to an antigen, which is specifically expressed on a tumor 
cell and CD3 on T cells by another domain. Hence, the idea of such T 
cell-redirecting bispecific antibodies (TRBA) is to activate T cells and 
bring them in close proximity to a tumor cell, thereby allowing for im-
mediate tumor cell killing [59]. While several bispecific antibodies have 
been explored at the preclinical level, only blinatumomab has been 
clinically approved in patients with refractory B cell acute lymphoblastic 
leukemia. Blinatumomab binds to the CD19 antigen on B cells and has a 
CD3-targeting moiety. Various bispecific constructs are currently in 
preclinical and clinical development. Depending on the tumor type, 
these agents target different antigens including HER2, PD-1 or PD-L1, 
but also other immune checkpoint molecules, mainly aiming at inter-
fering with negative T cell regulation. 

Side effects and complications 
In contrast to ICI with many clinically approved drugs and 

Fig. 3. Hypophysitis following combined treatment with ipilimumab and nivolumab. Immunotherapy-associated hypophysitis in a 66-year-old male patient 
with a malignant melanoma treated with ipilimumab and nivolumab. Sagittal T1 weighted contrast enhanced MRI demonstrates a normal appearing pituitary gland 
(arrow) prior to the initiation of immunotherapy (A). After three infusions of ipilimumab and nivolumab, the patient developed headaches and hypopituitarism. 
Subsequent MRI demonstrated an enlarged and inhomogeneously contrasted pituitary gland (B) extending in the suprasellar cistern. After stopping the medication, 
the size of the pituitary gland normalized in the MRI four months later (C). 

Fig. 4. Nivolumab-associated encephalitis. Encephalitis in a 68-year-old female patient with a malignant melanoma treated with nivolumab. Axial FLAIR (A) and 
T2 weighted (B) MRI demonstrates bilateral hyperintensities in the thalamus and in the right temporal lobe with associated contrast enhancement in T1 weighted 
images after gadolinium injection (C, arrows). Follow-up images two months later after stopping immunotherapy demonstrate a size reduction of the right temporal 
FLAIR lesion with vanished thalamic lesions (D, arrow) and vanished contrast enhancement in T1 images after gadolinium (E). 
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increasingly broad use against different types of cancer, data on adverse 
effects related to TRBA are largely limited to blinatumomab, the only 
approved agent. Complications associated with the administration of 
blinatumomab comprise the development of a cytokine release syn-
drome (CRS), a systemic inflammatory response, which has been char-
acterized in more detail in the context of CAR T cell therapy (see below). 
Neurotoxicity may occur in parallel or independent of CRS and partially 
rely on blinatumomab-induced adhesion of T cells to endothelial cells 
[60] (Fig. 1). In an analysis of 98 patients suffering from neurological 
complications related to blinatumomab administration, encephalopathy 
with altered consciousness, confusion, dizziness, headache and tremor 
were most frequently diagnosed [61]. Elderly patients were more often 
affected by neurological symptoms, which typically developed within 
the first 2 weeks after initiation of treatment. The majority of patients 
had rather mild neurological symptoms. Stopping blinatumomab ther-
apy and additional administration of steroids has been proposed as a 
therapeutic approach but further investigations are required to develop 
the best therapeutic strategy also with respect to the more frequent use 
of blinatumomab and similar constructs in the future [62]. 

Adoptive T cell therapy 

Background on CAR T cells 
Using patient-derived T cells for anti-tumor therapy has long been 

regarded a promising approach. However, classical concepts such as ex 
vivo expansion and stimulation prior to re-administration did not ach-
ieve clinically meaningful anti-tumor activity. This has considerably 
changed with the concept of T cells that are genetically engineered to 
express a chimeric antigen receptor (CAR). The CAR consists of an 
extracellular antigen-binding domain, allowing for binding to a tumor 
cell, as well as intracellular signaling domains which result in immediate 
T cell activation upon antigen recognition [63,64]. The treatment of 
patients with hematological malignancies, particularly B cell neoplasias, 
using CD19-specific CAR T cells resulted in convincing clinical benefit 
[65,66]. As a consequence, tisagenlecleucel (Kymriah ®) and 
axicabtagene-ciloleucel (Yescarta ®) have been the first clinically 
approved CAR T cell therapies. While this treatment is more and more 
frequently used against hematological malignancies in clinical routine, 
it needs to be awaited if this approach will also work against solid 
tumors. 

