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Abstract: Potentially toxic plasticizers are commonly added to polyvinyl chloride medical devices for
transfusion in order to improve their flexibility and workability. As the plasticizers are not chemically
bonded to the PVC, they can be released into labile blood products (LBPs) during storage. Ideally,
LBPs would be used in laboratory studies of plasticizer migration from the medical device. However,
short supply (i.e., limited stocks of human blood in collection centres) has prompted the development
of specific simulants for each type of LBP in the evaluation of new transfusion devices. We performed
a Delphi study with a multidisciplinary panel of 24 experts. In the first (qualitative) phase, the panel
developed consensus definitions of the specification criteria to be met by each migration simulant.
Next, we reviewed the literature on techniques for simulating the migration of plasticizers into LBPs.
A questionnaire was elaborated and sent out to the experts, and the replies were synthesized in
order to obtain a consensus. The qualitative study established specifications for each biological
matrix (whole blood, red blood cell concentrate, plasma, and platelet concentrate) and defined the
criteria required for a suitable LBP simulant. Ten criteria were suggested: physical and chemical
characteristics, opacity, form, stability, composition, ability to mimic a particular clinical situation,
ease and safety of use, a simulant–plastic interaction correlated with blood, and compatibility with
analytical methods. The questionnaire data revealed a consensus on the use of natural products (such
as pig’s blood) to mimic the four LBPs. Opinions diverged with regard to synthetic products. How-
ever, an isotonic solution and a rheological property modifier were considered to be of value in the
design of synthetic simulants. Consensus reached by the Delphi group could be used as a database
for the development of simulants used to assess the migration of plasticizers from PVC bags into LBPs.
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1. Introduction

The polymer polyvinyl chloride (PVC) is widely used in the manufacture of medical
devices and, more specifically, in blood bags for the collection, preparation, and storage
of labile blood products (LBPs). PVC’s flexibility is increased by the addition of plasticiz-
ers. However, given that the plasticizers are not chemically bonded to the PVC, they can
migrate into the LBPs [1] and thus come into contact with patients during blood transfu-
sions. At present, the most widely used plasticizer is di-2-ethylhexyphthalate (DEHP) [2].
This compound has been classified as toxic for reproduction (category 1B), according to the
European Union’s regulation EC 1272/2008 on the classification, labelling and packaging
of substances and mixtures. Hence, the use of DEHP has been called into question by
various national and European authorities, particularly with regard to medical devices
made available in pediatric departments, neonatal units and maternity clinics. Thus,
the European directive 2007/47/EC stipulates that any carcinogenic, mutagenic, or toxic to
reproduction (CMR) substance in category 1A or 1B may only be used with justification if
the device is intended to be used in at-risk populations. Regulation (EU) 2017/745 imposes
specific requirements on the design and manufacture of medical devices with regard to the
presence of certain dangerous substances. Accordingly, certain devices must not contain
CMR (category 1A and 1B) compounds or endocrine disrupters above a concentration
of 0.1%. This is prompting manufacturers to replace DEHP with alternative plasticizers
that are supposedly less risky for patients. Human blood is very useful for assessing the
migration of plasticizers from blood bags. However, low stocks of human blood in collec-
tion centres limits the availability of human blood for research and development purposes.
Furthermore, there are no guidelines on standard simulants to be used in migration testing.
Lastly, evaluations of new transfusion medical devices have to consider specific simulants
for each type of LBP.

The objectives of the present Delphi study were therefore to (i) draw up specification
criteria for plasticizer migration simulators specifically for each LBP, (ii) rank natural or
synthetic products cited in the literature and/or suggested by members of an expert panel,
and thus (iii) build a reliable consensus of opinion in the field of transfusion.

2. Materials and Methods
2.1. The Delphi Method

The Delphi method is based on structured communication between several experts
(Figure 1) [3,4]. The objective is to highlight convergences of opinion that enable a con-
sensus to be reached on well-defined subjects. Questionnaires are sent individually to
the experts in order to maintain the participants’ anonymity and ensure that replies are
independent. The Delphi method has many advantages: a remote collection of opin-
ions, limitation of the number of participants, a flexible methodology, implementation of
successive questionnaires (allowing a consensus to be reached), and facilitated feedback
during iterations.
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Figure 1. The Delphi method. LBP: labile blood product; WB: whole blood; RBC: red blood cell con-
centrate; P: plasma; PC: platelet concentrate. 
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Blood Establishment and the Belgian Red Cross), and biological engineers for the “con-
tent” aspect. Twenty-four experts agreed to join the panel (Figure 1, step 2) whose degrees, 
functions, fields of expertise, and experience are mentioned in the Supplementary Mate-
rial section. 
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Figure 1. The Delphi method. LBP: labile blood product; WB: whole blood; RBC: red blood cell
concentrate; P: plasma; PC: platelet concentrate.

