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Introduction

The analysis and prediction of running performance have been the subject of much

research. Several tools using the relationship between distance (or speed) and its time

limit, as well as physiological models were developed to understand human endurance

and to explain performance based on physiological parameters (1–3). Tables (4),

mathematical equations (e.g., logarithmic, hyperbolic, exponential, linear…) (5–7)

including the concepts of critical speed (8, 9) or power law (3, 10), nomograms (11,

12), and Artificial Intelligence (AI) algorithms (13, 14) are notable examples.

Although many approaches are valid and accurate to predict performance over a

given distance (e.g., nomograms, concept of critical velocity or power law…) (15),

these approaches notably allow the prediction of a “final time”, which could be

commonly referred to as performance. It is not uncommon for the running

performance predictions are based on the theoretical calculation of running time

using the best performance(s) achieved over other distances, and on some equivalence

between the time references of the different distances covered (12, 15–17). However,

prediction approaches, more and more elaborate considering empirical, biomechanical

or physiological data, have been developed over the years (18, 19), notably through

the evolution of technologies such as AI (14, 19, 20). These prediction approaches can

be useful for calibrating, quantifying sessions, but also detecting, for example, future

athletes with high potential (16, 17, 19, 21). They can also provide additional

information (e.g., identify specific training intensities…) (16, 17, 21) to traditional

laboratory methods measuring the main physiological parameters of running

performance (e.g., maximal oxygen uptake: _VO2max, maximum aerobic speed, aerobic

endurance capacity, etc.) (8, 22). However, beyond the predicted time, it could be

interesting to question the conditions for achieving this final time, in other words, to

question the “path” that the athlete should take to reach it. Indeed, if performance

prediction can be useful to optimize performance, to define specific training

intensities, to plan split times during competitions (16, 17, 21), this does not

necessarily mean that the average speed obtained through the predicted final time, to

achieve performance, must be constant throughout the distance covered. The

approaching condition of running could then be rethought other than by the fact that

a constant or regular speed is ideal by focusing in particular on other physiological

parameters than _VO2max, the energy cost and the endurance capacity commonly used
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in performance modeling [i.e., paradigm of constant speed from

the Di Prampero equation (23)]. To achieve a performance, we

could for example ask ourselves about the optimal speed (e.g.,

target speed) and the strategy for managing it (e.g., constant

speed, pace variation…) but also the conditions for achieving

it (e.g., weather conditions, race profile, diet, sleep, sports

equipment, technologies…), which can delay voluntary

exhaustion, but also allow running the given distance as

quickly as possible (24–31). To contextualise this, we can take

the example of the “Ineos 1:59 Challenge” project, where

Kenyan Eliud Kipchoge aimed to break the iconic 2-h barrier

in the marathon. The result is that strategies such as a

relatively “regular” running pace (i.e., 2 min 49 s per km) as

well as the use of “new generation” running shoes (e.g., shoes

with carbon plates and rubber) have proven to be effective, It

should be noted that a similar event took place in the United

States in the early 1990s, where the runners’ performance was

not homologated by World Athletics for various reasons (e.g.,

intermittent pacers, car emitting a laser beam…). From these

observations, we can then be led to wonder beyond the final

time that could be predicted, about the “ideal” running

pattern that could optimise running performance while taking

into consideration (e.g., in real time from connected

objects…) the multifactorial aspect of the latter (i.e.,

physiological, biomechanical, psychological, environmental

and technological factors) (cf. Figure 1) (24–31). Therefore,

the aim of this opinion is to try to answer these questions.

