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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a serious
global public health threat. The evolving strains of SARS-CoV-2 have reduced the effectiveness of
vaccines. Therefore, antiviral drugs against SARS-CoV-2 are urgently needed. The main protease
(Mpro) of SARS-CoV-2 is an extremely potent target due to its pivotal role in virus replication and
low susceptibility to mutation. In the present study, a quantitative structure–activity relationship
(QSAR) study was performed to design new molecules that might have higher inhibitory activity
against SARS-CoV-2 Mpro. In this context, a set of 55 dihydrophenanthrene derivatives was used to
build two 2D-QSAR models using the Monte Carlo optimization method and the Genetic Algorithm
Multi-Linear Regression (GA-MLR) method. From the CORAL QSAR model outputs, the promoters
responsible for the increase/decrease in inhibitory activity were extracted and interpreted. The
promoters responsible for an increase in activity were added to the lead compound to design new
molecules. The GA-MLR QSAR model was used to ensure the inhibitory activity of the designed
molecules. For further validation, the designed molecules were subjected to molecular docking
analysis and molecular dynamics simulations along with an absorption, distribution, metabolism,
excretion, and toxicity (ADMET) analysis. The results of this study suggest that the newly designed
molecules have the potential to be developed as effective drugs against SARS-CoV-2.

Keywords: SARS-CoV-2; main protease; QSAR; molecular docking; molecular dynamics simulations

1. Introduction

Three years after the emergence of the COVID-19 disease caused by severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), the entire world is still suffering from the
major health and socioeconomic consequences of the disease [1]. Accordingly, significant
research efforts have been made to develop vaccines and drugs to effectively stop COVID-
19. However, SARS-CoV-2 continues to claim human lives due to frequent mutations in
its viral genome that make the new variants more transmissible and infectious, such as
B.1.1.7 (alpha), B.1.351 (beta), B.1.617.2 (delta), and B.1.1.529 (omicron) [2–5]. Therefore, the
discovery of new inhibitors that work better at different stages of SARS-CoV-2 propagation
has become a priority.

SARS-CoV-2 is an enveloped positive-stranded RNA virus that, once it enters the
cell, translates the single-stranded RNA into two large polyproteins known as pp1a and
pp1ab that mediate viral replication and propagation [6]. During viral maturation, most
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cleavage events are controlled by a nonstructural protein 5 (nsp5), also known as the
main protease (Mpro or 3CLpro), which is in charge of 11 different cleavages in the early
stages of viral replication [7]. Mpro is an attractive target due to: (i) its pivotal role in viral
replication and maturation [8]; (ii) minor mutations that have occurred in its genomic
sequence in the new variants of SARS-CoV-2 compared to other major proteins, [9] and
(iii) its inhibitors that are unlikely to be dangerous as no human proteases with similar
cleavage specificity have been identified [10]. The Mpro monomer consists of three
domains: domain I, domain II, and domain III, which include amino acid residues 8–101,
102–184, and 201–306, respectively [11]. Despite the fact that each individual monomeric
component has its own active site, the Mpro of SARS-CoV-2 is enzymatically active
only as a homodimer [11–13]. Therefore, it might be logical to block the catalytic site
(CS) and dimer interface site (DIS) to inhibit the main function of the protease and
its dimerization.

In continuation of our efforts to develop new potent Mpro inhibitors [14], in this study,
two quantitative structure–activity relationships (QSAR) were developed based on the
structural properties of dihydrophenanthrene derivatives and their inhibitory activities
against Mpro. The first model, based on Monte Carlo optimization, was used to build
SMILES-based QSAR models that provide insights into the design of new Mpro inhibitors.
The second model used the genetic algorithm multi-linear regression approach (GA-MLR)
to confirm the prediction of the inhibitory activity of the designed molecules. Since the
dihydrophenanthrene derivative could inhibit SARS-CoV-2 by targeting the CS and DIS
of the Mpro, a molecular docking study was carried out to investigate the interaction of
the designed molecules within the CS and DIS of Mpro. In addition, the most potent
designed molecules were subjected to molecular dynamics simulations in order to inves-
tigate their stability and behavior within the CS and DIS sites of Mpro. An absorption,
distribution, metabolism, excretion, and toxicity (ADMET) evaluation of these molecules
was also performed.

2. Results and Discussions
2.1. CORAL QSAR Model

Six QSAR models were built based on three random splits and two target functions:
TF1 with WIIC = 0 and TF2 with WIIC = 0.2. Three splits were created from the entire
dataset and each split was divided into four sets, as described below (for definitions
of the parameters, refer to the Materials and Methods section (Section 3) of this arti-
cle). The obtained statistical parameters for the developed SMILES-based QSAR models
show that WIIC = 0.2 increases the effect of IIC on Monte Carlo optimization. Table 1
displays the computed statistical parameters for all splits. Figure 1 depicts the experimental
pIC50 values compared to the estimated values for the three splits. Table 1 clearly illustrates
that all models are statistically reliable and fulfill the criteria set by Tropsha et al. [15] and
Ojha et al. [16]. All data points of the three splits are in the applicability domain as shown
in the Supplementary Materials in Table S1. The QSAR model with a higher R2 value for
the validation set and a higher IIC value for the calibration set was selected as the leading
model. Therefore, the QSAR model of split 2 had the highest R2 value of 0.9203 for the
validation set and a higher IIC value of 0.9277 for the calibration set. The numerical values
of the various parameters for the validation set of split 2 were Q2 = 0.8508, CCC = 0.9157,
r2m = 0.8825, and ∆r2m = 0.0647. The split 2 model is as follows in Equation (1):

pIC50 = 1.7915330 (±0.04504500) + 0.0672532 (±0.0010114)×DCW(3, 17) (1)
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Table 1. Statistical parameters of built QSAR models and their corresponding equations.

