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ABSTRACT: Liquid chromatography−mass spectrometry (LC-
MS) is a powerful and widely used technique for measuring the
abundance of chemical species in living systems. Its sensitivity,
analytical specificity, and direct applicability to biofluids and tissue
extracts impart great promise for the discovery and mechanistic
characterization of biomarker panels for disease detection, health
monitoring, patient stratification, and treatment personalization.
Global metabolic profiling applications yield complex data sets
consisting of multiple feature measurements for each chemical
species observed. While this multiplicity can be useful in deriving
enhanced analytical specificity and chemical identities from LC-MS
data, data set inflation and quantitative imprecision among related
features is problematic for statistical analyses and interpretation.
This Perspective provides a critical evaluation of global profiling data fidelity with respect to measurement linearity and the
quantitative response variation observed among components of the spectra. These elements of data quality are widely overlooked in
untargeted metabolomics yet essential for the generation of data that accurately reflect the metabolome. Advanced feature filtering
informed by linear range estimation and analyte response factor assessment is advocated as an attainable means of controlling LC-
MS data quality in global profiling studies and exemplified herein at both the feature and data set level.

Liquid chromatography−mass spectrometry (LC-MS) is a
well-established technique for the quantitative measure-

ment of chemical species in living systems (i.e., metabolomics
and lipidomics).1−3 Strategies for measuring the metabolome4

can be targeted or untargeted with the former focusing on
accurate quantification of predefined sets of metabolites and the
latter aiming to more globally profile the chemical diversity
present in biofluids and tissues.5,6 While targeted methods are
optimized to produce singular values for each chemical species
(analyte) measured, untargeted approaches utilizing high
resolution mass spectrometry record spectra composed of
numerous distinct signals for each analyte. The result is a
complex and inflated7,8 data set, which can appear “over-
whelming and impenetrable”, especially to interdisciplinary
researchers looking to metabolic profiling for novel insights.9 To
make matters worse, not all signals are equivalent in their
representation of true analyte abundance, raising a key but
broadly overlooked question: which signals most accurately
characterize the variation in chemical species abundance across a
set of samples? While addressed intrinsically in the analyte-
specific design, validation, and rigorous quality control (QC) of
targeted methods, the question is more difficult to answer post
hoc when faced with a global profiling data set.
This Perspective details the challenges imposed by multi-

plicity and quantitative imprecision among features (grouped

measurements of the same chemical species and ion type across
all study samples) in LC-MS global profiling data and discusses
QC strategies for ensuring the high-fidelity representation of the
metabolome. These considerations are important for ensuring
the accurate and efficient interpretation of results10,11 and the
translation of optimal biomarkers into the clinic where their
reliability and performance are paramount.12,13 To help orient
the reader, an illustrative LC-MS metabolomics workflow is
presented in Figure 1, which highlights key considerations for
data QC and the reduction of feature multiplicity prior to
analysis and interpretation. A comprehensive overview of key
workflow stages including definitions, common terminology,
and currently available open-source LC-MS metabolomics
software is presented in Figure S1.
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■ FEATURE MULTIPLICITY AND RESPONSE
VARIATION

Chemical species are represented in LC-MS profiling data sets
by multiple distinct features including those arising from
(de)protonated molecules, isotopes, in-source (or in-instru-
ment) fragments, adducts, oligomers, and multiply charged
species.8,14 This multiplicity confounds subsequent analysis by
increasing the already large number of variables with knock-on
effects to the number of simultaneous statistical tests performed,
stringency of multiple testing correction procedures, and
statistical power.15−17 Collinearity (high correlation between
variables) among these features imposes additional challenges in
the form of biased estimators in regression and discriminant
analyses.18−20 However, LC-MS features arising from the same
chemical species can also exhibit differing response functions (a
response function in this context being a set of individual
response factors, each of which is the ratio of analyte abundance
to themagnitude of the corresponding recorded signal, that span
a range of analyte abundances). Consequently, such features are
not strictly redundant. This phenomenon is clearly visible in the
analysis of minimally processed global profiling data sets,
resulting in the dispersion of statistical significance among
features derived from the same analyte (Figure 2). The observed
variation in response is due to the idiosyncratic formation and
transmission of ion species within the mass spectrometer and
finite linear dynamic range of the LC-MS system, limited at the
high end by saturation of the ion source and/or detector and at
the low end by background interference and inconsistent
detection.21−25 Artifacts of on-instrument data processing (e.g.,
centroiding), the choice of feature extraction software and
parameters,26−28 and data preprocessing7,29−31 compound the
issue. Together, these introduce error into the data set that can
further confound data modeling and the interpretation of results,

even when using analysis strategies that deal well with modeling
highly collinear data.32,33

