

Experimental Study of the Impact of Oxygenated Fuels on Pollutant Emissions in Flame Conditions

Doha Kdouh, Sylvie Gosselin, Nathalie Lamoureux, Kanika Sood, Hong-Quan Do, Laurent Gasnot, Luc-Sy Tran

▶ To cite this version:

Doha Kdouh, Sylvie Gosselin, Nathalie Lamoureux, Kanika Sood, Hong-Quan Do, et al.. Experimental Study of the Impact of Oxygenated Fuels on Pollutant Emissions in Flame Conditions. The European Combustion Meeting 2023, Apr 2023, Rouen, France. 2023. hal-04053272v2

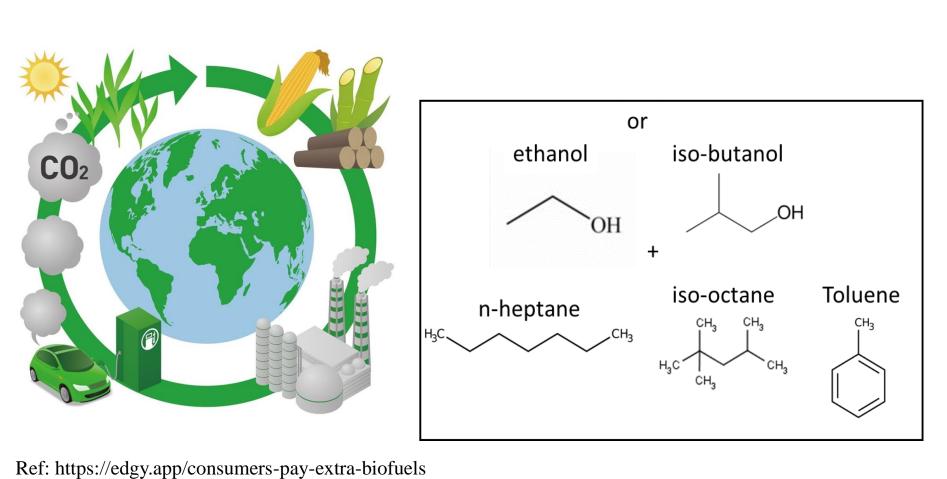
HAL Id: hal-04053272 https://hal.univ-lille.fr/hal-04053272v2

Submitted on 20 Mar 2024

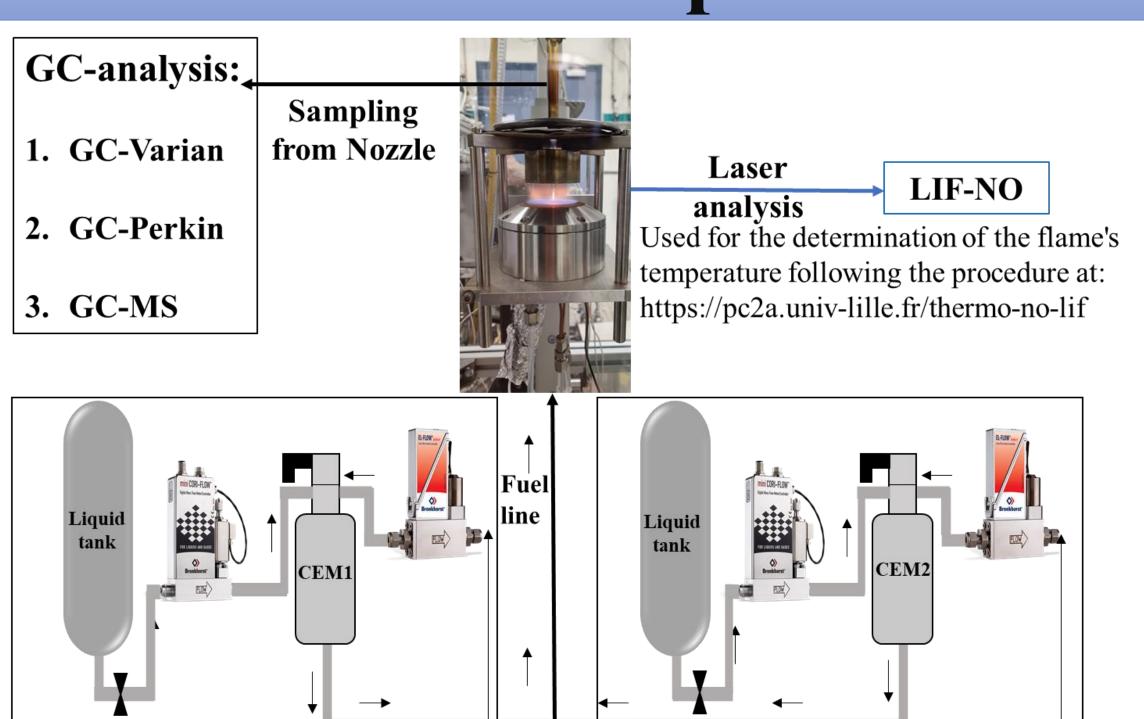
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Liquid fuel system 1 (TRF)