Split TF Set n R2 CCC IIC Q2 Q2
F1 Q2

F2 Q2
F3 Rm2

av ∆Rm2 Crp2 Equation

1

TF1

AT 19 0.8031 0.8908 0.6518 0.7605 0.7855
pIC50 = 1.8172593 (+− 0.0736101) + 0.0553060

(+− 0.0014479) × DCW(1,1)
PT 20 0.7237 0.8152 0.4176 0.6364 0.6964
Cal 8 0.8085 0.8965 0.7468 0.5238 0.8468 0.7854 0.8854 0.7270 0.0438 0.7259
Val 8 0.7579 0.8490 0.6372 0.5803 0.6545 0.1869

TF2

AT 19 0.8145 0.8978 0.8123 0.7734 0.7868
pIC50 = 2.1090187 (+− 0.0660490) + 0.0635121

(+− 0.0016442) × DCW(5,14)
PT 20 0.7510 0.8619 0.6401 0.6889 0.7309
Cal 8 0.8536 0.9182 0.9239 0.6657 0.8743 0.8239 0.9060 0.7874 0.1008 0.7687
Val 8 0.9161 0.9549 0.8433 0.8274 0.8771 0.0040

2

TF1

AT 20 0.9314 0.9645 0.6434 0.9187 0.8879
pIC50 = 2.0227798 (+− 0.0329913) + 0.0786046

(+− 0.0009506) × DCW(7,5)
PT 19 0.8821 0.9245 0.4217 0.8428 0.8595
Cal 8 0.8039 0.8857 0.6191 0.6788 0.7331 0.7329 0.7594 0.6830 0.1830 0.6787
Val 8 0.8506 0.8826 0.4703 0.7229 0.7827 0.1187

TF2

AT 20 0.9191 0.9579 0.7844 0.9023 0.9029
pIC50 = 1.7915330 (+− 0.0454500) + 0.0672532

(+− 0.0010114) × DCW(3,17)
PT 19 0.8283 0.9001 0.7511 0.7652 0.8001
Cal 8 0.8612 0.9251 0.9277 0.7845 0.8374 0.8373 0.8535 0.7932 0.1285 0.8266
Val 8 0.9203 0.9157 0.6768 0.8508 0.8825 0.0647

3

TF1

AT 19 0.7424 0.8521 0.7754 0.6545 0.7102
pIC50 = 1.9879653 (+− 0.1287947) + 0.0650533

(+− 0.0030713) × DCW(3,1)
PT 20 0.8129 0.8983 0.5442 0.7805 0.8008
Cal 9 0.9736 0.9712 0.4888 0.9615 0.9492 0.9483 0.9622 0.8647 0.0379 0.9167
Val 7 0.8589 0.9068 0.7634 0.7030 0.6779 0.1627

TF2

AT 19 0.7473 0.8554 0.7780 0.6645 0.6957
pIC50 = 2.0784826 (+− 0.1186544) + 0.0690012

(+− 0.0031186) × DCW(10,7)
PT 20 0.8210 0.9039 0.5496 0.7899 0.7929
Cal 9 0.9860 0.9864 0.9925 0.9700 0.9758 0.9754 0.9820 0.8849 0.0241 0.8731
Val 7 0.8728 0.9197 0.7740 0.7444 0.7169 0.1417
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2.2. GA-MLR QSAR Model

The GA-MLR method was applied to the training set and then evaluated to the test
set using the six selected descriptors that contribute to the inhibitory activity (Table 2). The
GA-MLR model Equation (2) and its statistical parameters are presented below:

pIC50 = 0.5833 × Eig09_AEA(dm) − 0.018 × P_VSA_5 − 0.1949 × s3_numSharedNeighbors+
1.3785 × s3_relPathLength_2 + 5.0014 × SpMin2_Bh(m) − 0.543 × GATS5m;

(2)

Ntr = 39; R2 = 0.9288; RMSEtr = 0.1504; Q2
loo = 0.8902; R2

ext = 0.8558; Q2
F1 = 0.8554; Q2

F2 = 0.8554;
Q2

F3 = 0.8783; CCCext = 0.9228; s = 0.1660, where Ntr is the total samples in training and CCC
represents the concordance correlation coefficient. Q2

F1, Q2
F2 and Q2

F3 are external validation
criteria.

The performance of the aforementioned parameters of the established GA-MLR model
passes the OECD’s standard validation criteria. Furthermore, Figure 2a depicts the experi-
mental pIC50 endpoints and the predicted endpoints by the constructed GA-MLR model,
which demonstrates a good correlation between the studied activity and the six selected
descriptors. The AD is used to analyze the space of the leading model in order to further
validate the generated model. The AD was carried out using the leverage approach, as
seen in the Williams plot in Figure 2b. The dashed lines represent the cutoff value of ±3
standard deviations, while the caution line for the X outlier (h*) is 0.538. All molecules in
William’s plot fall within the AD, with the exception of one molecule.
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Table 2. Molecular descriptors and their description.

