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Semi-Blind Joint Channel and Symbol Estimation
for IRS-Assisted MIMO Systems

Gilderlan T. de Araújo, André L. F. de Almeida, Senior Member, IEEE, Rémy Boyer, Senior Member, IEEE,
and Gábor Fodor, Senior Member, IEEE

Abstract—Intelligent reflecting surface (IRS) is a promising
technology for the 6th generation of wireless systems, realizing the
smart radio environment concept. This paper presents a novel
tensor-based receiver for IRS-assisted multiple-input multiple-
output communications capable of jointly estimating the channels
and the transmitted data streams in a semi-blind fashion. Assum-
ing a fully passive IRS architecture and introducing a simple
space-time coding scheme at the transmitter, the received signal
model can be advantageously built using the PARATUCK tensor
model, which can be seen as a hybrid of parallel factor analysis
and Tucker models. A semi-blind receiver is derived by exploiting
the algebraic structure of the PARATUCK tensor model. We first
formulate a semi-blind receiver based on a trilinear alternating
least squares method that iteratively estimates the two involved
– IRS-base station and user terminal-IRS – communication
channels and the transmitted symbol matrix. We discuss identifi-
ability conditions that ensure the joint semi-blind recovery of the
involved channel and symbol matrices and propose a joint design
of the coding and IRS reflection matrices to optimize the receiver
performance. We also formulate an enhanced two-stage semi-
blind receiver that efficiently exploits the direct link to refine the
channel and symbol estimates iteratively. In particular, we discuss
the impact of an imperfect IRS absorption (residual reflection) on
the performance of the proposed receiver. Numerical results are
proposed for performance evaluation in several system settings
in terms of the normalized mean squared error of the estimated
channels and the achieved symbol error rate, corroborating the
merits of the proposed semi-blind receiver in comparison to
competing methods.

Index Terms—Intelligent reflecting surface, channel estimation,
symbol estimation, MIMO, tensor modeling, PARATUCK, semi-
blind receiver.

I. INTRODUCTION

Intelligent reflecting surface (IRS) or reconfigurable intelli-
gent surface is a promising technology for 6th generation (6G)
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Fortaleza, CE, e-mail: andre@gtel.ufc.br.
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wireless systems [1]. An IRS consists of a two-dimensional
array of a large number of passive or semi-passive elements,
each of which can independently and dynamically tune the
desired phase shift and amplitude of the incident radio waves
[2], [3]. An immediate and simplified application of IRS is
to overcome the blockage problem between the transmitter
and intended receivers in wireless networks, which reduces
the dead zone1 [6]. Due to its ability to shape the propagation
environment, IRSs can be employed in various scenarios to
achieve several other goals as well, as it is discussed in [7].
However, deploying IRSs in wireless communication systems
involves a number of challenges, including channel state
information (CSI) acquisition [3], [8], [9].

Acquiring CSI is an important issue since the accuracy
of the channel estimate has a direct impact on the gains
obtained by IRS-assisted communications. The difficulty is
in part due to the passive nature of the surface and the
high number of reconfigurable elements. Recent works have
proposed channel estimation (CE) methods to IRS-assisted
communications. These works can be classified according
to the IRS architecture, system setup, and signal processing
methodology [10]. For example, regarding the IRS architec-
ture, it can be assumed that the IRS is fully passive, i.e.,
it does not have signal processing capabilities and cannot
send/process pilot sequences, as it was pointed out in [11],
which investigates CE in the context of IRS-assisted Terahertz
communication. Alternatively, the IRS can be semi-passive,
where some IRS elements are equipped with a few radio-
frequency (RF) chains to facilitate the CE, as in [12].2

In the system setup category, single and multiuser systems
– depending on whether the communication links are assisted
by a single or multiple IRSs – can be distinguished. As an
example, the authors in [13] and [14] consider a multiuser
system, and the CE solution is based on an anchoring scheme,
where two nodes are positioned near the IRS in order to aid
the base station (BS). Also, references [15]–[18] propose CE
strategies, in which multi-stage or multi-time scale estimation
techniques are exploited. A double IRS-assisted system is
considered in [19], in which CE and a passive beamforming

1Although a dead zone can be surpassed using relay technology, an IRS
can be more advantageous in terms of cost since, as opposed to amplify-
and-forward (AF) or decode-and-forward (DF) relays that require a dedicated
power source, IRS does not require power-hungry radio-frequency chains and
can also be wirelessly powered by an external RF-based source [4]. The key
differences and similarities between IRS and relays are discussed in [5].

2Note that a fully passive architecture is more challenging since the
estimation of the cascaded channel, TX-IRS-Rx, or the individual channels Tx-
IRS and IRS-Rx channels should be carried out at the receiver or transmitter.
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design are investigated.
Recently, several mechanisms based on deep learning and

compressed sensing to acquire CSI have been proposed [20],
[21]. The conventional least squares (LS) CE is assumed
in [22], where a minimum variance unbiased estimator is
proposed. In [23], channel training is divided into I blocks.
Each block provides a partial channel estimate in the LS
sense so that the total channel matrix is accomplished once
all blocks are processed. Paper [24] proposes a matrix factor-
ization method based on eigenvalue decomposition (EVD). A
tensor-based solution for IRS-assisted multiple-input multiple-
output (MIMO) systems is proposed in [25]. That method
relies on a parallel factor analysis (PARAFAC) modeling of
the received signals. It is shown that decoupled estimates
of the involved MIMO communication channels can be ob-
tained iteratively or in closed form. The works [26] and
[27] also exploit tensor modeling to solve the CE task in
IRS-assisted downlink multi-user systems. The use of tensor
methods has been investigated in several previous works
in the context of point-to-point [28]–[31] and cooperative
(relay-assisted) MIMO systems [32]–[34]. The success of
tensor-based methods comes from the powerful uniqueness
properties of tensor decompositions compared to matrix-based
ones. Moreover, in wireless communications, tensor-based
algorithms efficiently exploit the multi-dimensional nature of
the received signals in the time, space, and frequency domains.
This multi-dimensional characterization of the received signals
leads to more flexible transceiver designs than those offered
by conventional matrix-based solutions. Recently, a few works
have proposed semi-blind solutions for channel estimation in
IRS-assisted communications [35]–[37]. The works [35] and
[36] are concerned with the estimation of the cascaded channel
only while considering a multi-user SIMO setup. Moreover,
[36] and [37] do not consider the direct links whereas in our
paper we include the direct link in our two-stage semi-blind
receiver, showing that it can be useful to refine the estimation
of the data symbol matrix as well as that of the direct channel
matrix. The authors of [37] provide a solution to estimate the
individual channels jointly with symbol recovery. However, it
resorts to pilot sequences for channel estimation. Differently
from [37], our approach does not require pilot sequences.
Recognizing these benefits of tensor-based algorithms, this
paper takes a different approach compared to previous works
and provides joint estimates of the involved communication
channels and the transmitted symbols in a semi-blind fashion.

Assuming a fully passive surface architecture and introduc-
ing a simple space-time coding3 scheme at the transmitter,
we recast the received signal as a PARATUCK tensor model,
which can be seen as a hybrid of PARAFAC and Tucker
models [38]–[41]. Exploiting the algebraic structure of the
PARATUCK tensor model, namely, the different matrix un-
foldings of the received signal tensor, a semi-blind receiver
based on a trilinear alternating least squares (TALS) estimation
scheme is proposed. Our receiver design iteratively estimates
the two involved (IRS-BS and user terminal (UT)-IRS) com-

3In this paper, we use the terminology “coding” to avoid any misunder-
standing with the usual concept of precoding, where the channel knowledge
is used at the transmitter prior to the data transmission stage.

munication channels and the symbol matrix. Moreover, by
resorting to the identifiability results of the PARATUCK tensor
model, we derive useful system design recommendations that
ensure the joint semi-blind recovery of the involved channel
and the symbol matrices. In particular, we propose a joint
design of the coding matrix and the IRS reflection matrix
to optimize the receiver performance. We also present an
extension of the proposed receiver algorithm to a scenario,
in which the direct link is available. In this scenario, an initial
estimation of the transmitted symbol matrix obtained from the
direct link is used as a warm start to enhance the semi-blind
joint channel and symbol estimation via the IRS-assisted link.
Finally, we provide expressions for the expected Cramér-Rao
lower bound (CRB) for the proposed semi-blind receiver.