For this, we consider turning to Big Data (i.e., megadata

collected to designate a set of digital data produced by the use

of new technologies) and AI, which seem to offer new work

perspectives for the prediction of sports performance (13, 20,

32–36).
The current landscape

Big data and connected technologies

At present, increasing amounts of data are collected in

many disciplines including running, in particular through

sensors (e.g., Global Positioning Sensor: GPS, accelerometer,

heart rate monitor…), connected objects (e.g., smart meters

such as watches, glasses, textiles, insoles…) (37–39) content

published on databases (e.g., performance, split times during

competitions, results…). If we are interested, for example, at

these data commonly collected in running via connected

devices and/or smartphone applications (e.g., Strava®,

Garmin®, Runtastic®…) (40), the latter can make it possible to

analyze, or even predict, performance by monitoring several

variables (e.g., pace or speed of movement, variation in the

altitude difference of the course, amplitude and frequency of

strides…) in a non-invasive way in real conditions (i.e., with

possible real-time feedback) and especially outside a
Frontiers in Sports and Active Living 02
laboratory (14, 34, 37, 41–43). The research of Emig and

Peltonen (34), Smyth and Muniz-Pumares (30) has notably

highlighted mathematical modelling based on the use of

connected wearable technologies such as wrist devices (e.g.,

connected watches) or smartphones to correlate performance

indices with the volume and intensity of training in order to

quantify, for example, the optimal training load. These studies

(30, 34) have chosen to integrate in their algorithms (already

taking into consideration past references on the target

distance), the runners’ training regime (e.g., distance, time,

running pace and elevation gain) 6 weeks before the prepared

competition. The use of these connected technologies and Big

Data, suggests new ways of quantifying and predicting athletic

performance in real conditions. Other technologies, still not

widely used in the running world, such as connected insoles

could also allow the collection and exploitation of new data in

order to understand and optimize sports performance (e.g.,

integration of these data in prediction algorithms) (44, 45).

However, beyond the quality of the recovered data (i.e.,

precision, accuracy with over or underestimation of raw

values, like recorded energy expenditure depending running

intensities, but also distances significantly underestimated and

less accurate in the forest areas to the road area, that can

highlight the limitations of connected objects) (46–48), the

exploitation of these data could be complex in view of the

quantity of available data (Big Data) obtained through

connected technologies. What methodology/approach could

then respond to this Big Data problem?
Artificial intelligence

AI used in many fields of science (e.g., meteorology,

medicine, sport sciences…) (32, 49, 50) suggests new ways of

quantifying and predicting sports performance in real-life

conditions, given the scientific publications obtained in recent

years. Indeed, Hammerling et al. (20) performed predictions

of race times in the 2013 Boston Marathon for all runners

who reached the halfway point of the race but did not have

the opportunity to cross the line due to an attack (i.e.,

interruption of the race following the explosion of two bombs

placed near the finish line) and thus to recognize the

achievements of these runners. To make these predictions,

Hammerling et al. (20) used a database of all previous years’

performances at the same event (i.e., Boston Marathon of

2010 and 2011) and took into account the “real” times (i.e.,

time intervals of 5 km as well as the final 2,195 km) of the

runners engaged in this event before they were interrupted by

the organization. The use of different AI algorithms including

K-Nearest Neighbors (KNN), made it possible to predict the

performance of all the runners (i.e., a final time based on the

prediction of intermediate times), i.e., the time they could

have achieved over the distance, to establish a ranking of the
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FIGURE 1

Illustration of a “connected multifactorial” intelligent model capable of adapting in “real” time during the effort to optimize running performance.
FactPhys (physiological factor), FactBiom (biomechanical factor), FactPsy (psychological factor), FactEnv (environmental factor),
FactTech (technological factor), AI (artificial intelligence).
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runners involved in this event. To do this, authors created an

independent validation dataset from a fraction of the runners

(25.7%) who finished the race and then ran dropout

simulations at various points of the race on these runners in

the same proportion as the true runners who unfortunately

did not finish. The predicted finish times of this sample of

fake runners who drop out were then compared with the

actual finish times of these runners to assess the effectiveness

of the statistical approaches. These predictions shown to be

relatively accurate (i.e., Mean Absolute Error of 1 min 30 s on

average) with an increased accuracy for runners who had to

abandon later. In addition, beyond the prediction of

performance, via AI, based on real data recovered during

competitions, other work (14) has highlighted the use of

supervised learning algorithms based on real training
Frontiers in Sports and Active Living 03
conditions in amateur runners to predict marathon

performance, for example.
Modelling project

Given the multifactorial aspect of performance (25–31, 51)

and the fact that performance prediction is a subject of great

interest to athletes and coaches, we could “legitimately” ask

ourselves what future prediction models might look like?