Molecular Descriptor Description

Eig09_AEA(dm) Eigenvalue n. 9 from augmented edge adjacency matrix weighted by dipole moment
P_VSA_MR_5 P_VSA-like on Molar Refractivity, bin 5
s3_numSharedNeighbors Number of shared neighbours in substituent 3 with other substituents
s3_relPathLength_2 Maximum path length of the substituent 3 normed by s3_size
SpMin2_Bh(m) Smallest eigenvalue n. 2 of Burden matrix weighted by mass
GATS5m Geary autocorrelation of lag 5 weighted by mass
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2.3. Mechanistic Interpretation

A mechanistic interpretation is an essential component of the OECD. These models
can be used to identify and evaluate the molecular properties that are responsible for
increasing and decreasing an endpoint value. Multiple Monte Carlo optimization runs can
be used to determine the mechanistic interpretation of the CORAL model. The chemical
characteristics derived from the SMILES attributes with positive CWs are found to be
promoters of an increase in the pIC50 value, whereas the SMILES attributes with negative
CWs are shown to be promoters of a decrease in the pIC50 value in three independent
Monte Carlo optimization runs. SMILES attributes containing both positive and negative
CWs are undefined. Table 3 shows the primary promoters causing an increase or decrease
in pIC50 values, along with the associated CWs, during three separate runs of the developed
QSAR model for split 2.

Based on the findings listed in Table 3, the increase promoters were used and intro-
duced into the lead compound (49), which has the highest pIC50 value, while the decrease
promoters were avoided. The propagation promoters were examined at three distinct sites
in the lead compound to design novel Mpro inhibitors (Figure 3). All the newly developed
compounds, along with their chemical structures and the calculated pIC50 values by the two
models, are listed in Table S2. The CORAL model predicted a pIC50 range of 5.82–6.44 for
all the newly developed compounds. The GA-MLR QSAR model confirmed the inhibitory
activity of the newly developed compounds, with the exception of 49v, which exhibited a
pIC50 value slightly lower than the one of the lead compound 49.



Pharmaceuticals 2023, 16, 608 6 of 20

Table 3. Promoters of increase and decrease of pIC50 endpoint value from split 2 and their description.

CWs
Probe 1

CWs
Probe 2

CWs
Probe 3 NAT

a NPT
b NCal

c Defect
[SAk] d Comment

Promoters of increase
(........... 0.21284 0.24591 0.24281 20 19 8 0.0000 Branching
(...O...(... 1.23889 1.32719 1.06767 20 19 8 0.0000 Two-sided branching of oxygen
++++N—
O=== 0.92838 1.33202 1.79720 20 19 8 0.0000 Presence of nitrogen with oxygen

1........... 0.30243 0.03065 0.22419 20 19 8 0.0000 Presence of one ring
C........... 0.01768 0.10610 0.24270 20 19 8 0.0000 Presence of sp3 carbon
c...(....... 0.10123 0.12192 0.30233 20 19 8 0.0000 Sp2 carbon with branching
c...(...c... 0.14109 0.27861 0.30707 20 19 8 0.0000 Branching between two sp2 carbons
c........... 0.57756 0.61985 0.68283 20 19 8 0.0000 Presence of a sp2 carbon

c...2....... 0.03199 0.01794 0.13095 20 19 8 0.0000 Presence of at least two aromatic
rings/Presence of sp2 carbon with two rings

c...2...c... 0.64083 0.33025 0.27204 20 19 8 0.0000 Aromatic ring surrounded by two sp2 carbons
c...c...(... 0.45761 0.46821 0.64020 20 19 8 0.0000 Presence of two sp2 carbons with branching
c...c....... 0.09429 0.44519 0.11101 20 19 8 0.0000 Presence of two sp2 carbons
c...c...c... 0.28956 0.77633 0.66046 20 19 8 0.0000 Presence of three sp2carbons
C...C...(... 0.40471 0.84999 1.11520 19 19 8 0.0019 Presence of two sp3 carbons with branching

Promoters of decrease
O........... −0.96058 −1.30101 −1.49847 20 19 8 0.0000 Presence of oxygen
n........ . . . −1.27893 −1.65511 −1.62009 20 19 8 0.0000 Presence of sp2 nitrogen
n...c....... −0.11779 −0.15247 −0.22729 20 19 7 0.0046 Presence of sp2 nitrogen with sp2 carbon
= . . . . . . . . . . −0.52134 −0.04031 −0.07066 15 19 7 0.0057 Presence of double covalent bond
c...C....... −0.28402 −0.70453 −0.44302 9 12 4 0.0038 Combination of sp2 carbon and sp3 carbon
c...(...C... −0.24438 −0.23144 −0.63654 8 12 4 0.0083 Branching between sp2 carbon and sp3 carbon
C...O...C... −0.19900 −0.49944 −0.58811 7 7 3 0.0025 Sp3 oxygen surrounded by two sp3 carbons

NAT
a, NPT

b, and NCal
c represent the number of SMILES (samples) in AT, PT, and Cal sets, respectively, that

comprise a particular attribute (SAk). Defect [SAk] d is calculated as the difference between the probability of SAk
in the training and calibration sets divided by the total number of SAk in the training and calibration sets.
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2.4. Molecular Docking Analysis

To further validate the design strategy, a molecular docking approach was performed
to investigate the ligand–protein interactions between the newly designed compounds
with the reference lead compound (49) and the SARS-CoV-2 Mpro. The lead compound
inhibits SARS-CoV-2 Mpro via mixed inhibition, which means that it could bind to the CS
and DIS of the Mpro. All designed molecules were first docked to the catalytic site of Mpro.
Then, the best three molecules bound to the CS were further docked to the DIS of Mpro.