In the following, we summarize the main contributions of
this work.

• We present a novel tensor-based semi-blind receiver al-
gorithm for IRS-assisted MIMO systems. The proposed
algorithm iteratively estimates the two involved channel
matrices as well as the symbol matrix by means of a
TALS algorithm, which exploits a PARATUCK tensor
model for the received signals.

• We derive conditions for the joint channel and symbol
identifiability, and discuss the design of the coding matrix
and the IRS phase shift matrix. A joint design is proposed
to improve the receiver performance.

• We extend the proposed semi-blind receiver to a scenario,
in which the direct link between transmitter and receiver
is available. In this case, the receiver processing has two
stages. In the first one, an initial semi-blind estimate of
the data symbols obtained via the direct link is used as
a warm start to a second stage where joint channel and
symbol estimation is carried out via the IRS-assisted link.

• We show that the proposed semi-blind receiver efficiently
exploits the direct link to refine the channel and symbol
estimates iteratively. In particular, we discuss the impact
of an imperfect IRS absorption (residual reflection) on
the performance of the proposed receiver.

• We derive the expected CRB for the proposed TALS-
PARATUCK semi-blind receivers, allowing us to study
its performance analytically.

To the best of our knowledge, estimating the individual
channels is important since, optimizing the IRS phase shifts,
the precoder, and the combiner jointly in a MIMO scenario,
the knowledge of the individual channel matrices H and G
is required (see, e.g., [42]–[44]). On the other hand, in the
SISO and MISO cases, the knowledge of the cascaded channel
is enough (see, e.g, [45], [46]). Moreover, as shown in [25]
(see Figure 8), estimating the individual channels followed by
reconstructing the cascaded channel yields a significant gain
in terms of estimation accuracy, compared with the baseline
LS method used in most channel estimation schemes. This
performance gain comes from the noise rejection achieved by
the channel decoupling process.

Notation and properties: Matrices are represented with bold-
face capital letters (A), and vectors are denoted by boldface
lowercase letters (a). Tensors are symbolized by calligraphic
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letters (A). Transpose and pseudo-inverse of a matrix A are
denoted as AT and A†, respectively. Di(A) is a diagonal
matrix holding the ith row of A on its main diagonal. The
operator diag(a) forms a diagonal matrix out of its vector
argument, while ∗, ◦, ⋄, ⊙ and ⊗ denote the conjugate,
outer product, Khatri Rao, Hadamard, and Kronecker products,
respectively. IN denotes the N × N identity matrix. The
operator vec(·) vectorizes an I × J matrix argument, while
unvecI×J(·) does the opposite operation. Moreover, vecd(.)
forms a vector out of the diagonal of its matrix argument.
¨The n-mode product between a tensor Y ∈ CI×J...×K and a
matrix A ∈ CI×R is denoted as A×n B, for 1 ≤ n ≤ N . An
identity N -way tensor of dimension R×R · · ·×R is denoted
as IN,R. Moreover, Ai• and A•j denotes the i-th row and
j-th column of the matrix A, respectively. The operator ⌈x⌉
rounds its fractional argument up to the nearest integer. In this
paper, we make use of the following identities:

(A ⋄B)H(C ⋄D) = (AHC)⊙ (BHD). (1)

vec(ABC) = (CT ⊗A)vec(B). (2)

diag(a)b = diag(b)a. (3)

If B is a diagonal matrix, we have:

vec(ABC) = (CT ⋄A)vecd(B). (4)

II. TENSOR PRELIMINARIES

In this section, we provide a brief overview of two tensor
decompositions that are of interest to this work, namely the
PARAFAC and PARATUCK decompositions. They will be
exploited in the formulation of the proposed receivers. In
order to keep the presentation concise, the focus is on the
key definitions and expressions used to represent these two
tensor decompositions.

A. PARAFAC decomposition

The PARAFAC decomposition, also known as the canonical
polyadic decomposition (CPD), is the most popular tensor
decomposition, which expresses a tensor as a sum of a
minimum number of rank-one tensors [47]–[50]. For a third-
order tensor X ∈ CI×J×K , its scalar form and frontal slice
representation is given as

xi,j,k =

R∑
r=1

ai,rbj,rck,r, (5)

and
X[k] = ADk(C)BT ∈ CI×J , (6)

respectively, where xi,j,k denotes the (i, j, k)-th entry of the
tensor X ∈ CI×J×K and X[k] is the k-th frontal slice (a.k.a.
as 3-mode slice) of the tensor X , for k = 1, . . . ,K. The scalars
ai,r, bj,r and ck,r are corresponding entries of the three factor
matrices A, B, and C, while R denotes the rank of the tensor
X . where X[k] is the k-th frontal slice (a.k.a. as 3-mode slice)
of the tensor X , k = 1, . . . ,K. The PARAFAC decomposition
is powerful due to its essential factor identification uniqueness
property, which has its roots in the concept of the Kruskal rank
(k-rank). Further details can be found in [51], [52].

Fig. 1: Transmission time structure.

B. PARATUCK decomposition

The PARATUCK decomposition [40], [53] is a hybrid
tensor decomposition that combines the Tucker [54] and the
PARAFAC decompositions. It enjoys the powerful uniqueness
properties of the PARAFAC model while offering a more
flexible structure by allowing controlled interactions among its
factor matrices. Its scalar form and frontal slice representations
are given as

xi,j,k =

R1∑
r1=1

R2∑
r2=2

ai,r1bj,r2ωr1,r2c
A
k,r1c

B
k,r2 , (7)

and
X[k] = ADk(C

A)ΩDk(C
B)BT, (8)

respectively, where ai,r1 , bj,r2 , ωr1,r2 , cAk,r1 and cBk,r2 are
the elements of the matrices A ∈ CI×R1 , B ∈ ×CJ×R2 ,
Ω ∈ CR1×R2 , CA ∈ CK×R1 and CB ∈ CK×R2 , respectively.
A and B are referred to as the factors matrices, CA and
CB are the interactions matrices, while Ω is the core matrix,
whose (r1, r2)-th entry defines the level of interaction between
the r1-th column of A and the r2-th column of B.

III. SYSTEM MODEL

Let us consider a MIMO communication system assisted
by an IRS, where the BS and UT have arrays of M and
L antennas, respectively, while the IRS is composed of N
elements, which can be individually adjusted/configured to
generate phase shifts. We assume a quasi-static flat-fading
channel, where the coherence time TC is large enough to
span the total transmission duration, as illustrated in Fig. 1,
4 where the channel estimation time window TE is split into
K blocks, and each block has T symbol periods each, with
TE = KT ≪ TC . We focus on the uplink scenario, where a
multi-antenna UT encodes L independent data streams that are
received at the BS with the assistance of an IRS, and possibly
reach the BS directly (if the direct link is available).5

In the general case (when the direct link is available), the
discrete-time baseband received signal vector during the t-th
symbol period of the k-th block is given by

y[k, t] = H(D)x[k, t]︸ ︷︷ ︸
Direct link

+Hdiag(s[k, t])Gx[k, t]︸ ︷︷ ︸
IRS-assisted link

+b[k, t] , (9)

4Our semi-blind solution acts only within the channel estimation window,
i.e., during the time window TE . The optimization of the IRS phase shifts as
well as the precoder and combiner, followed by optimized data transmission
in the time window TD are out of the scope of this work.

5Although the uplink case is assumed here, the signal model and the
algorithms proposed in this paper are equally applicable to the downlink case
by just inverting the roles of the transmitter and the receiver.
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Fig. 2: Uplink IRS-assisted MIMO system diagram.

Fig. 3: Time protocol when the direct BS-UT link is not
available.

where H(D) ∈ CM×L is the direct channel matrix between
the UT and the BS, whereas H ∈ CM×N and G ∈ CN×L

denotes the IRS-BS and UT-IRS channel matrices, respec-
tively. The UT employs a space-time encoding scheme that
“diagonally” encodes the input symbols such that x[k, t] =
diag(w[k, t])x[t] ∈ CL×1 contains the encoded symbol vector,
x[t], transmitted during the t-th symbol period of the k-th
block. The vector s[k, t] ∈ CN×1 collects the IRS phase
shifts, and b[k, t] ∈ CM×1 is the corresponding additive white
Gaussian noise vector. We assume that the phase shift vector
s ∈ CN×1 and the coding vector w ∈ CL×1 are constant
during the T time slots of the k-th block and vary from block
to block, which means that s[k, t] = s[k] and w[k, t] = w[k],
for 1 ≤ t ≤ T .