To illustrate these effects at the level of individual chemical
species, the quantitative responses of features within spectra
derived from three common urinary metabolites were compared
using data from an exemplar human metabolic profiling feature
set (Figure 3). The variety of resulting pairwise relationships
clearly illustrates the diversity of response functions possible
among features derived from the same chemical species.
Overcoming this phenomenon and enhancing the fidelity of
global profiling feature sets require a consciously designed and
executed strategy within the metabolomics workflow.

■ FEATURE REDUCTION
In order to improve data quality, statistical power, and
interpretation clarity, it is attractive to consider reducing the
multiplicity present within a data set prior to analysis. Yet,
deciding whether or how to best select or combine features for
these purposes can be challenging. The relation among distinct
unidentified features within a global profiling data set is not
obvious from the outset but can be inferred by the agreement in
analyte retention time or elution profile, intensity correlation
across a data set, or the detection of previously defined m/z
differences among features (e.g., expected adduct types).34,35 In
practice, variations in response functions and in retention time,
m/z, and intensity measurements naturally limit the accuracy
and completeness of these approaches, especially when applied
automatically to feature-rich global profiling data from chemi-
cally complex biological samples. Nonetheless, many tools have
been developed to assist with the collation of spectral features,
either for the purposes of feature reduction (Table S1) or more
commonly to assist the identification of chemical species after
analysis of the raw feature data (Figure S1).34 Regardless of
whether or how features are identified as belonging to the same
spectrum, little consensus exists around what to do with their
intensity measurements in metabolic profiling applications,
despite the choice being formative for the final data set. The
analyst is therefore faced with choosing one of the three logical
approaches listed in the workflow (Figure 1).
The first option is to combine features belonging to the same

spectrum. Tools using this approach typically sum36 or average37

their measurements in each sample, yielding a single value for
the respective metabolite and thereby reducing the feature set
and potentially reducing the influence of random measurement
error among the distinct features.38 However, this approach is
highly dependent on the accuracy of spectral feature collation,

Figure 1. Simplified workflow for LC-MS metabolic profiling studies,
highlighting key steps and logical options for reducing the feature set
(highlighted in orange) prior to data analysis.

Figure 2. Manhattan-style plot illustrating the dispersion of test statistic values among metabolite-derived features in a comparative LC-MS lipid
profiling study (see Methods S1 and S2 for more detail). Features passing false discovery rate correction are highlighted (blue and red). Features from
two exemplifying lipid species are assigned for illustration: LPC(18:0/0:0) and SM(d18:1/16:0). Adapted with permission from Izzi-Engbeaya et al.40
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which must avoid both erroneous amalgamation of unrelated
features and failure to collate all related features in a spectrum.39

Furthermore, even where feature collation is performed
accurately, the presence of poorer quality or lower fidelity
measurements can directly compromise the combined metab-
olite measurement. This effect may bemitigated bymore heavily
weighting the contribution of selected (e.g., more intense)

feature measurements to the total38 or by utilizing factor
decomposition methods,37 provided that the highly weighted
features are of high fidelity themselves (e.g., barring response
saturation).
The second option is to select a single feature for each

chemical species as a representative measurement. An intuitive
strategy may be used whereby the “main” spectral feature is