2.4.1. Molecular Docking within the CS of Mpro

To validate our docking protocol, a re-docking analysis of the co-crystallized ligand
(3WL) with 6M2N was performed. The RMSD between the experimental and predicted
poses of 3WL was determined to be 0.79 Å (Figure S1). This result shows that the dock-
ing protocol is appropriate for reproducing native poses (<2 Å). After validation of the
parameters, a docking study was performed for all compounds against the Mpro protein.
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The binding affinity estimations are shown in Table S2. It was found that the binding
affinity values of the designed molecules (except 49c and 49k) were higher compared to
that of the compound 49 (−11.47 Kcal/mol) within the CS. The 2D representation of the
best compounds (49n, 49p, 49x) bound with the CS of Mpro is shown in Figure 4. Their
binding affinity values and interaction details are given in Table 4 and Table S3, respec-
tively. The analysis of docking results shows that the lead compound 49 and the designed
compound 49x interacted with some important residues of the CS via five hydrogen bonds
(one hydrogen bond with CYS145), nine hydrophobic (two of them with HIS41) and two
pi–sulfur interactions. Compound 49n was stabilized by the formation of six hydrogen
bonds in which two hydrogen bonds were observed with CYS145, as well as two pi–sulfur
interactions and seven hydrophobic interactions, where one of them interacted with HIS41.
Compound 49p interacted by four hydrogen bonds (two of them with CYS145), and eight
hydrophobic (two of them formed with HIS41), along with two pi–sulfur and one pi–lone
pair contacts. Analysis of the non-covalent interactions between the most potent designed
molecules within the CS shows that they interact with important key binding residues,
specifically the catalytic dyad (HIS41 and CYS145); thus, they can serve as important
protease inhibitors.

Table 4. The newly designed compounds and their predicted pIC50 using the Monte Carlo optimiza-
tion and the GA-MLR models.

Binding Affinity (Kcal/mol)

Compounds Chemical Structure Catalytic Site Dimer Interface Site

49 (ref)
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2.4.2. Molecular Docking within the DIS of Mpro

After selecting the three best compounds for catalytic site inhibition, we performed
a docking study of these compounds within the DIS of Mpro. The monomeric structure
(6M2Q) was used as a receptor to avoid the structural changes that may occur in the dimeric
structure of Mpro. The binding affinity and 2D representation of the ligand–protein inter-
actions of the three compounds with the DIS of SARS-CoV-2 Mpro are shown in Table 4
and Figure 5, respectively. The interaction details are represented in Table S4. Compound
49 was stabilized within the DIS by two hydrogen bonds with Val125 and ARG4, one
pi–sulfur interaction, one electrostatic interaction with LYS5, and seven hydrophobic inter-
actions where five of them interacted with ARG4 and LYS5. The binding affinity values of
−9.18, −9.95, and −9.06 Kcal/mol for compounds 49n, 49p, and 49x, respectively, show
that they bind better in the DIS than the lead compound 49 (−8.65 Kcal/mol). Com-
pound 49n was stabilized using three hydrogen bonds with VAL125, LYS5, and ARG4, one
electrostatic interaction with LYS5, and one pi–sulfur interaction, along with five of nine
hydrophobic interactions seen to be formed with ARG4 and LYS5. The interaction with
compound 49p was found to be stabilized by forming two hydrogen bonds with VAL125
and ARG4, one pi–sulfur interaction, one electrostatic interaction with LYS5, and eight
hydrophobic interactions (five of them interacting with ARG4 and LYS5). Furthermore,
compound 49x was stabilized by six hydrogen binding interactions where five of them
interacted with LYS5, ARG4, and GLU290, and four out of eight hydrophobic interactions
were seen to be formed with ARG4 and LYS5, plus one pi–lone pair interaction with LYS5
and one electrostatic interaction with GLU290. Overall, the non-covalent interactions of
the three compounds within the DIS of Mpro demonstrate that the compounds interacted
with one of the important residues (ARG4, LYS5, and GLU290), which have been proposed
to be involved in the dimerization of Mpro. This could be a potential strategy to disrupt
the stability of the dimer interface and to prevent the formation of the dimeric structure
of Mpro.
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2.5. Molecular Dynamics Simulations (MDs) of Top-Three Designed Molecules

Molecular dynamics simulations (MDs) were performed to evaluate the conforma-
tional stability of ligand–protein complexes and the binding ability of ligands. In this study,
the metrics RMSD, RMSF, and Rg were calculated. RMSD is a metric used to measure the
deviation of a protein’s backbone from its initial conformation to its final conformation.
The amount of deviation observed during a simulation is used to determine the stability of
the protein with respect to its structural conformation. A protein that maintains a stable
structure will have minimal deviation in its backbone, while a protein with a less stable
structure will have greater deviation. RMSF analysis is used to identify the flexible regions
of protein–ligand complexes. In proteins, regions such as loops, turns, and coils that are less
organized have higher RMSF values, while more structured regions such as alpha helices
and beta sheets have lower RMS fluctuations. The Rg is a measure of the compactness
of the protein structure, which is determined by comparing the Rg values of the protein
before and after the ligand binding.