Taking into account previous work in this field of AI and the

current evolution of connected technologies such as textiles or

insoles, would the challenge then be to think of an approach,

an equation that is able to “simply” optimize a large number

of factors correlated with past data (e.g., data based on
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training program or even the start of a race), “actual” (i.e., data

obtained in real time, such as heart rate) and/or future (e.g.,

estimates based on future conditions and forecasts during a

race, such as changes in weather conditions) of running

performance by connected objects? Could we not try to

propose a multifactor equation:

Perf ¼ FactPhys � FactBiom � FactPsy � FactEnv � FactTech

where each physiological (FactPhys), biomechanical (FactBiom),

psychological (FactPsy), environmental (FactEnv) and/or

technological (FactTech) factor would be expressed through the

intermediary and preponderance of indices conducive to

performance without taking the risk of straying into

“prediction-fiction”. In this case, it would be a matter of

extracting and using data from wearable devices to identify

potential performance indices and then transform them into

significant parameters with the ultimate objective of designing

a “fair” and “accurate” modeling of running performance.

This would be an “intelligent” model capable of taking into

account a large amount of information based on physiological

factors (e.g., values of critical speed, HR, acceleration, muscle

oxygenation, body temperature, hydration rate…),

biomechanics (e.g., values of amplitude and frequency of the

stride, strength, muscle power, foot placement on the

ground…), psychological (e.g., stress indices, motivation,

psychological state or personality trait related to the challenge

of the competition), environmental (e.g., weather indices,

course profile, context of the race…) and technological (e.g.,

energy storage/return values of shoes, aerodynamic values of

textiles) in order to be able to “coach” the athlete at the

present time (“T” time), either to indicate to him/her, for

example, to accelerate, stabilize or reduce his/her running

speed according to the effort he is making and the effort he/

she will still have to make with the “ultimate” objective of

optimizing sports performance (Figure 1). To develop such a

formula, we could use, for example, multiple regression to

extract and use the relevant data in the model. However, we

should be careful about the risk of multicollinearity if one of

the explanatory variables in a model is a combination of one

or more other explanatory variables in that model, thus

distorting the coefficient estimates.
Discussion

The use of connected technologies combined with complex

algorithmic methods, such as AI, could offer new perspectives

for modeling and/or predicting running performance.

However, performance modeling based exclusively on
Frontiers in Sports and Active Living 04
connected data as well as the use of an AI method due to a

large amount of data could be relatively limited in relation to:

▪ The quantity and quality of raw data extracted. How to limit

the performance prediction bias related to the precision and/

or accuracy of connected devices (46–48)?

▪ The relevance of some data (i.e., parameters using to qualify

or define performance according to existing inter-individual

differences between runners or type of race, for example).

▪ The scientific mastery needed to make sense of the data (e.g.,

modeling procedure defining the algorithms) (52) and to

obtain valid results with respects to the varieties of

different algorithmic approaches that can be applied to the

same data set (e.g., the ratio used for the data sets of the

same size, the ratio used for training and test datasets, the

number of hidden layers or the training rate for training a

neural network, the number of k in KNN, the type of

distance in KNN…) (14, 32, 53, 54)…

Thus, while this perspective of a “connected multifactorial”

model seems to be “relatively simple” because data can easily

be made public or exploitable via databases, it may be

sufficiently complicated to model due to several different

statistical/algorithmic approaches to integrate to discriminate

significant performance factors. So, instinct or calculation?

This is the real question that seems to have to be asked before

even engaging in modelling (or even prediction) that could

tend towards fiction.
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