

Experimental Study of the Impact of Oxygenated Fuels on Pollutant Emissions in Flame Conditions

Doha Kdouh, Sylvie Gosselin, Nathalie Lamoureux, Kanika Sood, Hong-Quan

Do, Laurent Gasnot, Luc-Sy Tran

▶ To cite this version:

Doha Kdouh, Sylvie Gosselin, Nathalie Lamoureux, Kanika Sood, Hong-Quan Do, et al.. Experimental Study of the Impact of Oxygenated Fuels on Pollutant Emissions in Flame Conditions. The European Combustion Meeting 2023, Apr 2023, Rouen, France. 2023. hal-04053272v2

HAL Id: hal-04053272 https://hal.univ-lille.fr/hal-04053272v2

Submitted on 20 Mar 2024 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Experimental Study of the Impact of Oxygenated Fuels on Pollutant Emissions on Flame Conditions

D. Kdouh, S. Gosselin, N. Lamoureux, K. Sood, Q.H. Do, L. Gasnot*, L.-S. Tran*

Univ. Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France *Corresponding authors: laurent.gasnot@univ-lille.fr; luc-sy.tran@univ-lille.fr

Context

Bio-fuels (alcohols for example): a promising lever to reduce the fossil fuel dependency and the net CO_2 emissions.

Experimental Method

Flame conditions. TRF: ternary toluene reference fuel. TRF-E: TRF with ethanol. TRF-B: TRF with iso-butanol:

	Flow rate (Ln/min)						
Name	O ₂	N_2	CH_4	TRF	Biofuel	Total	Φ
TRF	2.313	6.6	0.678	0.264	0.000	9.9	1.82
TRF-E	2.243	6.6	0.728	0.227	0.057	9.9	1.82
TRF-B	2.269	6.6	0.710	0.218	0.058	9.9	1.82

- \geq 10% in volume of ethanol and iso-butanol is added to TRF flame
- \succ The estimated uncertainties of the GC experiment are <15% for main species, <25% for abundant

intermediates. All flames were measured in the same campaign. Therefore, a relative comparison of trends between the flames can be performed with significantly higher precision.

 \succ The estimated error for temperature measurements: ~5%

TRF flame structure: mole fraction profiles of reactants heptane C_7H_{16} , toluene C_7H_8 , iso-octane C_8H_{18} , CH_4 , O_2), dilue (N_2) , major products (H_2, CO, CO_2) , and temperature points the burned gas zone.

iso-butanol

(n-	Summar	y of the detected species	Influence of the addition of ethanol and iso-butanol on final products (CO and H_2) and flame temperature:			
ent	C ₀ species	O_2, H_2, N_2				
111	C_1 species	CO, CO_2, CH_4				
	C_2 species	C ₂ H ₆ (Ethane), C ₂ H ₄ (Ethylene), C ₂ H ₂ (Acetylene)				
, TT (7)	C ₃ species	C ₃ H ₈ (Propane), C ₃ H ₆ (Propene), aC_3H_4 (Allene), pC_3H_4 (Propyne)				
$H_{16} (\times 5)$ $H_8 (\times 5)$ $H_{18} (\times 5)$ (/4)	C ₄ species	i C_4H_8 (iso-Butene), $1C_4H_8$ (1-Butene), 1,3 C_4H_6 (1,3-Butadiene), BC_4H_6 (1- Butyne), i- C_4H_{10} (iso-Butane), C_4H_4 (Vinylacetylene)	1900 1850 - T (at 6 mm) 1800 - I 1800 - I I I I I I I I I I			
	C_5 species	n-C ₅ H ₁₂ (n-Pentane), C ₅ H ₁₀ (1-Pentene, cis, trans-2-Pentene),	1750 - 17500 - 17500 - 1750 - 1750 - 1750 - 1750 - 1750 - 1750 - 1750 -			
I ₄	C ₆ species	C_6H_6 (Benzene),	ad 1650 -			
2	C ₇ species	C_7H_8 (Toluene), C_7H_{16} (n-Heptane)	i i 600 −			
	C_8 species	C_8H_{18} (iso-Octane), C_8H_8 (Styrene), C_8H_{10}	1550 -			

Influence of the addition of ethanol and iso-butanol on some small soot precursors and oxygenated species.

HAB / mm HAB / mm HAB / mm HAB / mm HAB / mm

Conclusion and Perspectives

The addition of biofuels leads to significant changes in TRF flame structure:

- \succ Ethanol and iso-butanol decrease the mole fractions of C₃H₆, i-C₄H₈, C₆H₆, and C₈H₈, but do not affect C₂H₂
- \succ The two alcohols do not have the same effect on oxygenated intermediate species
- \succ Ethanol limits the production of CH₂O and C₂H₃CHO, but considerably increases the amount of CH₃CHO
- \succ Iso-butanol promotes the formation of all oxygenated species and especially C₂H₅CHO
- > Flames temperatures are not significantly affected by the addition of biofuels

□ Further investigation is needed to explore the influence of biofuel addition on heavier species such as PAHs and soot.

Acknowledgments

This work was supported by the 'Agence Nationale de la Recherche' through the OFELIE project (ANR-20-CE05-0047), the LABEX CAPPA (ANR-11-LABX-0005), the I-SITE Biofuel-Soot project (R-JEUNES CHERCHEURS-19-010-TRAN), the IRePSE, and CPER Climibio project.