2.5.1. MDs of the Top-Three Designed Molecules within the CS of Mpro

Analysis of the MDs results (Figure 6, Table 5) shows that the overall average RMSD
values of 6M2N-apo, 6M2N-49, 6M2N-49n, 6M2N-49p, and 6M2N-49x are 0.220, 0.191,
0.221, 0.152, and 0.241 nm, respectively. The lowest average RMSD value indicates that
6M2N-49p exhibits greater stability compared to Mpro bound to compound 49. On the
other hand, the higher RMSD values indicate that 6M2N-49n and 6M2N-49x may have less
stability compared to 6M2N-49p and 6M2N-49. Furthermore, the RMSF analysis of the
complexes and the apo form of Mpro were computed against C-alpha atoms throughout
the entire simulation. For the analysis of the three compounds binding to the Mpro, the
RMSF values of the Mpro bound to compound 49 were used as a baseline for evaluating
the flexibility of the designed compounds. The overall average RMSF value for 6M2N-apo,
6M2N-49, 6M2N-49n, 6M2N-49p, and 6M2N-49x was found to be 0.115, 0.113, 0.131, 0.092,
and 0.103 nm, respectively. The 6M2N-49p complex confirms the RMSD results as it has
the lowest RMSF compared to all systems. The 6M2N-49x complex showed a lower RMSF
than the 6M2N-49 complex, suggesting that 49x, like 49p, could act as a potential inhibitor
of Mpro at its catalytic site. In addition, the Rg plot for 6M2N-apo, 6M2N-49, 6M2N-49n,
6M2N-49p, and 6M2N-49x gave average Rg values of 2.23, 2.209, 2.231, 2.213, and 2.203 nm,
respectively. The 6M2N-49x and 6M2N-49p complexes showed similar or slightly lower Rg
values compared to the Mpro bound to compound 49, indicating that these compounds are
more tightly packed.
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Table 5. The calculated average parameters for all the systems throughout 100 ns MD simulation run.

Systems 6M2N-Apo 6M2N-49 6M2N-49n 6M2N-49p 6M2N-49x

RMSD (nm) 0.220 0.191 0.221 0.152 0.241
RMSF (nm) 0.115 0.113 0.131 0.092 0.103
Rg (nm) 2.223 2.209 2.231 2.213 2.203

Finally, we performed the MM/GBSA analysis to calculate the interaction energies of
the complexes for the entire MD trajectory. The results are shown in Table 6. The binding
free energies for 6M2N-49n, 6M2N-49p, and 6M2N-49x are −19.63, −19.77, and −30.3 kcal
mol-1, respectively, indicating higher binding affinity compared to the reference compound.

Table 6. Detailed binding free energy calculated by MM/GBSA for all complexes. All the values are
given in kcal/mol.

Systems 6M2N-49 6M2N-49n 6M2N-49p 6M2N-49x

∆Evdw −31.98 −33.54 −40.95 −51.68
∆Eele −11.93 −8.38 −16.3 −18.1
∆EGB 31.1 26.48 42.76 45.97
∆Esurf −4.26 −4.19 −5.28 −6.5
∆Ggas −43.91 −41.92 −57.25 −69.78
∆Gsolv 26.84 22.29 37.48 39.48
∆total −17.07 −19.63 −19.77 −30.3

2.5.2. MDs of the Top-Three Designed Molecules within the DIS of Mpro

MDs were performed to investigate the stability and conformational changes of
the monomeric form of Mpro (6M2Q-apo) and the ligand–protein complexes 6M2Q-49,
6M2Q-49n, 6M2Q-49p, and 6M2Q-49x when the compounds were bound to the DIS of
Mpro. After visualizing the dynamics of the compounds, we found that the reference
compound 49 and 49x left their binding site after 50 ns and 20 ns, respectively. In contrast,
49n and 49p remain bound throughout the simulation. Following these results, we present
the RMSD, RMSF, and Rg plots for 6M2Q-apo, 6M2Q-49n, and 6M2Q-49p in Figure 7 and
their overall average values in Table 7. The overall average RMSD values of 6M2Q-apo,
6M2Q-49n, and 6M2Q-49p were 0.198, 0.176, and 0.178 nm, respectively. Both 6M2Q-49n,
and 6M2Q-49p showed lower RMSD values compared to 6M2Q-apo, suggesting greater
stability of the ligand-Mpro complexes than Mpro-apo. In addition, RMSF analysis shows
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that the fluctuations were smaller than for the apo form of Mpro (RMSFavg = 0.116 nm)
with average RMSF values of 0.087 nm and 0.102 nm for 6M2Q-49n and 6M2Q-49p, respec-
tively. Furthermore, the Rg values for the ligand–protein complexes are lower than the apo
form of Mpro, indicating that the ligands are more closely packed. These findings support
the RMSD and RMSF results.
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Table 7. The calculated average parameters for all the systems after 100 ns MD simulation run.

Systems 6M2Q-Apo 6M2Q-49n 6M2Q-49p

RMSD (nm) 0.198 0.176 0.178
RMSF (nm) 0.116 0.087 0.102
Rg (nm) 2.194 2.190 2.183

Considering all MD simulation results for the complexes with Mpro, 49n and 49p
could lead to potentially higher activity because they have strong binding to both sites (CS
and DIS) of Mpro, whereas 49x is more stable when bounded to the CS.

2.6. Pharmacokinetic and Toxicity Predictions

The results of the ADMET analysis for the reference and three designed compounds
were presented in Table 8. The human intestinal absorption (HIA) values reveal that these
compounds have high absorption in the intestine, which makes them suitable for oral
administration. With moderate predicted permeability through the blood-brain barrier
(BBB), these compounds are expected to have acceptable bioavailability in the central
nervous system. In addition, these compounds do not interfere with the normal functioning
of cytochrome P450, which reduces the risk of unexpected or undesirable drug interactions.
Moreover, the designed compounds do not exhibit toxic behavior, indicating that they may
be suitable therapeutic candidates in pre-clinical trials.

Table 8. ADMET properties for the designed compounds and the reference compound.