2.2. Study Design
2.2.1. Formulation of the Topic and the Working Group’s Objectives, and Selection of
the Experts

After having explained the study’s context and objectives to potential study participants
(Figure 1, step 1), we formed a multidisciplinary panel of individuals with expertise in all the
required specialities: pharmacists, chemists and materials scientists for the “container” aspect,
and haematologists, anaesthetists, blood bank experts (from the French Blood Establishment
and the Belgian Red Cross), and biological engineers for the “content” aspect. Twenty-four
experts agreed to join the panel (Figure 1, step 2) whose degrees, functions, fields of expertise,
and experience are mentioned in the Supplementary Materials Section.

2.2.2. Qualitative Study

We next set up a “nominal group” qualitative study (Figure 1, step 3), the objective
of which was to reach a consensus on the criteria that must be met by a simulant in order
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to mimic plasticizer migration into human whole blood (WB), red blood cell concentrate
(RBC), platelet concentrate (PC), and plasma (P) [4,5]. The multi-step nominal group
method makes it possible to reach a consensus on a specific theme during a half-day, face-
to-face meeting. Here, 13 of the 24 Delphi experts participated in the meeting. In the first
stage, each expert considers the questions individually and formulates possible answers.
Next, each expert chooses criteria from among those described on his/her preparatory
document. Several rounds were therefore held in order to exhaust all the criteria selected by
the experts. In the third step, similar criteria are merged, reformulated, and clarified. Lastly,
the criteria characterizing each LBP were ranked in order of importance (from a value
of 1 for the most important criterion up to a value of n for the least important criterion,
where n = the number of criteria) by each expert of the nominal group.

2.2.3. Literature Review

The literature review was carried out between March and May 2020, in parallel with
the qualitative study. The goal was to find technical solutions for use as simulants in
plasticizer migration studies (Figure 1, step 3). By applying five sets of keywords in English
(Table 1), we searched the PubMed database for full-text articles published in English
or French. No limitation was placed on the search period (i.e., all fields and no filters).
The sets of keywords were used separately first but were then combined in order to reduce
the number of publications and focus the search on the topic in question. The follow-
ing combinations were used: 1-2-3-4-5, 1-3-4-5, and 2-3-4-5. All results were reviewed,
selected, and validated by the study’s scientific advisory board. Lastly, we screened the
bibliographies of all the selected full-text publications for additional studies of human
blood simulants.

Table 1. Set of keywords (queries) used in the literature search.

List Number Keywords

1 Containers OR Bags OR Kits OR Pouch OR Packs OR Medical devices OR
Medical grade OR Blood bags system

2

Material * OR Phthalate * OR “non-DEHP” OR Plasticiz * OR
Di(2-ethylhexyl)phthalate OR (DEHP AND free) OR Polyvinylchloride OR

Ester * OR PVC OR Plasticis * OR Bis(2-ethylhexyl) phthalate OR
Di(2-ethylhexyl) phthalate OR BIS(2-ETHYLHEXYL)PHTHALATE OR

Di-2-ethylhexyl phthalate OR Polyvinyl chloride

3 Blood OR Plasma OR Platelets OR Erythrocytes OR Hematology OR
Transfusion OR Thrombocyte OR Intravenous * OR Parenteral *

4 Simulant * OR Mimic *

5 Leach * OR Extract * OR Release * OR Diffus * OR Deliv *
Note: an asterisk (*) denotes words beginning with the indicated root, and quotes denote a search for the
exact term.

2.2.4. Design and Elaboration of the Questionnaires

All the criteria defined during the nominal group meeting and all the technical solu-
tions extracted from the literature search were used to draw up the questionnaire (Figure 1,
step 4). A three-part matrix questionnaire was built: the first part assessed the relevance of
naturally derived simulants, the second assessed relevance of chemically derived compo-
nents for synthetic simulants, and the third contained an open-ended question that enabled
the experts to cite technical solutions that had not been mentioned previously. The ques-
tionnaires were tested in a pilot study, in order to identify ambiguities and improve the
phrasing, if required. The questionnaire was designed using Google Forms.

2.2.5. Distribution of the Questionnaires

All 24 experts in the Delphi group participated in the questionnaire step (Figure 1,
step 5). For each human blood product, each expert had to evaluate the relevance of various
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simulants or components of simulants from the literature and justify their choice. A link to
the questionnaire was sent to the experts by e-mail. The experts were given a deadline of
three weeks to send their reply.