With these assumptions, collecting the received signals
during the T time slots of each block yields

Y[k] = H(D)Dk(W)XT +HDk(S)GDk(W)XT +B[k] ,
(10)

where Y[k]
.
= [y[k, 1], . . . ,y[k, T ]] ∈ CM×T collects the

received signal vectors during the t = 1, . . . , T time slots
of the k-th block. In this paper, we consider two possible
scenarios. In the first one, the direct link is assumed to be
weak, or unavailable. In the second one, both the IRS-assisted
link and the direct link are exploited.

Regarding the channel model, no particular assumption is
made in this paper. We can assume that the channel matrices
follow an i.i.d Rayleigh fading model, or, alternatively, are
described by a geometrical model with a few specular paths.
For instance, we can assume that the UT-IRS and IRS-BS
links are subject to low scattering propagation, such that H =
AIRSdiag(β)AH

BS, and G = BUTdiag(γ)BH
IRS, where ABS ∈

CM×R1 , AIRS ∈ CN×R1 , BUT ∈ CL×R2 and BIRS ∈ CN×R2

are the array response matrices, and the vectors β and γ hold
the complex amplitude coefficients of the IRS-BS and UT-IRS
channels, respectively, while R1 and R2 denote the number of
clusters between IRS-BS and UT-IRS, respectively [55].

IV. SEMI-BLIND RECEIVER WITHOUT THE DIRECT LINK

Considering the first scenario, when the direct link is weak
or unavailable, the received signal in (10) reduces to

Y[k] = HDk(S)GDk(W)XT +B[k], (11)

where S
.
= [s[1], . . . , s[K]]T ∈ CK×N , W

.
=

[w[1], . . . ,w[K]]T ∈ CK×L are the phase shift matrix and
coding matrix, respectively, and X

.
= [x[1], . . . ,x[T ]]T ∈

CT×L is the transmitted symbol matrix. Note that the useful
(signal) part of the received signal during the k-th block can be
identified as the k-th matrix slice of a received signal tensor
Y ∈ CM×T×K that satisfies a PARATUCK decomposition
[39], [40], where the scalar form of the noiseless received
signal tensor Y can be expressed as

ym,t,k =

N∑
n=1

L∑
l=1

gn,lxt,lhm,nsk,nwk,l. (12)

Note that the interaction matrices of the PARATUCK model
correspond to the matrices S and W that collect, respectively,
the phase shifts (introduced by the IRS) and the coding
coefficients (applied at the transmitter), which are fixed and
known at the receiver. To summarize, comparing equations (8)
and (11), the following correspondence can be established(

A,B,R,CA,CB
)
↔ (H,X,G,S,W). (13)

The algebraic properties of this PARATUCK tensor signal
model will be exploited to formulate our semi-blind receiver
for joint channel and symbol estimation. A more complete
scenario, in which the direct link is available, as indicated in
(10), will be discussed later.

Remark 1: The IRS-assisted channel is usually represented
in an equivalent form in which the channels G and H are
linked by a Khatri-Rao product. This link can be seen by
defining the channel parameter vector θ = vec(GT ⋄ H). In
general, θ can be directly estimated in the LS sense from the
received signal or constructed once the individual estimates
of G and H are obtained. In this paper, we adopt the second
approach.

Our goal is to jointly estimate all the UT-IRS channel G ∈
CN×L, the IRS-BS channel H ∈ CM×N , and the symbol
matrix X ∈ CT×L by exploiting the tensor structure of the
received signal model (11). We start by stating the following
optimization problem:

min
H,G,X

K∑
k=1

∥∥∥Y[k]−HDk(S)GDk(W)XT
∥∥∥
F
. (14)

Clearly, this problem is highly nonlinear, since it involves
multiple products of the unknown variables, represented by
the matrices H,G, and X. However, we take a simpler route
to solve the above problem by capitalizing on the multi-linear
nature of the received signal and exploiting the PARATUCK
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tensor model structure [39], [40]. By operating on each one
of the three different matrix unfoldings of this tensor model,
we derive the key equations for conditionally minimizing
the cost function (14) with respect to each unknown matrix
in the least squares (LS) sense, while assuming that the
remaining quantities are fixed. To simplify the presentation,
we temporarily omit the noise term during the development
of the main steps.

A. Estimation of the IRS-BS channel

Let us first consider the estimation of the IRS-BS channel
matrix. Starting from the frontal slice representation in (11),
and stacking column-wise the K matrix slices {Y[k]}, k =
1, . . . ,K, we get

Y1
.
= [Y[1], . . . ,Y[K]] = HFT +B1 ∈ CM×TK , (15)

which corresponds to the 1-mode unfolding of the received
signal tensor in (12), where

F
.
=

 XD1(W)GTD1(S)
...

XDK(W)GTDK(S)

 ∈ CTK×N , (16)

and B1 is the corresponding 1-mode unfolding of the additive
noise tensor. The estimation of H can be obtained by solving
the following LS problem

Ĥ = argmin
H

∥∥Y1 −HFT
∥∥2
F
, (17)

the solution of which is given by

Ĥ = Y1

(
FT)† . (18)

B. UT-IRS channel estimation

To derive the update equation for the estimation of the UT-
IRS channel matrix G, let us apply the vec(.) operator to (11),
which gives

vec (Y[k]) = (X⊗H)vec (Dk(S)GDk(W))

= (X⊗H) (Dk(W)⊗Dk(S)) vec(G) + vec (B[k]) ,
(19)

where we have applied property (2) twice. Now, applying
property (3) to (19) yields

vec (Y[k]) = (X⊗H)diag(vec(G))
(
WT

k• ⊗ ST
k•
)
+vec (B[k]) ,

(20)
where we have used the fact that (Dk(W)⊗Dk(S))
is actually diag

(
WT

k• ⊗ ST
k•
)
. By stacking column-wise

vec (Y[1]) , . . . , vec (Y[K]), and using (20), we can obtain the
3-mode unfolding of the received signal tensor as follows

Y3
.
= [vec (Y[1]) , . . . , vec (Y[K])]

= (X⊗H)diag(vec(G))Ψ+B3 , ∈ CTM×K
(21)

where
Ψ

.
=

[
WT

1• ⊗ ST
1•, . . . ,W

T
K• ⊗ ST

K•
]

= WT ⋄ ST ∈ CLN×K .
(22)

Finally, vectorizing (21) and applying property (2) yields

vec (Y3) =
[
ΨT ⋄ (X⊗H)

]
vec(G) + vec (B3) . (23)

Algorithm 1: TALS
Procedure
input : i = 0; Initialize Ĝ(i=0) and X̂(i=0)

output: Ĥ, Ĝ and X̂

begin
i = 1;
while ∥e(i)− e(i− 1)∥ ≥ δ do

1. Using Ĝ(i−1) and X̂(i−1), compute
F̂(i−1) from (16) and find
a least squares estimate of H:

Ĥ(i) = Y1

(
F̂T

(i−1)

)†

2. Using Ĥ(i) and X̂(i−1), find
a least squares estimate of G:

vec(Ĝ(i)) =
[
ΨT ⋄ (X(i−1) ⊗H(i))

]† vec(Y3)

3. Using Ĝ(i) and Ĥ(i), compute
Ê(i) from (29) and find
a least squares estimate of X:

X̂(i) = Y2

(
ÊT

(i)

)†

4: i← i+ 1
5: Repeat steps 1 to 4 until convergence.

end
end

Thus, an estimate of G in the LS sense can be obtained by
solving the following problem

Ĝ = argmin
G

∥∥∥vec (Y3)−
[
ΨT ⋄ (X⊗H)

]†
vec(G)

∥∥∥2
F
,

(24)
the solution of which is given by

Ĝ = unvecN×L

( [
ΨT ⋄ (X⊗H)

]†
vec(Y3)

)
. (25)

Remark 2: Step 2 of Algorithm 1, which is concerned with
the estimation of the UT-IRS channel matrix, can be simplified
by assuming that Ψ defined in (22) is an LN×K semi-unitary
matrix satisfying Ψ∗ΨT = KILN (this choice is discussed
in Appendix B). In this case, it can be shown that the LS
estimation step (25) simplifies to

vec(G) = (1/K) ·Σ−1
Q (ΨT ⋄Q)Hvec (Y3) , (26)

where Q
.
= [q1, . . . ,qLN ] = X⊗H ∈ CTM×LN , and

ΣQ
.
=

 ∥q1∥2
. . .