Compounds 49 49n 49p 49x

Pharmacokinetic and ADME properties
HIA (%) 97.575 97.494 97.534 97.873

BBB (Log BB) −0.428 −0.249 −0.214 −0.218
P-glycoprotein substrate Yes No No No

CYP2C19 inhibitor No No No No
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Table 8. Cont.

Compounds 49 49n 49p 49x

Pharmacokinetic and ADME properties
CYP2C9 inhibitor No No No No
CYP2D6 inhibitor No No No No
CYP3A4 inhibitor No No No No

Toxicological properties
Mutagenic No risk No risk No risk No risk

Tumorigenic No risk No risk No risk No risk
Irritant No risk No risk No risk No risk

Reproductive effect No risk No risk No risk No risk

3. Materials and Methods
3.1. Data Collection, Molecular Structures Preparation and Molecular Descriptor Calculation

For this study, the 2D structures of all 55 dihydrophenanthrene derivatives, collected
from the published work of Jian-Wei Zhang & al [17], were sketched using ACD/ChemSketch
software and converted to 3D structures using ChemDraw 16.0 software. For geometry op-
timization and partial charge assignment, the MMFF94 force field was employed with the
steepest descent as an algorithm and with 1000 as the number of steps used for optimization.
Then, the geometries were optimized using the AM1 method in the gas phase implemented
in the Gaussian 09 software [18]. Frequency analysis was checked to investigate the energy
minima of the optimized derivatives. The optimized molecular structures were converted
into Simplified Molecular Input Line Entry System (SMILES) codes for the modeling process
of the CORAL model. To build the GA-MLR model, alvaDesc software (version 1.0.8) was
used to calculate the molecular descriptors using the optimized 3D structures [19]. To avoid
multicollinear variables in the QSAR model, the number of generated variables was reduced
by eliminating descriptors that had a constant value of over 95%, and by keeping only one of
the descriptor pairs that possessed a correlation coefficient higher than 0.9. The experimental
data value of each molecule (half-maximal inhibitory concentration, IC50) was converted into
the form of a logarithm (−log IC50). The molecular structures and their corresponding IC50
data are listed in Table S5, and their SMILES notation and converted pIC50 are available in
Table S6.

3.2. SMILES-Based QSAR Model Building

For QSAR modeling using CORAL 2019 software [20], the entire dataset (55 deriva-
tives) was randomly divided into three splits. Each split consisted of 4 sets: active training
(AT, 35%), passive training (PT, 35%), calibration (Cal, 15%), and validation (Val, 15%). Each
set has a specific role in the development of the QSAR model, which is well explained in
the literature [21–23]. The AT set is used to develop the model and generate correlation
weights. These weights are then used to compute the descriptors for all the compounds
involved in the modeling process. The PT set is used to evaluate the robustness of the
model for compounds not belonging to those used to construct the model. The Cal set is
used to detect the onset of overfitting. The Val set provides an independent evaluation of
the statistical quality of the model using data for compounds that were not included in the
model development and optimization. The distribution and identity level of compounds in
three splits are shown in Table 9.
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Table 9. Percentage of the identity of the three splits.

Split 1 (%) Split 2 (%) Split 3 (%)

Set Total AT PT Cal Val Total AT PT Cal Val Total AT PT Cal Val

Split 1 (%) 100 100 100 100 100 25.5 25.6 35.9 0.0 25.0 32.7 36.8 35.0 50.0 0.0
Split 2 (%) 100 100 100 100 100 30.9 35.9 41.0 12.5 12.5
Split 3 (%) 100 100 100 100 100

The development of QSAR models based on SMILES notation uses the optimal de-
scriptors Equation (3).

SMILESDCW(T, Nepoch) = ∑ CW(Sk) + ∑ CW(SSk) + ∑ CW(SSSk) + CW(PAIR) + CW(HARD) + CW(Cmax) + CW(Omax) + CW(Nmax) (3)

SMILESDCW (T, Nepoch) combines SMILES-based attributes associated with a correla-
tion weight (CW). T and Nepoch are the thresholds and the number of epochs calculated by
the Monte Carlo optimization method in the course of model building [24]. The compre-
hensive explanation of the SMILES attributes is provided in Table 10.

Table 10. The detailed description of SMILES attributes.

SMILES Attributes Description

Sk One symbol or two symbols that cannot be examined separately
SSk Combination of two SMILES-atomes

SSSk Combination of three SMILES-atomes
PAIR Alliance of two descriptors NOSP a and BOND b

HARD Existence of some chemical element
Cmax Number of rings
Omax Number of oxygen atoms
Nmax Number of nitrogen atoms

NOSP a descriptors are the structural features showing the presence or absence of nitrogen, oxygen, sulfur,
phosphorus, while the BOND b descriptors respond to the presence or absence of double, triple, or stereochemical
covalent bonds (=, #, @ or @@).

Following the calculation of all CWs, the linear regression technique was utilized to
establish QSAR models, as indicated in Equation (4).

pIC50 = C0 + C1 × SMILESDCW
(

T, Nepoch

)
(4)

where C0 is the intercept, while C1 is the slope of the regression equation.
The target functions TF1 and TF2 were used to optimize the Monte Carlo method for

QSAR modeling. The equilibrium of the correlation method was used to calculate TF1
(Equation (5)), while the index of ideality of correlation (IIC) [25] was added to TF1 to
obtain the modified target function TF2 (Equation (6)).