Experimental Study of the Impact of Oxygenated Fuels on Pollutant Emissions on Flame Conditions

D. Kdouh, S. Gosselin, N. Lamoureux, K. Sood, Q.H. Do, L. Gasnot*, L.-S. Tran*


Univ. Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France *Corresponding authors: laurent.gasnot@univ-lille.fr; luc-sy.tran@univ-lille.fr

Context

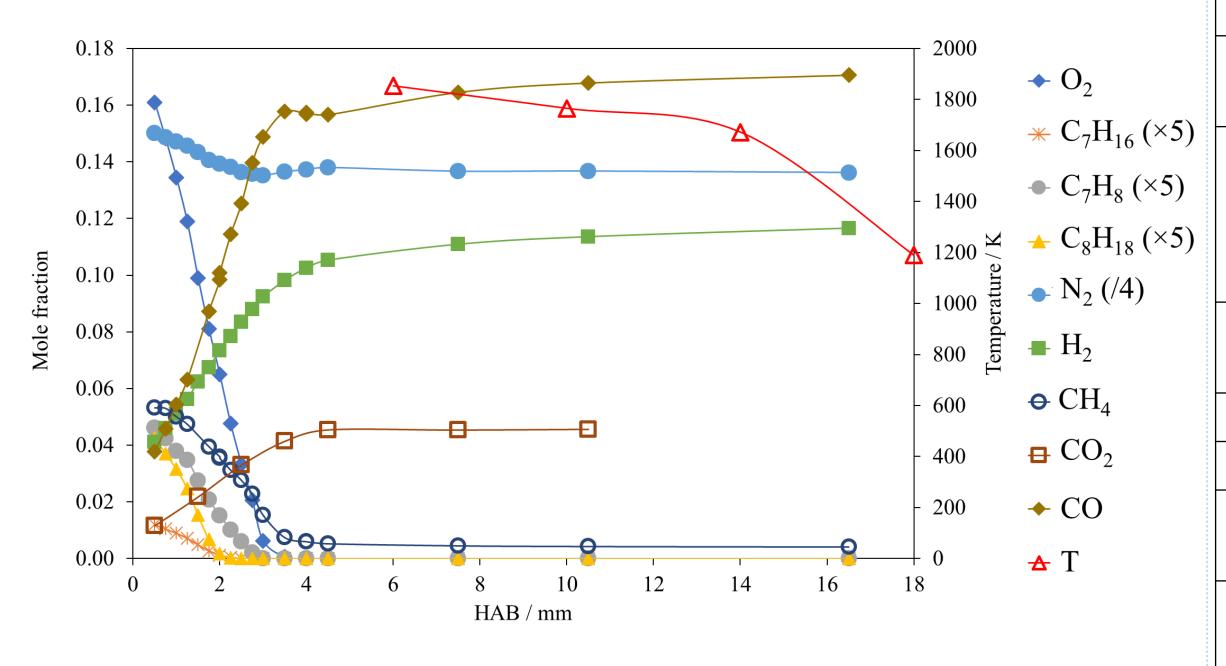
Bio-fuels (alcohols for example): a promising lever to reduce the fossil fuel dependency and the net CO₂ emissions.

Experimental Method

Flame conditions. TRF: ternary toluene reference fuel. TRF-E: TRF with ethanol. TRF-B: TRF with iso-butanol:

	Flow rate (Ln/min)						
Name	O_2	N_2	CH_4	TRF	Biofuel	Total	Φ
TRF	2.313	6.6	0.678	0.264	0.000	9.9	1.82
TRF-E	2.243	6.6	0.728	0.227	0.057	9.9	1.82
TRF-B	2.269	6.6	0.710	0.218	0.058	9.9	1.82

- > 10% in volume of ethanol and iso-butanol is added to TRF flame
- The estimated uncertainties of the GC experiment are <15% for main species, <25% for abundant intermediates. All flames were measured in the same campaign. Therefore, a relative comparison of trends between the flames can be performed with significantly higher precision.
- ➤ The estimated error for temperature measurements: ~5%