∥qLN∥2

 . (27)

In addition to the complexity reduction, our numerical ex-
periments have shown that the semi-unitary design for Ψ
also improves the convergence speed of Algorithm 1. On
the other hand, this condition requires K ≥ LN . It is
worth noting, however, that although advantageous from a
performance/complexity viewpoint, the semi-unitary condition
is not necessary.

C. Symbol estimation

The final step of our semi-blind receiver estimates the
transmitted symbol matrix. To this end, we start from (11),
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and stack column-wise the matrix slices Y[1], . . . ,Y[K], to
get

Y2
.
= [Y[1]T, . . . ,Y[K]T] = XET ∈ CT×MK , (28)

which corresponds to the 2-mode unfolding of the received
signal tensor in (12), where

E
.
=

 HD1(S)GD1(W)
...

HDK(S)GDK(W)

 ∈ CMK×L. (29)

Adding the noise term, we have Y2 = XET + B2. The LS
estimate of X is then obtained by solving

X̂ = argmin
X

∥∥Y2 −XET
∥∥2
F
, (30)

the solution of which is given by

X̂ = Y2

(
ET)† . (31)

The proposed semi-blind receiver makes use of (18), (26)
and (31) to obtain the estimates of channel matrices G and H,
and the symbol X via a trilinear alternating least squares based
estimation scheme, herein referred to as TALS receiver. More
specifically, the algorithm consists of a three-step estimation
procedure that estimates one matrix at each step, while fixing
the other two matrices to their values obtained at the previous
estimation steps. Note that the proposed TALS receiver is a
semi-blind method since no training sequences are required.
The receiver algorithm is summarized in Algorithm 1.

The stopping criterion relies on the normalized squared
error measure computed at the end of the i-th iteration,

given by ϵ(i) =
K∑

k=1

∥Y[k] − Ŷ[k](i)∥2F /∥Y[k]∥2F , where

Ŷ[k](i) = Ĥ(i)Dk(S)Ĝ(i)Dk(W)X̂T
(i). The convergence is

declared when the difference between the reconstruction errors
of two successive iterations falls below a threshold, i.e.,
|ϵ(i) − ϵ(i−1)| ≤ δ. In this work, we assume δ = 10−5.
The convergence criterion of TALS is based on the difference
between the reconstruction errors computed in two successive
iterations. The complexity of the TALS receiver is dominated
by the matrix inverses in steps 1 and 3, which have com-
plexity orders O(TKN2) and O(LKM2), respectively [38].
Considering the complexity of step 2, which only involves
matrix products, the total complexity by iteration of the TALS
receiver is given by O(TKN2[1+M2L]+KLM [NT +M ]).

D. Identifiability

The joint recovery of H, G, and X requires that the three
LS problems in (17), (24), and (30), have unique solutions, re-
spectively. More specifically, the uniqueness of H requires that
F defined in (16) have full column-rank, which implies TK ≥
N , while the uniqueness of G requires that

[
ΨT ⋄ (X⊗H)

]
have full column-rank, implying TKM ≥ LN . Likewise, the
uniqueness of X requires that E defined in (29) be of full
column-rank, which implies MK ≥ L. Note that the number
K of transmitted blocks is the common parameter in these
three conditions, which must be simultaneously satisfied. In

summary, the following conditions must simultaneously be
satisfied the joint uniqueness of H, G, and X:

TK ≥ N, TKM ≥ LN, MK ≥ L. (32)

These conditions establish useful trade-offs involving the
time diversities (parameters K and T ) and spatial diversities
(parameters N , M , L) for the joint recovery of the channel
and symbol matrices. More specifically, reducing the number
of blocks K and/or the number of symbol periods T can be
compensated by a corresponding increase on the number of BS
antennas M . As a special case, if the number of BS antennas
exceeds the number of UT antennas (M ≥ L), satisfying these
conditions reduces to TK ≥ N .

Under the conditions stated above, the estimates of G,
H, and X delivered by Algorithm 1 are affected by scaling
ambiguities that compensate each other, as follows

Ĥ∆H = H, X̂∆X = X, ∆−1
H Ĝ∆−1

X = G, (33)

where ∆G, ∆H , and ∆X are diagonal matrices. These scaling
ambiguities can be handled by assuming that the first row of
the symbol matrix X1. ∈ C1×L contains identification sym-
bols that are known at the receiver. Note that the columns of
X ∈ CT×L correspond to the L data streams that are spatially
multiplexed at the transmitter. Hence, the knowledge of the
first row of X ∈ CT×L means that the first symbol of each data
stream is a known pilot. Therefore, the knowledge of L pilots
allows us to eliminate the scaling ambiguity by normalization.
A simple choice is to assume that X1• = [1, 1, . . . , 1], so that
∆X can be determined from the first row of the estimated
symbol matrix X̂ after convergence of Algorithm 1, and
canceled out by normalization.

Remark 3: The identifiability conditions (32) show that the
minimum value of K can be small if the block length T
is large enough. More specifically, a reduction of K can be
compensated by an increase of T . Indeed, there is a trade-
off between performance and overhead established by our
solution. Our experience shows that our solution still works
with small values of K that are close to the lower bound
established by (32), with a sacrifice on the channel estimation
accuracy, especially when the number of IRS elements is large.
On the other hand, by increasing K, we obtain finer channel
estimates at the expense of increased overhead. In summary,
our solution offers the system designer some freedom to trade
channel estimation quality for overhead and vice-versa, while
still benefiting from a smaller data decoding delay offered by
our proposed semi-blind method. To deal with this practical
challenge, we can alternatively resort to recent strategies
proposed in the literature, which consist of grouping the IRS
elements [10], [26], [56]. However, practical implementation
challenges associated with IRS elements grouping must be
better investigated since this strategy may cause performance
degradation. Nonetheless, this method has drawn attention
recently, and some optimal grouping strategies have been
investigated, for example in [57], [58]. In particular, [59]
indicates that the grouping of the correlated IRS elements can
reach better performance in comparison with the uncorrelated
IRS elements scenario.
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Fig. 4: Time protocol when the assisted link via IRS link is
activated.

V. DIRECT LINK AIDED SEMI-BLIND RECEIVER

In this section, we present an enhanced version of the semi-
blind receiver derived in the previous section that exploits the
direct link between UT and BS, whenever it is available. The
idea is to dedicate part of the transmission time resources to
the direct link so that an initial estimate of the transmitted
symbols and direct channel can be obtained. The initial
symbol estimates are exploited as a “warm start” of the TALS
algorithm for estimating the UT-IRS and IRS-BS channels,
while refining the estimates of the symbols and the direct
channel. To this end, we slightly modify the transmission
protocol by splitting the total transmission time of K blocks
into two time windows of duration T1 = K1T and T2 = K2T
symbol periods, respectively, where K = K1+K2 is the total
number of time blocks, and Tc = T1+T2 the total transmission
duration. The time protocol is depicted in Figure 4. During
the first time window, the UE transmits data using a coding
matrix W1 ∈ CK1×L, while in the second time window, it
uses the coding matrix W2 ∈ CK2×L and the phase shift
matrix S ∈ CK2×N . A short discussion on the design of W2

and S is provided in Appendix B.
The receiver processing has two stages. In the first one, joint

estimation of the direct channel and the transmitted symbols
is carried out during the first time window by exploiting the
PARAFAC tensor model of the received signals. The second
stage makes use of the estimated symbols in the first time
window as an initialization of the TALS algorithm that jointly
estimates the involved channel matrices while refining the
symbol estimates during its iterative process. As will be shown
later in our numerical experiments, the initialization of the
IRS-assisted link using the direct link estimates yields an
enhanced TALS algorithm with accelerated convergence and
improved estimation accuracy. Therefore, in stage one the IRS
is “off”, following the approach of [14], so that the received
signal at BS is given as

Y(D)[k1] = H(D)Dk1
(W1)X

T +B[k1], (34)

for k1 = 1, . . . ,K1, where W1 ∈ CK1×L is the coding
matrix used during the first time window of K1 blocks. The
signal part of (34) can be viewed as the k1-th frontal matrix
slice of a three-way tensor Y (D) ∈ CM×T×K1 that follows a
PARAFAC decomposition with factor matrices H(D) ,X ,W1.
By analogy with (6), the following correspondences can be
deduced:

(A ,B ,C) ↔
(
H(D) ,X ,W1

)
. (35)

From the uniqueness property of the PARAFAC model [51],
[52], one can obtain a useful condition for guaranteed direct

channel and symbol recovery in the general case where all
the factor matrices of are unknown. In our context, however,
since the coding matrix W1 is assumed to be known at the
receiver (BS), simplified conditions can be obtained. Since
W1 has full column-rank (which requires K1 ≥ L), M ≥ 2
receive antennas and T ≥ 2 time slots are enough for the
joint recovery of H(D) and X. This problem can be efficiently
solved by means of the Khatri-Rao Factorization algorithm
[25], as will be detailed next.