TF1 = RAT + RPT − |RAT − RPT | ∗ 0.1 (5)

TF2 = TF1 + IIC ∗WI IC (6)

IIC = Rset ×
min(−M AEcal , +M AEcal)

max(−M AEcal , +M AEcal)
(7)
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RAT, RPT, and Rset are the correlation coefficients between the observed pIC50 and
the predicted pIC50 for the active training set, the passive training set, and for a given set,
respectively. The mean absolute error (MAE) is determined as follows:

+M AEcal =
1

N+ ∑N+

k=1|∆k|(∆k ≥ 0 ; N is the number of ∆k ≥ 0) (8)

−M AEcal =
1

N− ∑N−

k=1|∆k|(∆k < 0 ; N is the number of ∆k < 0 ) (9)

To build robust QSAR models, the optimal threshold (T*) and number of epochs (N*)
were calculated by analyzing the best statistical parameters for the calibration set. In the
search for the best T* and N*, the ranges from 1 to 10 for the threshold and from 1 to
30 for the Nepoch were used for the optimization. Three optimization probes were used.
The weight of IIC (WIIC) is an empirical coefficient; in this study, the WIIC = 0 for TF1 and
WIIC = 0.2 for TF2.

3.3. GA-MLR QSAR Model Building

To initiate QSAR analysis, the initial stage is to select the most appropriate descriptors
from the complete set of computed ones. For this purpose, alvaDesc software was used to
compute 5666 molecular descriptors, and only 643 descriptors were filtered out based on
the criteria mentioned above (Section 2.1). Then, a stepwise MLR method was performed
using SPSS software to select the most relevant descriptors [26]. Finally, 6 molecular
descriptors were kept. Using these selected descriptors, the MLR method established
a linear relationship between the pIC50 endpoints of the molecules and their molecular
descriptors by applying the ordinary least squares (OLS) algorithm implemented in the
QSARINS software [27,28]. The data set was randomly divided into a training set (70%,
39 molecules) and a test set (30%, 16 molecules). The GA-MLR models were created with
standard parameters except for subsets from 1 to 5, maximum generation of 10,000, and
mutation probability of 0.05.

3.4. QSAR Models Validation

The validation step in QSAR is critical for evaluating the accuracy of the model
in predicting the activity of new compounds. This step is critical for determining the
robustness, reliability, and predictability of the QSAR model. There are four steps to validate
the constructed model, including internal validation or cross-validation using the training
data set, Y-randomization, external validation using the test data set, and evaluation of
the applicability domain (AD) [29]. The validation steps and criteria of the GA-MLR and
CORAL QSAR models are well explained in our previous articles [14,23,30,31].

3.5. Applicability Domain

The applicability domain (AD) resulting from the training data of a given in silico
model was proposed by the Organization for Economic Co-operation and Development
(OECD) guidelines [32]. AD can be used to assess the predictability of a created QSAR
model for molecules that were not considered in the development of the model. AD is
important to determine whether the created QSAR model interpolates (makes correct
predictions) or extrapolates (makes less reliable predictions). Outliers are molecules that
exist outside of the AD.

In the case of the SMILES-based QSAR, the statistical defects of SMILES are the
guiding criteria for the definition of AD. The statistical defect (D) for a given molecule is the
sum of the statistical defects, d(A), of all the attributes accessible in the SMILES notation,
Equation (10).

D = defect(SMILES) = ∑NA
k=1 d(A) = ∑NA

k=1 d(

∣∣P(A)− P′(A)
∣∣

N(A)−N′(A)
(10)
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Here, P(A) and P′(A) represent the probabilities of the attributes (A) in the training set
and calibration set, correspondingly, while N(A) and N’(A) indicate the frequencies of the
attribute (A) occurring in the training set and calibration set, respectively.

A molecule is classified as an outlier if D > 2* D, while a molecule is in the AD if
D < 2*D, where D is the estimated average for the AT, PT, and Cal sets [33].

The William plot of standardized residuals versus leverage was used to represent the
AD in the GA-MLR model. Reliable model predictions have leverage values that are within
±3 standard deviations of the critical leverage and less than the warning leverage value
h*. The molecules that fall outside the horizontal reference lines of the graph are outliers,
while the influential molecules are those with h > h* [34].

3.6. Molecular Docking Study

In the current study, molecular docking was used to investigate the conformational
patterns and ligand–protein interactions of the designed molecules within the CS and DIS
sites of the SARS-CoV-2 Mpro. Two 3D crystallographic structures of the Mpro protein
were downloaded from the Protein Data Bank (PDB) of the Research Collaboratory for
Structural Biology (RCSB; https://www.rcsb.org/, accessed on 10 March 2023) with the
PDB ID codes: 6M2N and 6M2Q [35]. The dimeric structure (6M2N) was used as a re-
ceptor molecule to explore the preferred conformation pose of the designed molecules
in its active binding site, while the monomeric structure (6M2Q) was used to investigate
the best conformational pose of the designed molecules in its DIS. Prior to the docking
process, the two protein structures were prepared by removing water and heteroatom
molecules, adding polar hydrogens and Gasteiger charges, and saving them in the pdbqt
format with the assistance of AutodockTools. Using the same program, the 3WL, the lead
compound 49, and the designed molecules were produced and stored in the pdbqt format.
The important residues within the CS and DIS sites were defined according to the litera-
ture in Table 11 [36,37]. Molecular docking simulations were performed using AutoDock
4.2 with the following parameters: (i) xyz coordinates of −33.162, −65.074, 41.434 and grid
box dimensions of 40 × 0 × 40 for the CS, and (ii) xyz coordinates of 112.000, −17.078,
46.750 and grid box dimensions of 80×80×100 for the DIS. A grid spacing of 0.375 was
set for both of the grid boxes. The Lamarckian Genetic Algorithm was used to generate
100 protein–ligand binding conformations for each molecule, with a maximum of 2,500,000 en-
ergy evaluations. The most reasonable binding configurations were then subjected to an
evaluation that considered both ligand–receptor interactions and binding affinity. Discovery
studio visualizer [38] and Pymol software [39] were used to analyze the docking outputs.