Side effects associated with the use of CAR T cells 
Administration of CAR T cells may result in striking therapeutic ac-

tivity resulting in long-lasting remissions in many patients. However, the 
effect of this therapy comes at a price. The administration of genetically 
engineered T cells, ready to become immediately activated upon antigen 
recognition may result in several undesired effects. Among these, cyto-
kine release syndrome (CRS) has been increasingly well understood and 
characterized. CAR T cells may continue to proliferate upon adminis-
tration to the patient. As suggested by its name, CRS is the result of a 
supraphysiological expression of various inflammatory cytokines and 
their corresponding receptors including, but probably not limited to, IL- 
6 and soluble IL-6 receptor, soluble IL-2 receptor, interferon (IFN)-γ, and 
granulocyte-macrophage colony-stimulating factor (GM-CSF). Further-
more, upon engagement of other (bystander) immune cells, additional 
inflammatory cytokines may be secreted at high levels contributing to 
systemic inflammation. The American Society of Blood and Marrow 
Transplantation (ASBMT) has developed a score that allows CRS grading 
using 3 parameters: fever, hypotension and hypoxia [67]. While mild 
CRS refers to grade 1, more severe manifestations are classified as grade 
2, 3 or 4. 

CRS can manifest shortly, within days, after CAR T cell administra-
tion and is characterized by fever, tachycardia, tachypnoea, arterial 
hypotension and hypoxia with subsequent organ failure. Patient with 
CRS typically have increased serum levels of IL-6. Tocilizumab, a 
monoclonal antibody interfering with IL-6 signaling by blocking the IL-6 

receptor (IL-6R) has become a standard treatment in addition to the 
administration of steroids [68]. Other drugs which interfere with the IL- 
6 signaling axis, e.g., siltuximab, which binds to IL-6, may also be 
considered. 

While the detailed description and management of CRS is beyond the 
scope of this article and has been described elsewhere [69], it is 
important to understand that the pathophysiology of CRS is only 
partially overlapping with that of neurotoxicity, which is covered in the 
following section. 

CAR T cell-associated neurotoxicity 
Neurotoxicity was recognized as a frequent and major complication 

in patients receiving CAR T cell therapy. Neurological complications 
related to CAR T cells therapy are summarized under the term immune 
effector cell-associated neurotoxicity syndrome (ICANS). About 50% of 
patients receiving CAR T cell therapy develop ICANS [70]. Typically, 
there is a rather narrow time window associated with the occurrence of 
CAR T cell-related neurotoxicity, starting around day 3 after T cell 
infusion and lasting until about 2 weeks later but a delayed onset of 
neurological complications is also possible. The diagnosis of ICANS may 
be more challenging in patients also suffering from CRS as both condi-
tions may overlap in time and the symptoms of global encephalopathy 
may be similarly observed within high fevers with or without CRS, 
particularly in frail and elderly patients. Unlike CRS, endothelial acti-
vation and a disruption of the blood-brain barrier integrity have been 
proposed as the underlying pathophysiological mechanism leading to 
the development of ICANS following the administration of CD19-specific 
CAR T cells [71,73]. Blood-brain barrier disruption may result in cere-
bral edema and further complications such as tissue ischemia and 
hemorrhage (Fig. 1). So far, no clear association between the grade of 
neurotoxicity and the lymphocyte cell count or CAR T cell quantity in 
the CSF has been found but increased levels of proinflammatory cyto-
kines in the CSF were observed [72]. 