A. Stage I: Joint direct channel and symbol estimation
Starting from (34), and defining

Y(D) .= [vec(Y(D)[1]), . . . , vec(Y(D)[K1])] ∈ CMT×K1 , (36)

that collects the signals received during the first K1 time
blocks, we have

Y(D) = (X ⋄H(D))WT
1 +B , (37)

where we have used property (4), and B =
[vec(B[1]), . . . , vec(B[K1])] ∈ CMT×K1 is the corresponding
noise matrix. Defining

Z
.
= (1/K1)Y

(D)W∗
1 = X ⋄H(D) + (1/K1)BW∗

1,

an estimate of X and H(D) can be found using the Khatri-
Rao Factorization algorithm that solves the following problem
[60], [61]

min
X,H(D)

∥Z−X ⋄H(D)∥F , (38)

which is equivalent to solving L rank-1 matrix approximation
subproblems, and can be stated as

(X̂, Ĥ(D)) = argmin
{xl},{h(D)

l }

L∑
l=1

∥∥∥Z̃l − h
(D)
l xT

l

∥∥∥
F
, (39)

where Z̃l
.
= unvecM×T (zl) ∈ CM×T , and zl ∈ CMT×1

denotes the l-th column of Z, while h
(D)
l ∈ CM×1 and

xT
l ∈ C1×T are the l-th column of H(D) and l-th row of X,

respectively. Due to space limitations, we have suppressed the
details of the KRF algorithm. A pseudo-code of this algorithm
can be found in [25].

Remark 4: As an alternative to the KRF algorithm, one can
also resort to the bilinear alternating least squares (BALS)
algorithm that jointly estimates the direct channel matrix and
the symbol matrix in an alternating way. In this work, we
advocate using the KRF algorithm since it provides similar
performance to BALS, while being a closed-form solution that
affords an efficient implementation since the N involved rank-
one matrix approximations can be optimized if executed in
parallel processing hardware.

B. Stage II: IRS-assisted channel estimation and symbol re-
finement

After stage I, the IRS is turned “on” during the second
transmission time window that spans K2 blocks. In this case,
the total received signal is given by the sum of the direct link
and IRS-assisted contributions, and is given by

Y[k2] = H(D)Dk2
(W2)X

T

+ HDk2
(S)GDk2

(W2)X
T +B[k2]. (40)
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From the estimated symbol and direct channel matrices X̂ and
Ĥ(D) delivered by the KRF algorithm in stage I (c.f. problem
(39)), the interference from the direct link can be removed (or
minimized) by subtracting an estimate of its contribution from
the total received signal in stage II, yielding

Q[k2] = Y[k2]− Ĥ(D)Dk2(W2)X̂
T. (41)

From (40), we can write (41) as

Q[k2] = HDk2(S)GDk2(W2)X
T +B[k2] , (42)

where B[k2] = B[k2]+EHDk2
(W2)E

T
X is the effective noise,

while EH
.
= H(D)−Ĥ(D) and EX

.
= X−X̂ are error matrices

associated with the estimates of the direct channel and symbol
matrix in stage I. It is clear that the energy of the overall
additive noise term in (41) will depend on the energy of these
error terms, which in turn depends on the quality of the direct
link compared with the IRS-assisted link.

Note that the signal part of (42) corresponds to a
PARATUCK decomposition of Q ∈ CM×T×K2 , which is
analogous to the (11), where the third mode has dimension
K2 (instead of K). Hence, estimates of the IRS-assisted
channel matrices G and H, as well as refined estimates of
the symbol matrix X can be obtained from Q by following
the procedure discussed in Section IV.A-IV.C. This leads to
a second semi-blind receiver, referred to as enhanced TALS
(E-TALS), summarized in Algorithm 2.

In addition, from the refined symbol estimates, an enhanced
estimate of the direct channel matrix H(D) can also be obtained
at the end of stage II, i.e., at the convergence of the algorithm.
More specifically, suppose that the E-TALS algorithm has
converged at the i-th iteration, and let X(i) be the refined
estimate of the symbol matrix obtained at this iteration.
Substituting X̂(i) into (34), a refined estimate of the direct
channel can be obtained by solving the following problem

min
H(D)

K1∑
k1=1

∥∥Y(D)[k1]−H(D)Dk1(W1)X̂
T
(i)

∥∥
F
, (43)

the solution of which is given by

Ĥ(D) =
[
Y(D)[1], . . . ,Y(D)[K1]

][
(W1 ⋄ X̂(i))

T]†. (44)

In summary, when the direct link is available, the proposed
E-TALS receiver allows not only improves the convergence
speed of stage II by using previous symbol estimates as a
“warm start”, but also allows for continuously improve the
accuracy of these symbol estimates via the IRS-assisted link,
while enhancing the estimate of the involved channel matrices,
including the direct channel matrix. As will be clear from our
numerical experiments, the availability of the direct link makes
E-TALS (Algorithm 2) advantageous compared to TALS with-
out the availability of the direct link (Algorithm 1). Note
that the identifiability condition for the TALS algorithm also
applies to E-TALS algorithm 2 with an additional restriction,
which consists in satisfying K1 ≥ L in stage I.

Algorithm 2: Enhanced TALS (E-TALS)
Procedure
output: Ĥ, Ĝ, X̂, and Ĥ(D)

begin
■ Stage I: Joint direct channel and symbol estimation

1. From {Y(D)[1], . . . ,Y(D)[K1]}, compute
Ĥ(D) and X̂ from the KRF algorithm

■ Stage II: IRS-assisted channel estimation and symbol
refinement

input : i = 0; initialize X̂(i=0) = X̂,

2. i← i+ 1

3. From {Q[1], . . . ,Q[K2]}, do:
(a) Compute Ĥ(i) and Ĝ(i) from steps 1 and 2

of Algorithm 1, respectively.
(b) Compute a refined symbol estimate X̂(i)

from step 3 of Algorithm 1.

4. Repeat steps 2 and 3 until convergence.

5: From the refined estimate X̂(i), compute a final estimate
of the direct link channel:
Ĥ(D) =

[
Y(D)[1], . . . ,Y(D)[K1]

][
(W1 ⋄ X̂(i))

T
]†.

VI. NUMERICAL RESULTS

We evaluate the performance of the proposed semi-blind
receivers. The CE accuracy is evaluated in terms of the
normalized mean square error (NMSE) given by

NMSE(Π̂) =
1

R

R∑
r=1

∥Π(r) − Π̂
(r)

∥2F
∥Π(r)∥2F

, (45)

where Π = H,G and Π̂
(r)

denotes the estimation of the
channels at the r-th run, and R denotes the number of Monte-
Carlo runs. The same definition applies to the estimated UT-
IRS channel. We also evaluate the symbol error rate (SER)
performance as a function of the signal-to-noise ratio (SNR)
defined as SNR = 10log10(∥Y∥2F /∥B∥2F ), where Y is the
noiseless received signal tensor generated according (12), and
B is the additive noise tensor. All the results represent an
average from at least R = 3000 Monte Carlo runs. Each
run corresponds to an independent realization of the channel
matrices, transmitted symbols, and noise term. Regarding the
channel model, we consider the Rayleigh fading case (i.e. the
entries of channel matrices are independent and identically
distributed zero-mean circularly-symmetric complex Gaussian
random variables) as well as the geometrical channel model
with a few specular paths, as described in Section II. We
assume uniform linear arrays at the BS and UT, while the
IRS panel has a uniform rectangular array structure. The
transmitted symbols follow a 16-PSK constellation. When
considering the direct link, we define α as the effective SNR
gap (in dB) between the direct link and the IRS-assisted link.
Otherwise stated, the average received signal power for the
direct link is α dB smaller than that of the IRS-assisted link.
In Figures 5-7, we assume that the direct link is blocked
and focus on the TALS receiver (Algorithm 1), while in the
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remaining figures, the direct link is available and both TALS
and E-TALS are considered.