Results

 CH_4

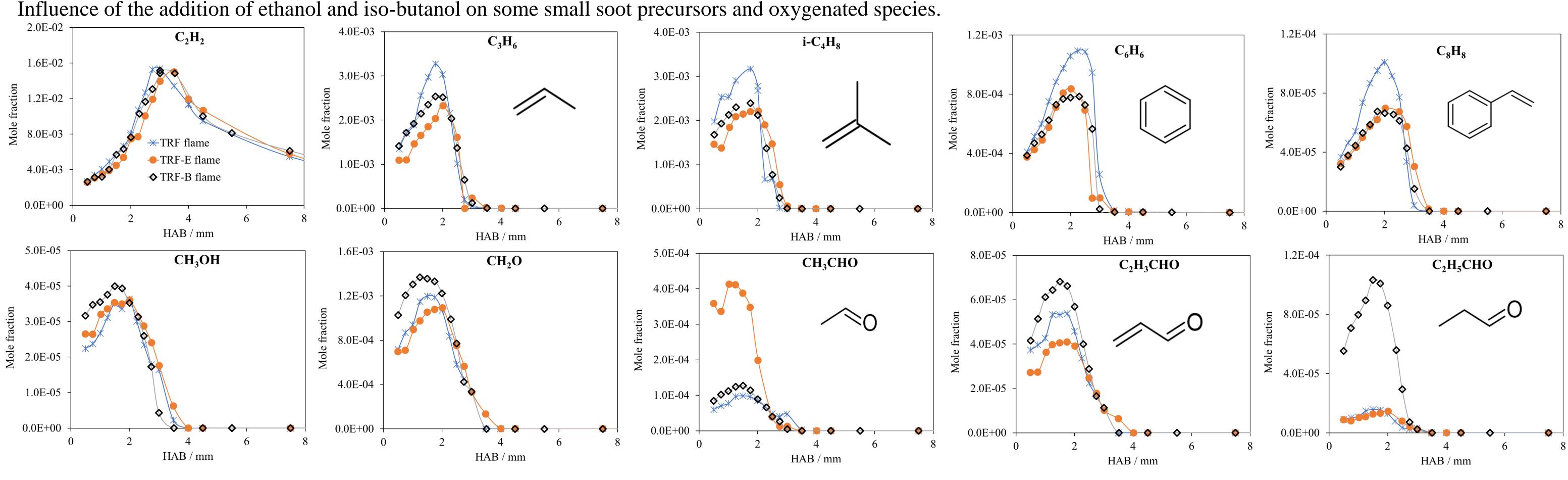
 N_2

Liquid fuel system 2 (biofuel)

TRF flame structure: mole fraction profiles of reactants (n-heptane C_7H_{16} , toluene C_7H_8 , iso-octane C_8H_{18} , CH_4 , O_2), diluent (N_2) , major products (H_2, CO, CO_2) , and temperature points in the burned gas zone.

HAB: Height Above the Burner

 C_0 species C_2 , C_2 , C_3 C_4 C_2 species C_2 C_3 C_4 C_2 C_4 C_5 C_6 C_6 C_6 C_7 C_8 C_9 C_9


Summary of the detected species

C₂H₆ (Ethane), C₂H₄ (Ethylene), C₂H₂ (Acetylene) C₃H₈ (Propane), C₃H₆ (Propene), aC₃H₄ C₃ species (Allene), pC₃H₄ (Propyne) iC₄H₈ (iso-Butene), 1C₄H₈ (1-Butene), $1.3C_4H_6$ (1.3-Butadiene), BC_4H_6 (1-C₄ species Butyne), $i-C_4H_{10}$ (iso-Butane), C_4H_4 (Vinylacetylene) $n-C_5H_{12}$ (n-Pentane), C_5H_{10} (1-Pentene, C₅ species cis, trans-2-Pentene), ... C₆ species C_6H_6 (Benzene), ... C₇H₈ (Toluene), C₇H₁₆ (n-Heptane) C₇ species C_8H_{18} (iso-Octane), C_8H_8 (Styrene), C_8H_{10} C₈ species (Ethylbenzene), ... (Ethanol), C_4H_9OH C_2H_5OH butanol), CH₂O (Formaldehyde), CH₃OH Oxygenated (Methanol), CH₃CHO (Acetaldehyde), species C_2H_3CHO (Acrolein), C_2H_5CHO (Propanal), CH₃COCH₃ (Acetone), ...

Influence of the addition of 0.14 H_2 ethanol and iso-butanol on final 0.12 products (CO and H_2) and 0.10 flame temperature: fraction 80.0 0.02 T (at 6 mm) 1850 8 10 12 HAB / mm 1750 CO 1700 0.15 1650 fraction 0.10 1600 1550 *TRF flame Mol ◆TRF-E flame TRF TRF-E TRF-B 0.05 ◆TRF-B flame Flame

0.00

HAB / mm

Conclusion and Perspectives

The addition of biofuels leads to significant changes in TRF flame structure:

- \triangleright Ethanol and iso-butanol decrease the mole fractions of C_3H_6 , i- C_4H_8 , C_6H_6 , and C_8H_8 , but do not affect C_2H_2
- > The two alcohols do not have the same effect on oxygenated intermediate species
- \triangleright Ethanol limits the production of CH₂O and C₂H₃CHO, but considerably increases the amount of CH₃CHO
- \triangleright Iso-butanol promotes the formation of all oxygenated species and especially C₂H₅CHO
- Flames temperatures are not significantly affected by the addition of biofuels
- ☐ Further investigation is needed to explore the influence of biofuel addition on heavier species such as PAHs and soot.

Acknowledgments

This work was supported by the 'Agence Nationale de la Recherche' through the OFELIE project (ANR-20-CE05-0047), the LABEX CAPPA (ANR-11-LABX-0005), the I-SITE Biofuel-Soot project (R-JEUNES CHERCHEURS-19-010-TRAN), the IRePSE, and CPER Climibio project.