Figure 3. Variation in relative response among selected features including adducts and in-source fragments (ISF) originating from the same chemical
species, illustrated across three common urinary metabolites (pantothenate, tryptophan, and sulfotyrosine; top, middle, and bottom rows,
respectively) in a human metabolic profiling study (see Methods S3). Spectral annotations were confirmed against in-house reference spectra and
those from the 2017 NIST Tandem Mass Spectral Library. Panel A contains mass spectra reconstructed from pooled QC sample m/z values and
median intensities. For each analyte, the intensity values of selected features (various colors) across study samples were compared to those from a
reference feature (shown in red) with the resulting pairwise relationships in intensity (scaled) illustrated in Panel B. Panel C shows the distribution in
intensities observed across study samples for each selected feature. Features represented in each row of the panels are color-linked.
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selected, colloquially referring to either the (de)protonated
molecule or the base (most intense) peak, which can be the
same. The approach has the benefit of avoiding low abundance
features such as in-source fragments or adducts that may be
scattered about the limit of detection, and thus potentially
confounding statistical analysis due to a high proportion of
missing, imputed, or baseline integration values. However, there
is no assurance that the main feature for any given spectrum
provides the highest fidelity measurement. On a broader scale,
when the feature set is biased toward more intense peaks,
nonlinearity and saturation may become more prevalent,
contributing to range compression41 and peak picking
artifacts.42 Indeed, without established metrics to determine
which feature best represents the abundance of a chemical
species in solution, making an objective choice is impractical.
Alternative approaches to feature selection have been proposed
that additionally take clustering information into consideration,
selecting the most representative feature from each “pseudo-
spectrum” on the basis of both abundance and connectivity.43,44

The third option is to retain all features that pass QC and
analyze the set without further selection or combination.
Although this approach does not attempt to directly address
the issues posed by feature set inflation, it avoids intervention
and eliminates any risk of erroneous feature selection or
combination. Statistical and machine learning analysis meth-
ods20 such as PLS,45 random forests,46,47 LASSO,48 and other
penalized regression models20,49 can produce reliable predictive
models from multivariate and multicollinear metabolic profiling
data. Furthermore, it can also be reassuring to the analyst when
multiple features thought to belong to the same chemical species
independently pass a statistical test. On the other hand, because
of varying response factors and finite instrument linear dynamic
range, the approach also runs the risk of leaving the analyst with a
split within features derived from the same chemical species,
with some failing to meet a threshold for statistical significance
while others appear significant. In these scenarios, it is often
tempting to ignore the former in favor of the latter, interpreting
any statistically significant feature as indicative of a chemical’s
significance and opening a potential pitfall in the resulting
biological interpretation.
Applications of various feature reduction approaches prior to

statistical modeling have shown a potential in increasing
predictive power for classification,37,50 but regardless of the
approach taken, the fidelity of the underlying measurements
remains key. Individual spectral features with more accurate and
therefore comparable response factors are more concordant in
statistical testing, more interchangeable when selected, and both
easier to identify as representing the same chemical species and
less error prone to combine. Here, we focus on feature filtering
as an opportunity to simultaneously reduce multiplicity and
establish prerequisite control of feature quality, acting as a
gatekeeper that ultimately yields more reliable and interpretable
data.

■ FEATURE FILTERING STRATEGIES AND ADAPTING
BEST PRACTICES FROM BIOANALYSIS

Measurement quality standards are well-established and
rigorously defined for bioanalytical methods,51,52 providing an
aspirational framework for assessing and controlling data quality
in global profiling studies.53,54 Whereas data quality can be
dictated in targeted analysis by prospective validation of assay
performance for selected targets and the use of QC materials to
monitor adherence to those expectations, QC practices in

untargeted profiling have evolved from the same guidance for
post hoc application.55 In practice, data quality in global
profiling is controlled by feature filtering, which removes feature
set entries failing to exhibit one or more characteristics of the
desired data quality. One of the earliest56,57 and certainly one of
the most common strategies used in metabolic profiling
studies54 is the assessment of technical precision (e.g., relative
standard deviation, RSD) across repeated injections of a pooled
QC sample and exclusion of features failing to meet a predefined
threshold. This procedure is effective for ensuring a minimum of
technical reproducibility among features in the resulting feature
set; however, as a repeated measurement of a single sample, it
does not take into account the variation in both precision and
analyte response factor across the dynamic range of the
instrument. Furthermore, in our experience with time-of-flight
mass spectrometry, the approach suffers from the severe pitfall
that noise regions and saturated peaks alike tend to produce
reproducible signal intensities.
Other common filtering practices include the removal of

features appearing in blank samples (e.g., background
subtraction) and those appearing infrequently across the sample
set (i.e., prevalence-based filtering).54 A summary of filtering
approaches employed by open-source software can be found in
Table S2. However, none of these approaches directly select for
features that most accurately represent the variation present in
analyte abundance across a set of samples. It seems that, despite
being a fundamental tenet of targeted quantitative LC-MS
analysis and other bioanalytical techniques, the assessment of
measurement accuracy and linearity of analyte response is
broadly overlooked in metabolic profiling applications11,41 and
software tools (see Table S2). This is largely owing to both
perceived theoretical and practical difficulties in adapting the
practice to profiling data, where features of interest cover a wide
range of concentrations and chemical classes and are determined
post hoc, generally precluding the otherwise standard practice of
using chemical standards to construct calibration curves.54,57

