

Figure S1: Adsorption / desorption isotherms of calcined (SBAc) and uncalcined (SBAa) SBA-15.

Figure S2: Pore size distribution of calcined (SBAc) and uncalcined (SBAa) SBA-15.

Figure S3: N₂ Adsorption/desorption isotherms of 10Mn-MIa before and after acid treatment

Figure S4: N_2 Adsorption/desorption isotherms of of 20Mn-MIa before and after acid treatment

Figure S5: N₂ Adsorption/desorption isotherms of 30Mn-MIa before and after acid treatment

Figure S6: Scheme illustrating the "pore network effect" generating ink bottle pores^[32]

Figure S7: Pore size distribution (offset by 0.4 cm³.g⁻¹.nm⁻¹) of 10Mn-MIa before and after acid treatment

Figure S8: Pore size distribution (offset by 0.4 cm³.g⁻¹.nm⁻¹) of 20Mn-MIa before and after acid treatment

Figure S9: Pore size distribution (offset by 0.4 cm³.g⁻¹.nm⁻¹) of 30Mn-MIa before and after acid treatment

Figure S10: A/(A+B) ratio as a function of Mn wt %

Figure S11: XPS spectra of Si 2p for 20 and 30 Mn-MIa before and after acid treatment

Figure S12: XPS spectra of Mn 3s for 20 and 30 Mn-MIa before and after acid treatment (* : gain x3)

Figure S13: Example of the decomposition of Mn 2p_{3/2} envelope for 20Mn-MIa

Figure S14: Example of the decomposition of Mn $2p_{3/2}$ envelope for 20Mn-MIa-AT

Compound	Peak 1		Peak 2		Peak 3		Peak 4		Peak 5			Peak 6*						
	eV	%	FWHM	eV	%	FWHM	eV	%	FWHM	eV	%	FWHM	eV	%	FWHM	eV	%	FWHM
Mn(II), MnO	left to vary	23.7	1.5	Peak 1 + 0.97	27.6	1.5	Peak 1 + 1.9	21.8	1.5	Peak 1 + 2.85	12.2	1.5	Peak 1 + 3.99	5.7	1.5	Peak 1 + 5.74	9.0	left to vary
Mn(III), Mn ₂ O ₃	left to vary	18.8	2.05	Peak 1 + 1.1	44.4	2.05	Peak 1 + 2.37	25.2	2.05	Peak 1 + 3.87	8.5	2.05	Peak 1 + 5.49	3.1	2.05			

Table S1: Fitting parameters used to simulate the Mn 2p_{3/2} envelope for xMn-MIa samples inspired from the work of M. Biesinger ³⁸

* : MnO satellite

 $\label{eq:solution} \textbf{Table S2}: Fitting parameters used to simulate the Mn 2p_{3/2} envelope for $xMn-MIa-AT$ samples inspired from the work of M. Biesinger 38 results a statement of the statement of t$

Compound	Peak 1			Peak 2		Peak 3		Peak 4		Peak 5			Peak 6*					
	eV	%	FWHM	eV	%	FWHM	eV	%	FWHM	eV	%	FWHM	eV	%	FWHM	eV	%	FWHM
Mn(II), MnO	left to vary	34.4	1.6	Peak 1 + 1.2	26.2	1.6	Peak 1 + 2	16.9	1.6	Peak 1 + 2.9	8.6	1.6	Peak 1 + 7.5	3.5	1.6	Peak 1 + 5	10.4	left to vary
Mn(IV), MnO ₂	left to vary	43.7	1.75	Peak 1 + 0.86	27.5	1.75	Peak 1 + 1.56	16.1	1.75	Peak 1 + 2.31	9.6	1.75	Peak 1 + 3.16	0.5	1.75	Peak 1 + 4.16	2.6	1.75

* : MnO satellite.

Figure S15: H₂-TPR profiles of 10Mn-MIa before and after acid treatment

Figure S16: H₂-TPR profiles of 20Mn-MIa before and after acid treatment

Figure S17: H₂-TPR profiles of 30Mn-MIa before and after acid treatment

Figure S18: TGA/DSC curves of 20Mn-MIa sample

Samples	Mn (wt%*)	H ₂ -consumption (mmol/g)	$n_{\rm H2}/n_{\rm Mn}$	Mn AOS		
10Mn-MIa	9.41	0.071	0.04	2.1		
20Mn-MIa	19.18	1.223	0.35	2.7		
30Mn-MIa	26.64	1.471	0.3	2.6		
10Mn-MIa-AT	2.38	0.334	0.77	3.5		
20Mn-MIa-AT	8.61	0.943	0.60	3.2		
30Mn-MIa-AT	10.93	1.738	0.87	3.8		
*: From ICP						

 $\textbf{Table S3:} H_2\text{-}TPR \text{ data for the $xMn-MIa$ samples before and after acid treatment}$

Figure S19: HR-TEM of 10Mn-MIa (A and C) and 20Mn-MIa (B and D)

Figure S20: TEM and HR-TEM of 10-MIa-AT (A and C) and 20MIa-AT (B and D). The insert of Fig. 20(C) excludes the external particles

T ₉₀ ∕ °C	T ₅₀	r_s^1	
/ C	/ C		
218	183	17	
176	144	11.5	
182	141	9.5	
230	205	30 ²	
160	125	51.2	
165	122	39.7	
	T ₉₀ / °C 218 176 182 230 160 165	$\begin{array}{c c} T_{90} & T_{50} \\ / ^{\circ} C & / ^{\circ} C \\ \hline 218 & 183 \\ 176 & 144 \\ 182 & 141 \\ \hline 230 & 205 \\ 160 & 125 \\ 165 & 122 \\ \hline \end{array}$	

Table S4: Catalytic properties of the fresh and acid-treated xMn-MIa catalysts

 $^1\!\!:$ expressed in mmoles of HCHO converted into CO_2 per mole of Mn and per hour at 130 $^\circ C$; 2: at 170 $^\circ C$

Figure S21: Plots of HCHO conversion as a function of time for 20Mn-MIa-AT in dry and humid air (RH= 50%) at 130 °C during 70 h.

Figure S22: Wide-angle XRD patterns of fresh and used 20Mn-MIa-AT under dry or moisture condition

Figure S23: Adsorption / desorption isotherms (offset by 400 $\text{cm}^3.\text{g}^{-1}$) of fresh and used 20Mn-MIa-AT under dry or moisture condition

Figure S24: Pore size distribution (offset by 0.4 cm³.g⁻¹.nm⁻¹) of fresh and used 20Mn-MIa-AT under dry or moisture condition

Figure S25: H₂-TPR profiles of fresh and used 20Mn-MIa-AT in dry and humid air

Figure S26: Evolution of infra-red spectra of fresh and used 20Mn-MIa-AT under dry or moisture condition