A. TALS performance: NMSE, CRB and SER

In Figure 5, we evaluate the NMSE performance of the
semi-blind TALS receiver, while comparing it with competing
CE methods. We consider as references for comparisons
the Block-LS6 CE method of [23] and the pilot-assisted
PARAFAC-BALS method proposed in [25]. Both methods
are direct competitors since they operate on the same system
model as the proposed semi-blind receiver. The second is
based on an iterative estimation of the UT-IRS and IRS-
BS channel matrices using a BALS algorithm. However, the
main difference is in the fact that these methods require the
transmission of pilot sequences, while the proposed receiver
jointly estimates the channel and the transmitted symbols
semi-blindly. In this experiment, we assume M = 5 antennas
at the BS, L = 2 antennas at the UT, and an IRS composed
of N = 64 reflecting elements. The total transmission time
consists of K = 128 blocks of T = 5 time slots each. The
channel matrices associated with the IRS-BS and UT-IRS are
generated according to a geometrical channel model, assuming
a single path scenario (line of sight case). The path directions
are randomly generated according to a uniform distribution.
At each Monte Carlo run, the azimuth and elevation angles
are drawn within the intervals [−π/2, π/2] and [0, π/2], re-
spectively.

As it can be seen from the figure, the TALS receiver offers
a more accurate overall channel estimate than Block-LS and
PAFAFAC-BALS. In particular, the Block-LS method has an
SNR gap of approximately 5dB compared to TALS. Indeed,
the TALS receiver fully exploits the trilinear structure of the
received signal, and its improved performance comes from the
data-aided nature of the receiver, where the symbol estimates
are used to further improve the channel estimates during the
iterative process. On the other hand, we should point out that
the TALS receiver is more complex than PARFAFAC-BALS
and Block-LS due to the additional symbol estimation step at
every iteration.

In Figure 6, we compare the NMSE performance of the
individual channel matrices H and G with their corresponding
CRB references (more details given in Appendix B). Note that
the NMSE curves decrease linearly with the SNR, presenting
a constant gap with respect to their CRB references regardless
of the SNR value. In particular, note that the estimate of
G is closer to its CRB than is the estimate of H. Figure
7 depicts the SER for some values of N and T = 2. The
other parameters follow the same setup as in Figures 5 and 6.
Note that the SER performance degrades with an increasing
N . This result is comprehensive, since more IRS elements

6The competing CE method of [23] has two stages. In the first one, the
cascaded channel Ck = GDk(S)H associated with each time block k is
individually estimated via an LS method, while in the second stage, the path
angles are extracted from the unstructured channel estimates. Since our semi-
blind receiver is not concerned with the extraction of the angular parameters of
the channel matrices (which can be done using existing methods), we compare
the proposed TALS method with the first stage of the Block-LS method of
[23].
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Fig. 5: NMSE performance of TALS in comparison with
competing methods.
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Fig. 6: Comparison with the CRB.

implies more channel coefficients to be estimated while the
training time window is fixed.

B. E-TALS performance: NMSE, complexity and SER

According to classical studies involving IRS-assisted wire-
less communications (e.g. [62] and references therein), the
most significant gains of the IRS are achieved when the
direct link is weak or unavailable. To investigate the impact
of the influence of the direct link in the channel estimation
performance, we define the parameter α representing the
relationship between the received signal power in the BS via
the direct link and the received signal power via the IRS link.
More specifically, let α = 10(PLDL−PLIRS)/10, where PLDL

and PLIRS are the path losses associated with the direct and
IRS links, respectively. This means that α (in dB) is given by
α(dB) = PLDL − PLIRS . For instance, α(dB) = 10 means
that the path loss of the direct link is 10dB higher than that
of the IRS-assisted link.
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Fig. 7: SER performance of the TALS algorithm.
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Fig. 8: NMSE performance of E-TALS for different values of
α, and the impact of symbol refinements.

In Figures 8, we present how the refinement step in al-
gorithm E-TALS affects the CE performance. Assuming the
parameter set {N,M,L, T,K1,K2} = {70, 10, 2, 5, 10, 140},
we consider two cases: (1) the direct and the IRS-assisted
links have the same power (α = 0), and (2) the direct link
is 20dB weaker then the IRS- assisted link (α = 20). Let us
first consider the case 1. In this case, the result depicted in 8
shows that E-TALS and TALS present a very close NMSE
performance, indicating that the impact of the refinement
of the symbol estimates in the performance is negligible.
Although a performance gain is not obtained, as shown in
Figure 9, the E-TALS algorithm needs fewer iterations to
converge in comparison to TALS.

Figure 10 depicts the SER performance of E-TALS, as-
suming M = L = 3, T = 10 and α = 0dB. The number
of time blocks is set to K = 27, where K1 = 3 blocks
are allocated to stage I (channel estimation) and K2 = 24
blocks to stage II (data decoding). We clearly see that the SER
associated with the refined symbol estimates provided by stage
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Fig. 9: Convergence (number of iterations) as a function of
the SNR.
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Fig. 10: SER performance of E-TALS algorithm for different
values of N .

II is significantly lower than that delivered by stage I (KRF),
corroborating the enhancement provided by the iterative joint
channel and symbol estimation in stage II of E-TALS. In
Figure 11, we highlight the benefit of the symbol refinements
provided by stage II of E-TALS to further improve the estimate
of the direct channel H(d) delivered by stage I. The system
parameters are N = 50, M = 10, L = 3, T = 10 and
K = 37, with K1 = 13 and K2 = 34. Recall that step 5
of the E-TALS algorithm makes use of the refined symbol
estimatesX̂ to obtain a final LS estimate of the direct channel
as Ĥ(D) =

[
Y(D)[1], . . . ,Y(D)[K1]

][
(W1 ⋄ X̂(i))

T
]†

. We can
see that stage II of E-TALS indeed provides an enhanced
estimate of the direct channel compared to stage I, for both
α = 0 and α = 20. This result confirms that the refinement
of the symbol estimates obtained via the IRS-assisted link is
also beneficial to further improve the accuracy of the estimate
of the direct channel, while providing estimates of the IRS-
assisted channels.

In Figure 13, we show the SER performance of the proposed
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Fig. 11: NMSE of the H(d) for E-TALS.
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Fig. 12: Orthogonal versus non-orthogonal designs for Ψ.

semi-blind receiver operating with and without an IRS. In
this experiment, we consider that both direct and IRS-assisted
links have the same power in order to have a meaningful
comparison with a point-to-point MIMO case without the IRS.
Two conclusions can be drawn from this experiment. First,
we can see the SER performance of the special case of our
semi-blind receiver without the IRS (red curve) is close to that
when the IRS-assisted link is present and exploited. Secondly,
by comparing the black and the blue curves, we show the
importance of stage II of the E-TALS that effectively yields
refined symbol estimates (blue curve), compared to the SER
obtained after stage I. This result corroborates the effectiveness
of the proposed semi-blind receiver while showing its validity
even without the presence of the IRS (for instance when a
failure of the IRS happens). In Figure 12, we evaluate the
impact of the design of Ψ on the performance of the proposed
semi-blind receiver. As can be seen from these results, the
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Fig. 13: SER with and without the IRS.

proposed joint orthogonal design enhances the channel and
symbol estimation performances. Moreover, the orthogonal
design reduces the overall computational cost of the semi-blind
receiver, since fewer iterations are required for convergence.