Nonetheless, a practice that integrates a more traditional
bioanalytical assessment of the analyte response factor with the
intent of establishing additional criteria for feature filtering in
metabolic profiling studies is gaining traction. The approach, as
proposed by Croixmarie et al., employs the systematic dilution
of a dried pooled QC sample (e.g., in 3:1, 1:1, and 1:3
concentrations with respect to the original pool).58 These
“dilution series” samples are analyzed as an integral part of the
full sample set, and correlation coefficients between analyte
response and relative sample concentration are subsequently
calculated for each feature. The resulting coefficients are then
used to identify and remove features lacking a “linear or at least
monotonous relationship” with sample analyte concentration,
depleting uninformative, uninterpretable, and potentially
misleading features from the data set.58−60 While not yet widely
used, the approach has been shown to improve robustness and
quality of the data, discerning true biological signals from noise,
background, and sample processing artifacts.58−65 Yet, despite
the simplicity and utility of the dilution series approach for
feature quality assessment and filtering, at the time of writing,
support for this is absent from virtually all major commercial and
open source software packages with few notable exceptions (see
Table S2).63,66,67 This may be due to a lack of underlying
consensus or guidance for how a diluted QC (dQC) sample-
based strategy is best implemented.
It is also noteworthy that the calculation of correlation is

inherently sensitive to the design of the QC sample dilution
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scheme. For example, the inclusion of dQC samples at both very
low and very high concentrations can result in high correlation
coefficients even when the behavior of intervening dQC samples
is nonlinear with respect to response. Thus, high correlation
coefficients can still be attained despite an obvious nonlinear
response at the high and low ends of the response function

provided the correlation is measured across enough points to

dilute those effects. Consequently, it has been our experience

that features exhibiting substantially different response functions

(such as those illustrated in Figure 3) can still pass dQC series

correlation filtering when reasonable thresholds (e.g., passing

Figure 4. Exemplar feature relationships representing classes of observed behavior, illustrated for feature pairs for five chemical species from two LC-
MS data sets: serum lipid RPC+ and urine small molecule (SmMol) RPC− (see Methods S1 and S3). Precision (RSD) was calculated for each set of
dQC samples, and fold-change error (Method S4) was calculated between consecutively increasing dQC pairs. For each feature, plots show dQC
median intensities (left) and violin plots of the observed intensities (right) in study samples and QCs. In the dQC plots, black points and connecting
lines represent RSD ≤ 30 and fold-change error ≤ 20%, while measurements not meeting these criteria are highlighted in red. In the associated violin
plots, any samples that fall in the regions with high RSD/fold-change error are similarly highlighted. The central panel for each feature pair illustrates
the observed relationship between the selected features.
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features with ≥0.7 Pearson correlation coefficient) are used,
warranting the further development of the design concept.

■ ADVANCED FEATURE FILTERING IN METABOLIC
PROFILING

The improvement of dQC series correlation filtering requires an
alternative assessment of the dilution series data based on the
measurement of the proportionality of response at each dilution
series point. Drawing from outside the field of metabolomics, in
2009, Popa-Burke et al. advocated the calculation of an average
fold-change error between consecutive serial dilutions as a
measure of relative accuracy when setting quality assurance
criteria for serial dilution operations in liquid-handling equip-
ment.68 The method is particularly attractive for implementa-
tion in metabolic profiling studies because of its ability to
generate measurements of relative accuracy across the dQC
range, even for a priori undefined compounds. In metabolomics,
however, applications utilizing fold-change between dQC/QC
samples for error estimations are relatively sparse. Fold-change
comparisons between QC and dQC samples were first used by
Veselkov et al. to benchmark the performance of normalization
and data transformations for LC-MS data analysis.69 The
concept was later adapted for the purposes of feature filtering in
metabolomics data by calculating the dQC/QC ratio for each
feature after regular injections of QC and dQC samples and
removing features with poor stability (by ratio RSD) and
response to dilution (by deviation from the expected ratio).70 A
conceptually similar approach has recently been explored to
correct quantitative bias resulting from nonlinear ESI responses
in metabolic profiling data.41 In this work, Yu et al.41 established
calibration curves for every feature by modifying the injection
volumes of a QC sample, mimicking a serially diluted QC
sample. Subsequently, measured MS signals were fitted to these
calibration curves, correcting signal intensity and generating
projections of sample loading amounts for improved accuracy.
Although assessingmeasurement accuracy is impossible in the