Table 11. List of key residues of SARS-CoV-2 Mpro.

Role in the SARS-CoV-2 Mpro Residues

Substrate binding HIS41, MET49, GLY143, SER144, HIS163, HIS164, MET165, GLU166, LEU167, ASN187,
ARG188, GLN189, THR190, ALA191, GLN192

Dimerization ARG4, SER10, GLY11, GLU14, ASN28, SER139, PHE140, SER147, GLU290, ARG298
Catalytic dyad HIS41, CYS145

3.7. Molecular Dynamics Simulation Details

The newly designed compounds which showed stronger binding to the CS and DIS
were subjected to all-atom molecular dynamics using the GROMACS 2020.6 (Groningen
Machine for Chemical Simulation) software [40,41]. Before running the MD simulation,
the CHARMM-GUI web server [42] was used to generate the initial input parameters
implementing the CHARMM36 force field [43]. Based on a rectangular grid box, each
complex was solvated within TIP3P water and the necessary counterions (Na+,Cl-) were
added to maintain a salt concentration of 0.15 M through the Monte Carlo ion displacement.
Energy minimization of each system was performed using the steepest descent algorithm
with a maximum of 50,000 steps and a maximum force of 10.0 KJ/mol. The temperature

https://www.rcsb.org/
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and atmospheric pressure were set to 300 K and 1.01325 bar, respectively. Each system
was equilibrated using canonical (NVT) and isothermal-isobaric (NPT) ensembles. After
that, the MD simulation was performed for 100 ns. Based on the dynamics trajectory
results, the root mean square deviation (RMSD), the radius of gyration (Rg), and root mean
square flexibility (RMSF) were used to evaluate the structural stability of the designed
molecules within the CS and DIS of Mpro. The obtained data were plotted using Xmgrace
software [44].

3.8. MM-GBSA

The calculation of the binding free energies of protein–ligand complexes was estimated
by the Molecular Mechanics Generalized Born Surface Area (MMGBSA) method using
the gmx-mmgbsa package [45]. The binding free energy is calculated according to the
following equations:

∆Gbind = ∆Gcomplex −
[
∆Gprotein + ∆Gligand

]
(11)

where the total free energy of the complex is represented by ∆Gcomplex, while the energies
of the isolated protein and ligand are represented by ∆Gprotein and ∆Gligand, respectively;

∆Gbind = ∆Egas + ∆Gsol = ∆Evdw + ∆Eele + ∆Gpolar + ∆Gnonpolar (12)

where ∆Egas is the average potential energy of molecular mechanics in a vacuum, which
includes both van der Waals interactions (∆Evdw) and electrostatic interactions (∆Eele).
∆Gsolv is the contribution to the solvation-free energy that is made up of the polar solvation
energy (∆Gpolar) and the nonpolar solvation energy (∆Gnonpolar).

3.9. ADMET Study

The absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis
plays a critical role in drug discovery and development. Based on the ADMET results,
we could predict the efficacy and safety of the potential hit compound in the early stages
of drug development. In this regard, the ADMET predictions for the compounds were
performed using the pkCSM server [46] for pharmacokinetic properties and the Osiris
property explorer software [47] for toxicological properties.

4. Conclusions

The aim of this study was to find new inhibitors of SARS-CoV-2 replication by targeting
the Mpro, a crucial protein involved in replicase polyprotein processing. To achieve this
goal, we developed two QSAR models based on the structural properties of a series of
dihydrophenanthrene derivatives that have shown potential inhibitory activity against
Mpro. SMILES-based and GA-MLR QSAR models were built to provide insights in the
design of novel potent Mpro inhibitors. Molecular docking and molecular dynamics
simulations were further used as computational validation of the designed compounds.
Overall, it has been shown that three compounds (49n, 49p, and 49x) exhibited a good
inhibitory activity against Mpro. Also, they showed an important conformational and
structural stability and a favorable binding profile. In addition, these drug candidates
were found to be non-toxic and had acceptable pharmacological properties. By targeting
the catalytic and dimer interface sites of Mpro, this suggests that these compounds have
the potential to be developed as effective drugs against SARS-CoV-2. The combination
of computational methods used in this study enabled the identification of new drug
candidates, which can now be further evaluated for their efficacy and safety. Future
studies could explore the feasibility of in vitro experiments to confirm and strengthen our
computational modeling results. Nonetheless, the computational methods used in this
study demonstrate their potential utility in accelerating drug discovery and directing future
research directions against SARS-CoV-2.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16040608/s1. Figure S1: Superimposed view of native pose of
co-crystallized ligand (black) with its X-ray pose (red) inside the CS of Mpro; Table S1: Split distribution,
experimental pIC50 and calculated pIC50 for the three splits using TF2 (with WIIC = 0.2); Table S2:
Chemical structures of designed Mpro inhibitors; Table S3: Details of ligand–protein interactions of
designed compounds within the CS of Mpro; Table S4: Details of ligand–protein interactions of designed
compounds within the DIS of Mpro; Table S5: Chemical structure of the 55 dihydrophenanthrene
derivatives and their corresponding IC50; Table S6: SMILES notation of the 55 dihydrophenanthrene
derivatives and their pIC50.
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