C. Impact of imperfect IRS absorption

In the previous result, we consider a perfect IRS absorption
of the incident signal at the IRS when it is set to OFF. This
means that the estimation of the UT-IRS and IRS-BS channel
and the data symbol matrix carried out in stage II of Algorithm
2 suffers only the effect of the estimation error of the BS-UT
channel. It is worth mentioning that this assumption is adopted
in most of the works in the IRS literature when the direct link
is considered. However, by working with a non-ideal and more
practical assumption, [18] considers an imperfect absorption
when the IRS is turned OFF, which means that a residual signal
reflection at the IRS reaches the BS even when it is assumed
to be OFF. In this paper, we evaluate the impact of such a
non-ideal behavior on the performance of the proposed semi-
blind receiver. Considering imperfect absorption and path loss
component modeling as in [63], the received signal at the BS
when the IRS is OFF can be rewritten as

YD =
√
PL1HDDk1(W1)X

T+

+
√
PL2HξDk1(S)GDk1(W1)X

T︸ ︷︷ ︸
Residual IRS interferent signal when IRS is OFF.

, 0 < ξ < 1 (46)

where ξ (residual factor) denotes the fraction of the IRS signal
that arrives at the BS when it is turned off, PL1 is the path
loss component associated with the direct link (BS-UT), and
PL2 is the combined path loss of the cascaded UT-IRS-BS
link.

Note that the residual IRS reflection due to imperfect
absorption highlighted in (46) can potentially degrade the
receiver performance, in particular in stage I of Algorithm 2.
In Figures 16 and 15, we evaluate the impact of such a non-
ideality in our semi-blind receiver. For this experiment, we
consider that the IRS, the UT, and the BS are positioned as
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Fig. 14: Network nodes position.
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Fig. 15: NMSE of the equivalent channel θ considering
residual IRS reflection affecting stage I.
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Fig. 16: NMSE of the estimated symbol matrix X considering
residual IRS reflection in stage I.

illustrated in Figure 14. The fixed parameters are K = 55, with
K1 = 5 and K2 = 50, T = L = 5, M = 50 and ξ = 10−2.
Figure 15 depicts the NMSE performance for N = 40 and
N = 90. In this interesting result, we can see that the E-
TALS algorithm is almost insensitive to residual IRS reflec-
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Fig. 17: Behaviour of the NMSE performance by compensat-
ing the reduction of K with an increase of M and/or T .

tion in both cases. When looking at the symbol estimation
performance in Figure 16, we can see that stage I of E-TALS
(which is represented by the KRF algorithm) significantly
suffers from residual IRS reflection, especially in the high SNR
region, resulting in degraded symbol estimates. In contrast,
the complete E-TALS receiver that includes stage II does not
suffer from residual reflection. Indeed, the iterative nature of
stage II allows refining the channel and symbol estimates in the
presence of such a residual interference. Note that in the results
of Figures 16 and 15, we consider K = 55 with K1 = 5 blocks
dedicated to stage I and K2 = 50 to stage II. If we look at the
worst-case scenario, where N = 90, the channel estimation
time window spans TE = TK = 275 symbols. However, the
number of channel coefficients to be estimated in this scenario
is (MN+M+T )L = (50×90+50+5)×5 = 22.775, which
is much bigger compared to the number of training symbols.

In Figure 17, we illustrate the existing trade-off between
the number of blocks K, the size of each block T , and the
number of receive antennas M . We assume N = 30, L = 5,
M = 10 and choose different values of K. We can see that
the NMSE performance degrades when fewer blocks are used.
This is expected since channel estimation time is reduced by
a factor of K. However, in our proposed method the effects
of the reduction in K can be compensated by increasing
the data block length or the number of receive antennas.
Figure 17 shows how to mitigate the degradation caused by
the reduction of K, by increasing T and/or M . Note that
for M = 60 and T = 30, using K = 17 yields slightly
better performance in the low SNR region in comparison with
K = 27. To summarize, a reduction in K can be compensated
by increasing the data block length and/or by using more
receive antennas.

VII. CONCLUSION

In this paper, we have proposed a novel tensor-based semi-
blind receiver design for IRS-assisted MIMO communication
systems exploiting a PARATUCK tensor modeling for the
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received signals. The proposed semi-blind receiver is a data-
aided channel estimator that avoids the use of pilot sequences
while performing a joint estimation of the IRS-BS channel,
UT-IRS channel, and the transmitted symbols in an iterative
way by means of a TALS (algorithm 1) when the direct link is
unavailable or negligible or by means of E-TALS (algorithm 2)
if the direct link is available. We have studied the design of the
coding matrix and IRS phase shift matrix, and a joint design
has been proposed that optimizes the receiver performance
while simplifying the CRB derivations. Our results also indi-
cate that the TALS receiver yields an improved CE accuracy
than “block-LS” and BALS algorithms while offering a joint
channel and symbol recovery, thus being a good solution for
IRS-assisted MIMO systems, especially when pilot resources
are limited or not available. The proposed semi-blind receiver
effectively exploits the direct link, if available, to further refine
the estimate of the direct channel and the transmitted symbols
in an iterative process. In addition, the E-TALS proved to
be robust to deal with imperfect IRS absorption during the
direct link channel estimation stage. Analytical expressions
for the CRB have been derived for the proposed semi-blind
receiver. The extension of the proposed semi-blind receiver to
the multiuser scenario and frequency-selective channels is a
topic for future research.

APPENDIX A
EXPECTED CRAMÉR RAO LOWER BOUND

The CRB is the lowest estimation accuracy that an unbiased
estimator can reach. If θ̂ is an unbiased estimate of θ, the MSE
measurements is lower bounded by the CRB such as,

E∥θ − θ̂∥2 ≥ Tr{CRB(θ)}, (47)

where CRB(θ) is given as the inverse of the Fisher Information
Matrix (FIM), denoted by F(θ), such as CRB(θ) = F(θ)−1.
An extension for complex-valued parameters can be as in

[38], making by structured parameters vector θc =
[
θ̄

T
θ̃

T]T
,

where θ̄ = Re(θ), and θ̃ = Im(θ). Thereby, with a nuisance
parameter γ the expected CRB for complex-valued random
parameters is given as

E∥θc − θ̂c∥2 ≥ Eθ̄,θ̃,γ

{
Tr{CRB(θ̄)}+ Tr{CRB(θ̃)}

}
.

(48)
For an observation vector that follows a complex circular

Gaussian distribution, y ∼ CN(µ,R), a useful formula, used
to obtain the FIM, is the Slepian-Bangs (SB) Formula [64]:

[F(θ)]i,j = 2Re

{(
∂µ

∂[θc]i

)H

R−1

(
∂µ

∂[θc]j

)}
(49)

+ Tr

{(
∂R

∂[θc]i

)
R−1

(
∂R

∂[θc]j

)
R−1

}
.(50)

such that,

F(θc) = 2

[
M −M̃

M̃ M

]
, (51)

and by deriving analytically F(θc)
−1 using the schur comple-

ment method and considering the trace operator we obtain

Tr{CRB(θ̄)} =
1

2
Tr

{(
M+ M̃M

−1
M̃

)−1
}
, (52)

Tr{CRB(θ̃)} =
1

2
Tr

{
M

−1 −M
−1

M̃
(
M +

+M̃M
−1

M̃
)−1

M̃M
−1

}
.

(53)

The matrices M and M̃ are defined in posterior subsections
according to parameters of observation.

The CRB derivations for proposed semi-blind receiver are
split into two parts. In the first part, we derive the CRB for
the IRS-BS channel H, whereas in the second part the CRB
for the UT-IRS channel G is derived.

A. CRB for the UT-IRS channel

Here, the UT-IRS channel G is viewed as unknown nui-
sance, and the CRB is derived for the IRS-BS channel H.
Let

θc = [ḡT g̃T]T, g = vec(G) (54)

γ = [h̄T h̃T vec(X)T]T, (55)

where,
µ2 = Cg and R2 = σ2ITKM . (56)

The CRB for G is given by summing (52) and (53) where
M = Re{CHR−1C} and M̃ = Im{CHR−1C}, where
CHR−1C can be expanded as follows

CHR−1C = (1/σ2)
(
ΨT ⋄ (X⊗H)

)H (
ΨT ⋄ (X⊗H)

)
= (1/σ2)

(
Ψ∗ΨT ⊙ (X⊗H)H(X⊗H)

)
= (1/σ2)

(
Ψ∗ΨT ⊙

(
XHX⊗HHH

))
.