absence of absolute quantification, the inclusion of repeated
dQC series samples provides a framework of known relative
abundances that enables the adaptation of QC practices from
bioanalytical guidelines for evaluating both accuracy and
precision.51,52,71 Doing so (1) enables the assessment of
precision across an increased measurement range (beyond the
average pooled QC), (2) allows the estimation of relative
quantification accuracy and linear range limits by the calculation
of fold-change error (Methods S4), and (3) defines the
boundaries for QC evaluation relevant for interpreting study
sample measurements.
The utility of this approach is readily demonstrated at the

metabolite level when applied to selected features of known ion
type and chemical assignment from real-world global profiling
feature sets in which the dQC series design has been employed
(Figure 4 andMethods S1 and S3 for experimental details). The
acquisition of such samples allows the assessment of precision
(RSD) at each dQC concentration and linearity by the
calculation of pairwise fold-change error between consecutive
dQC sample sets at different concentrations, with fold-change
error defined as

‐ =
−

×fold change error
(FC FC )

FC
100ij

o e

e

where the expected and observed fold changes between two
consecutive dQC sample sets at dilutions i and j are defined,
respectively, as

= =FC
dilution factor dQC

dilution factor dQC
and FC

median intensity dQC

median intensity dQC
j

i

j

i
e o

In addition, the comparison between the dQC series and
acquired study sample measurements can be used to calculate
the percentage of study samples that fall within the defined linear
range. As illustrated in Figure 4, despite each feature passing
basic filtering thresholds for precision (RSD in pooled QC
samples ≤30) and the dQC series correlation to the dilution
factor (r ≥ 0.7), not all paired features provide equivalent
representations of their respective analyte abundances. In the
first example, the serum lipid LPC(0:0/16:0)’s protonated
molecule and potassium adduct show excellent agreement in
their response functions with virtually all study samples captured
within the range covered by the dilution series and a good
precision (RSD ≤ 30) and linear response (fold-change error ≤
20) among all QC dilutions spanning the range occupied by the
study samples. In the second example, response functions
between the same protonated molecule and the [2M + H]+ ion
species reveal a nonlinear relationship. An inspection of the
latter ion’s dQC response function shows fold-change errors
greater than 20% across the entire dilution series. This appears
to be caused at the lower end by a change in the response factor
as the signals in more diluted QC’s fall outside of the linear
dynamic range and ultimately below the detection limits and at
the upper end by the disproportionately favored formation of
oligomers.72 As virtually all study sample measurements fall
within this compromised range, this feature would be a good
candidate for removal from the feature set. Consequently, the
exemplar lipid LPC(0:0/16:0) is left to be more faithfully
represented in the feature set by its protonated ion and
potassium adduct features, which can be more confidently
combined, selected, or retained for analysis.
Subsequent examples illustrate alternative response function

relationships observed between pairs of features and provide
insight into the distinct underlying phenomena affecting the
fidelity of those feature measurements. These include response
factor changes due to exceeding the linear dynamic range and
saturation (e.g., the deprotonated molecule of indoxyl sulfate in
urine), imprecision due to suspected saturation with incomplete
dynamic range coverage (indoxyl glucuronide), and more
general measurement imprecision, perhaps caused by back-
ground interference or analyte coelution, leading to both high
RSDs and high fold-change error (e.g., indoxyl sulfate in-source
fragment m/z 79.96). Together, these data clearly demonstrate
that, although traditional QC RSD filtering and the calculation
of dQC series correlation coefficients are not sufficient to
remove all poorly measured features, the QC dilution series
design does support a more thorough interrogation. With this in
mind, we advocate two additional feature filtering criteria that
further leverage dQC series data: (1) response filtering for the
identification and removal of features where a high proportion of
study samples fall within an intensity range that does not
respond as expected to varying concentration (indicating poor
measurement quality) and (2) range filtering for the
identification and removal of features where a high proportion
of study samples fall outside of the assessed dilution series range
(and therefore measurement quality is unknown). The
application of these advanced filtering steps in addition to
those more traditionally used should ensure greater congruency
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in the final feature set used for data analysis. While we propose
the terms response filtering and range filtering for these
purposes, we hesitate to propose strict mathematical definitions
in favor of leaving them open to future implementation
development by the metabolomics community as a whole.
To assess the broader impact of response and range filtering, a