ICANS typically presents as an encephalopathic condition which 
involves altered consciousness, confusion, delirium and hallucinations. 
Some patients suffer from seizures, aphasia, myoclonus and other focal 
deficits. In severe cases, patients develop coma. Of the few cases of death 
due to CAR T cell treatment approximately 50% were due to neuro-
toxicity, specifically cerebral edema. EEG findings are unspecific but are 
frequently in line with encephalopathy. As with complications due to 
other immunotherapeutic approaches, other causes that could explain 
the neurological condition must be ruled out with an appropriate 
diagnostic work-up. MRI of the brain may be normal in patients 
suffering from mild symptoms and may show unspecific T2/FLAIR 
hyperintensities in various regions as well as generalized edema in se-
vere cases [71,72]. 

The CARTOX-10 score allows for a grading of neurological compli-
cations associated with the administration of CAR T cells. It assigns 
points for questions related to orientation, the naming of 3 objects, 
writing of a standard sentence and the ability to count backwards from 
100 by 10. Depending on the total number of points, ICANS is classified 
from grade 1 to 5 [69]. A slightly modified version of the CARTOX-10 
score has been proposed as Immune Effector Cell-Associated Encepha-
lopathy (ICE) score by the American Society for Transplantation and 
Cellular Therapy (ASTCT) [67]. Here, a command-following assessment 
was integrated instead of one of the orientation-related questions of 
CARTOX-10. About one third of the patients receiving axicabtagene- 
ciloleucel develop ICANS ≥ grade 3 whereas treatment with tisagenle-
cleucel seems to be less likely associated with severe ICANS [70]. 

Treatment of ICANS has only been partially established so far. Ste-
roids remain the therapeutic mainstay whereas IL-6R blockade with 
tocilizumab has no beneficial effect in most patients [68,72]. The lack-
ing benefit from anti-IL-6R antibody therapy is most likely explained by 
the different pathophysiology of ICANS compared to CRS. Supportive 
therapy includes antiepileptic medication in patients suffering from 
seizures or with EEG patterns associated with increased seizure risk. 
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Newer generation antiepileptic drugs with low interaction potential may 
be preferred. Particular attention and monitoring is required in patients 
with a history of neurological problems prior to the initiation of CAR T 
cell therapy. 

Conclusion and outlook 

The last decade has seen the raise of several immunotherapeutic 
strategies in the field of clinical oncology. The number of patients who 
are undergoing any of these treatments, is continuously increasing. This 
holds particularly true for the use of ICI where the approval for different 
cancer entities is continuously expanding. Drugs which act beyond the 
CTLA-4 or PD1/PD-L1 axis are in late-stage clinical development and 
may enter regular clinical use in the near future. Therefore, it can be 
anticipated that the number of patients affected by neurological com-
plications will further increase. Similarly, treatments which are 
currently restricted to selected patients such as TRBA constructs or CAR 
T cells will become available at more and more sites and their approval 
may be expanded to additional cancer indications. Therefore, awareness 
for neurological irAE, patient education before treatment initiation, 
close clinical monitoring as well as early and accurate diagnosis is key to 
initiate appropriate therapeutic measures and to avoid persisting clinical 
deficits. In line with this, more information, ideally from prospective 
trials, is required to define therapeutic escalation strategies in patients 
who respond insufficiently to steroids. 

More data are also needed regarding the occurrence of neurological 
complications and their potential association with response rates and 
survival. While some preliminary data suggest that such an association 
exists, analyses of larger datasets are required to support or reject this 
hypothesis [11]. Furthermore, an improved understanding of possible 
clinical or laboratory (bio)markers which may help identifying patients 
who are prone for neurological complications in the context of immu-
notherapy would be desirable to guide and improve patient manage-
ment. Finally, until data that are more robust become available, re- 
initiation of immunotherapy after recovery from a neurological irAE 
must be decided on an individual basis. 
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