(57)
Under the assumption that Ψ is a semi-unitary matrix

satisfying Ψ∗ΨT = KILN (see our discussion in Appendix
B), we have

CHR−1C = (K/σ2)
(
ILN ⊙

(
XHX⊗HHH

))
. (58)

Note that according to (58), CHR−1C is a real-valued
diagonal matrix, which implies M̃ = 0. As a consequence (51)
is block diagonal matrix, meaning that the real and imaginary
parts are decoupled. Plugging (58) into (52) and (53), the CRB
for G is obtained.

B. CRB for the IRS-BS channel

Here, the IRS-BS channel H is treated as an unknown
nuisance and the CRB is derived for the UT-IRS channel G.
Thus

θc = [h̄T h̃T]T, h = vec(H) (59)
γ = [ḡT g̃T vec(X)T]T. (60)

Applying the vec(.) operator to (15), we obtain the following
noisy observation vector

y1 = (F⊗ IM )h = Ph, (61)

where, y1 = vec(Y1) and y1 ∼ CN (µ3,R3), and

µ3 = Ph (62)
R3 = σ2I. (63)
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We have M = Re{PHR−1
2 P} and M̃ = Im{PHR−1

2 P}.
Then,

PHR−1
2 P = (1/σ2) (F⊗ IM )

H
(F⊗ IM )

= (1/σ2)
(
FHF⊗ IM

)H
.

(64)

Finally, from the Slepian-Bangs formula, the CRB for H is
obtained by summing (52) and (53).

APPENDIX B
DESIGN OF W AND S AND ITS IMPLICATIONS

In this appendix, we discussed the design of the coding
matrix W and the IRS phase shift matrix S from their Khatri-
Rao product combination Ψ = W ⋄ S ∈ CLN×K . Assuming
that Ψ is a Vandermonde matrix constructed by truncating a
K × K DFT matrix to its first LN rows, with LN ≤ K,
W and S given by (69) and (70) can be obtained from an
exact Khatri-Rao factorization of Ψ. Let us consider that Ψ ∈
CLN×K , with LN ≤ K, is a Vandermonde matrix constructed
by truncating a K ×K matrix to its first LN rows. Defining
ψk

.
= e−j2π(k−1)/K , k = 1, . . . ,K, as the generators of Ψ

yields

Ψ =


1 1 . . . 1
ψ1 ψ2 . . . ψK

...
... . . .

...
ψ
(LN−1)
1 ψ

(LN−1)
2 . . . ψ

(LN−1)
K

 . (65)

Since the k-th column of Ψ is a Vandermonde vector, it can be
factorized as Kronecker product of two Vandermonde vectors
with generators ψN

k and ψk, respectively, as follows 1
...

ψ
(LN−1)
k

 =

 1
...

ψ
N(L−1)
k

 ⊗

 1
...

ψ
(N−1)
k

 . (66)

Defining Wk•
.
=

[
1, ψN

k , . . . , ψ
N(L−1)
k

]
∈ C1×L and Sk•

.
=[

1, ψk, . . . , ψ
(N−1)
k

]
∈ C1×N , we have

Ψ•k = WT
k• ⊗ ST

k•, k = 1, . . . ,K, (67)

or, equivalently,

Ψ = [Ψ•1, . . . ,Ψ•K ]

= [WT
1• ⊗ ST

1•, . . . ,W
T
K• ⊗ ST

K•]

= WT ⋄ ST ∈ CLN×K ,

(68)

where

W =

 W1•
...

WK•

 =


1 ψN

1 . . . ψ
N(L−1)
1

...
...

. . .
...

1 ψN
K . . . ψ

N(L−1)
K

 ∈ CK×L,

(69)
and

S =

 S1•
...

SK•

 =


1 ψ1 . . . ψ

(N−1)
1

...
...

. . .
...

1 ψK . . . ψ
(N−1)
K

 ∈ CK×N .

(70)

In order to show that the assumption Ψ∗ΨT = KILN implies
the equivalence between (25) and (26), recall the LS estimation
step for G given by (25), which involves computing the left
pseudo-inverse of matrix C =

[
ΨT ⋄ (X⊗H)

]
. Taking the

Khatri-Rao structure of C into account, and using property
(1), we have

C† = (CHC)−1CH

=
(
Ψ∗ΨT ⊙

(
XHX⊗HHH

))−1
(Ψ ⋄ (X⊗H))

H

=
(
KILN ⊙

(
XHX⊗HHH

))−1
(Ψ ⋄ (X⊗H))

H
.

(71)

Defining Q = X ⊗ H ∈ CTM×LN , and using the property
(A⊗B)(C⊗D) = (AC⊗BD), equation (71) can be rewritten
as

C† = (1/K)
(
ILN ⊙ (QHQ)

)−1
(Ψ ⋄Q)

H
. (72)

Since the Hadamard product in (72) will null out the non-
diagonal terms of the Gramian QHQ, this equation can be
simplified to

C† = (1/K)Σ−1
Q (Ψ ⋄Q)H, (73)

where ΣQ is given in (27).

APPENDIX C
CASCADED JOINT CHANNEL AND SYMBOL ESTIMATION

The solution proposed in this paper yields joint estimates
of the individual channel matrices as well as the data symbol
matrix. In the following, we show that our semi-blind method
can be slightly modified to provide an estimate of the cascaded
channel instead. Since some IRS optimization schemes rely
on the cascaded channel (see., e.g. [45]), our solution is also
applicable in this context, i.e., it can deliver a joint estimate
of the cascaded channel and the data symbol matrix.

Defining S ∈ CN×N as the diagonal IRS phase shift matrix
(which is now fixed across the K blocks), and assuming that
the direct link is not available, the received signal can be
written as

y[k, t] = HSGDk(W)x[t] ∈ CM×1, (74)

Defining the cascaded channel HEQ = HSG ∈ CM×L and
collecting the received signal during T time slots, we have
Y[k] = HEQDk(W)XT ∈ CM×T , which corresponds to the
frontal slice of the following PARAFAC tensor model

Y = I3,L ×1 HEQ ×2 X×3 W ∈ CL×T×K (75)

The 3-mode unfolding of tensor Y can be expressed as

Y3 = W (X ⋄HEQ)
T
. (76)

After right-filtering with the known coding matrix, we get
Z = W†Y3 = (X ⋄HEQ)

T. This step requires that
W ∈ CK×L be full column-rank to be right-invertible, which
implies having K ≥ L. A joint estimate of the cascaded
channel HEQ and the data symbol matrix X can be obtained
by solving min

X,HEQ

∥ZT − X ⋄ HEQ∥F via the least squares

Khatri-Rao factorization algorithm (following Algorithm 1 in
[25]). Therefore, the proposed semi-blind solution can also be
modified to estimate the cascaded channel instead of providing
decoupled estimates of the individual channels.
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[25] G. T. de Araújo, A. L. F. de Almeida, and R. Boyer, “Channel estimation
for intelligent reflecting surface assisted MIMO systems: A tensor
modeling approach,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 3,
pp. 789–802, Apr. 2021.

[26] L. Wei, C. Huang, G. C. Alexandropoulos, C. Yuen, Z. Zhang, and
M. Debbah, “Channel estimation for RIS-empowered multi-user MISO
wireless communications,” IEEE Trans.Commun., vol. 69, no. 6, pp.
4144–4157, Jun. 2021.

[27] L. Wei, C. Huang, G. C. Alexandropoulos, and C. Yuen, “Parallel factor
decomposition channel estimation in RIS-assisted multi-user MISO
communication,” in proc. SAM “2020”, Hangzhou, China.

[28] Z. Dou, C. Li, C. Li, X. Gao, and L. Qi, “Tensor communication
waveform design with semi-blind receiver in the MIMO sytem,” IEEE
Trans. Veh. Technol., vol. 69, no. 2, pp. 1727–1740, Feb. 2020.

[29] L. Khamidullina, A. L. F. de Almeida, and M. Haardt, “Multilinear
generalized singular value decomposition (ml-gsvd) with application
to coordinated beamforming in multi-user MIMO systems,” in proc.
ICASSP “2020”, Barcelona, Spain, pp. 4587–4591.
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