rudimentary implementation was applied to complete profiling
feature sets (Figures 5 and S2) alongside dQC series correlation

to dilution factor filtering and pooled QC RSD filtering. Across
all feature sets, regardless of biofluid, assay, or polarity, the data
reduction impact of advanced filtering is striking. Response
filtering, when set to remove features with less than 80% of study
sample measurements falling within an intensity range where
dQC series fold-change error is <20%, is the dominant factor in
data reduction. Range filtering reduces the feature set further,
removing features with less than 80% of study sample
measurements falling within the range covered by the dQC
series samples. In the six data sets tested, the combined range
and response filtering resulted in feature set reduction between
65% and 98%, similar in scale to previously reported results
achieved by different means.7 These two approaches capture
virtually all features filtered by RSD and the correlation to
dilution factor filtering, indicating that advanced filtering
approaches may functionally supersede even the most
established means of filtering-based QC in global profiling
studies.

■ CHALLENGES AND DESIGN LIMITATIONS FOR THE
IMPLEMENTATION OF ADVANCED FILTERING
METHODS

It is our opinion that the application of the QC dilution series
and an advanced filtering approach should be a standard
prerequisite for generating high-fidelity untargeted LC-MS-
based metabolic profiling data sets. However, numerous
challenges, weaknesses, and limitations require consideration
when developing and implementing such workflows. Chief
among these are fundamental weaknesses inherited from the
pooled QC sample approach from which the dQC series is
derived. Despite being a widely used material in metabolic
profiling, the use of the pooled QC sample itself56,57 (an
amalgamation of practices adapted from clinical chemistry74,75

and bioanalysis in pharmacology51,52) is not a flawless
cornerstone of QC. As an equal part composite of all study
samples, it suffers the same drawbacks as an arithmetic mean in
that it is susceptible to the influence of outliers. In practice, this
can produce a disproportionate representation of analytes with
an excessive abundance in a few samples (e.g., xenobiotics),
creating a sample that, together with an average profile of all
endogenous metabolites and lipids observed in all study
samples, is unrepresentative in terms of its complexity.
Conversely, lower abundance biomarkers present in fewer
samples (e.g., potential biomarkers of subpopulations within
nested case-control study designs, particularly in large scale
molecular epidemiology applications) may not be well
represented in the pooled QC sample. For these reasons, their
repeated assessment in the composite average sample is a limited
representation of the true quality of measurement in study
samples. For use in response filtering, there is a further
requirement that analytes are present in the pooled QC sample
with sufficient abundance to withstand dilution over an
appropriate (with respect to the abundance of analytes within
the study samples) measurement range.
Second, when creating the dilution series from the pooled QC

sample, it must be considered that all analytes are diluted
simultaneously, affecting any given analyte together with its
matrix. This approach satisfies the aim of creating a set of known
relative abundances for each analyte, but it fails on two
important fronts: (1) to model the response function of an
analyte in a broadly unchanging matrix (e.g., as recommended
for targeted analyses51,52) and (2) to account for matrix effects22

introduced by sample specific variation in overall composition.53

Figure 5. Assessment of response and range-based filtering methods
applied to serum lipid RPC+ and urine small molecule (SmMol) RPC−
LC-MS data sets (see Methods S1 and S3). Additional data sets are
provided in Figure S2. In each Venn diagram,73 the number of features
not meeting each filtering strategy is given according to the following
inclusion criteria: RSD in pooled QC samples ≤ 30 (RSD); Pearson
correlation coefficient between dQC series and dilution factor ≥ 0.7
(correlation); greater than 80% of study samples within an intensity
range where fold-change error ≤ 20% (response); greater than 80% of
study samples within a range covered by the dQC series samples
(range).
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Addressing the former is not possible using current profiling
workflows as the exact chemical species coverage and analytes of
interest are determined post hoc and the analyte-free matrix
cannot be sourced.76 However, the latter concern may be at least
partially addressable, for example, by creating and analyzing
(either sparsely or in totality) dilution series sets from subpools
(e.g., of case and control samples) or individual study samples to
assess the robustness of the analyte response to matrix effects
and validate the QC dilution series-derived data.77

Third, the dilution of a pooled QC sample does not
encapsulate the higher-than-average analyte concentrations
present in study samples, and therefore, more concentrated
dQC samples are needed. The approach proposed by
Croixmarie et al. required the drying and reconstitution of the
pooled QC sample, facilitating the creation of a 3-fold
concentrated sample.58 In cases where drying is not a routine
component of the sample preparation workflow, the analyst may
wish to avoid the step. Fortunately, the sensitivity of modern
LC-MS instrumentation can be leveraged to circumvent this
need for sample manipulation. A successful expansion of the
effective concentration range coverage can be achieved by
diluting all study samples and the pooled QC sample (e.g., by a
factor of 2), retaining undiluted pooled QC sample material for
use in creating the dilution series (illustrated in Figure S3). It has
been our experience that this straightforward adaptation greatly
improves the capture of analyte abundance present in most
study samples within the range covered by the dilution series. A
greater relative range can be created in the dilution series by
further dilution of the study samples, albeit at the possible
expense of low abundance metabolite coverage.
A final challenge relates to the actual strategic implementation

of dQC sample analysis. In our laboratory where each study is
bookended by dQC series samples as shown in Figure S3, we
have observed that the extrapolation of the response precision is
more complicated across larger study sizes where feature
intensity fluctuations59,78 are more likely and prominent. On-
instrument stabilization of signal detection59 is an ideal solution
where available, but bioinformatics approaches (e.g., by applying
a correction factor to the dilution series samples) and
adaptations to the study design (e.g., by acquiring both QC
and dQC series samples more regularly throughout the analysis
run) could be valuable alternatives.

■ CONCLUDING REMARKS AND FUTURE
DIRECTIONS

LC-MS global metabolic profiling assays generate large feature
sets where individual chemical species are represented by
multiple signals. While this multiplicity can enhance analytical
specificity and be exploited to assist chemical assignment, it is a
hindrance to downstream analysis and interpretation of a
metabolic profiling data set. Ideally, steps in the metabolic
profiling workflow should ensure that a final feature set is
produced where each chemical species is represented by a single
feature comprising a set of measurements that best represent
true analyte concentration and exploit the instrument’s available
linear dynamic range. While a common consideration in
bioanalytical techniques, most state-of-the-art experimental
QC procedures, feature filtering approaches, and feature
reduction methods for global profiling data overlook the
otherwise key consideration of analyte linearity. Support for
this is notably underrepresented in the myriad of options for
feature filtering and reduction proposed and encoded in LC-MS
preprocessing software. Consequently, we believe that there is

an opportunity on this front to facilitate the improvement of
global profiling data quality. Specifically, we believe the
simplicity of implementation and value of the data generated
from dQC series warrant their routine incorporation in
metabolic profiling studies. The information revealed by this
approach is critical for rigorous assessment and possible ranking
of multiple ions from a single chemical species in terms of their
quality and fidelity to the metabolome (within or even across
multiple global profiling assays used in concert).
While the discussion and examples shown largely focus on

advanced feature filtering, we also envision that the data
provided by range and response calculations will be useful in the
development of improved feature combination algorithms that
go beyond the summation or averaging of features. Using
detection limit information provided by the dilution series, it
may become possible to extend the linear dynamic range in
global profiling applications via a combination of isotopic
measurements or fitting of intensity−calibration models
between different ions.79−81 An improved understanding of
the underlying patterns and physical chemistry mechanisms
responsible for diversity in feature response functions may avoid
the loss of information by allowing a more sophisticated
amalgamation of data.
For now, the assessment and assurance of feature quality

remain paramount for the generation of high-fidelity metab-
olomics data sets. Here, we advocate that leveraging a dQC
series design element to estimate the linear range and analyte
response enables the implementation of advanced feature
filtering methods inspired by best practices in bioanalysis.
Support for these developing trends and their wider application
relies on algorithms and options implemented within
commercial and open-source software to more fully exploit the
value of dilution series data. We believe efforts in these
directions will help bridge the gap in quality between targeted
bioanalysis and global metabolic profiling, advancing the field
and practical applications in clinical biomarker discovery and
beyond.
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