2.2.6. Synthesis of the Questionnaire Results and Consensus Building

Each technical solution was assigned a value of x = 1 when it was judged to be relevant
and x = 0 when it was judged to be irrelevant (Figure 1, step 6) [6]. The overall relevance
score was calculated as follows:

Score (%) = (Σx = 1)/(Number of experts) × 100 (1)

The answers were not weighted with regard to the respondent’s field of expertise.
When a participant did not feel knowledgeable enough to answer a question, he/she could
request that the answer be discarded. Likewise, any answers that were not justified by the
respondent were excluded from the final results. A consensus scale (Table 2) was set up
to assess the degree of consensus reached on each technical solution. Higher scores and
lower scores corresponded to a greater degree of consensus on the solution’s relevance
or irrelevance, respectively. A score of between 35% and 65% corresponded to a lack
of consensus.

Table 2. Consensus scale for the relevance of identified technical solutions.

Score (%) Degree of Consensus

x ≥ 85 High degree of relevance
75 ≤ x ≤ 84 Moderate degree of relevance
65 ≤ x ≤ 74 Low degree of relevance
35 < x < 65 Lack of consensus
26 ≤ x ≤ 35 Low degree of irrelevance
16 ≤ x ≤ 25 Moderate degree of irrelevance

x ≤ 15 High degree of irrelevance

3. Results and Discussion
3.1. The Qualitative Study

Firstly, the nominal group meeting’s topic, objectives, and methodology were pre-
sented to the 13 participating experts. After each person had considered the issues indi-
vidually, the experts suggested several criteria for characterization of the most suitable
simulants in plasticizer migration studies. In total, 52, 46, 42, and 48 criteria were sug-
gested for WB, RBC, plasma, and PC, respectively. Although the criteria were formulated
differently, it was possible to group, rephrase, and/or delete some criteria by consen-
sus; this reduced the number of criteria and facilitated their ranking. Hence, there were
10 reformulated criteria, each for WB and RBC, and nine each for plasma and PC (Table 3).

The reformulated criteria characterizing each LBP were then scored for relevance
(with a value of 1 for the most relevant criterion, up to 9 or 10 (depending on the LBP)
for the most irrelevant criterion) by each expert in the nominal group. The relevance
scores for each LBP were represented as box plots (Figure 2). Whatever the LBP, it can
be noted that all the experts considered the “chemical characteristics” criterion to be
relevant (median value: 2–3) and the “capacity to mimic a clinical situation” criterion to
be less relevant (median value = 8–9). The degree of dispersion was low, i.e., the scores’
interquartile ranges were narrow. In contrast, the participants disagreed on the relevance
of the “form”, “composition”, “ease and safety of use”, and “simulant-plastic interaction”
criteria, for which the scores’ ranges were large (e.g., a range of between 7 and 8 for
the “simulant-plastic interaction” criterion). However, by referring to the values of the
means and medians, we were able to establish a three-level classification (Table 4) for
each LBP: relevant (median ≤ 3), moderately relevant (3 < median ≤ 6), and less relevant
(median > 6).
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Table 3. Reformulated criteria suggested by the experts in the nominal group for each LBP.

Criterion Abbreviation
Labile Blood Product

WB RBC P PC

Physical characteristics (viscosity, surface tension, thermolability,
and density (centrifugation behaviour)) Physical characteristics 1

√
X X X

Physical characteristics (viscosity, surface tension, thermolability,
and density) Physical characteristics 2 X

√ √ √

Chemical characteristics (hydrophilicity, lipophilicity, pH, surface
tension, osmolarity, ionic forces, polarity, and strong/weak bond

interactions)
Chemical characteristics

√ √ √ √

Product opacity Opacity
√ √

X X

Form (size/shape of cells/particles, suspension/solution) Form
√ √ √ √

Stability during preparation, storage and use (time, temperature,
light, pressure, centrifugation, and processing of the blood product) Stability

√ √ √ √

Organic/inorganic chemical composition (sugar (glucose), proteins
(transport proteins and albumin), phospholipids, cell phase/lipid
phase ratio, absence of plasticizer, liposomes, bile acids, presence of
anticoagulant or preservative solutions in the LBP, and the presence

of substances that can clot)

Composition 1
√ √

X
√

Organic/inorganic chemical compositions (sugar (glucose),
proteins (transport proteins and albumin), phospholipids, absence

of plasticizer, liposomes, bile acids, presence of anticoagulant or
preservative solutions in the LBP, and the presence of substances

that can clot)

Composition 2 X X
√

X

Ability to mimic a particular clinical situation (hyperuricaemia,
hyperlactatemia, hyperglycemia, acidosis, hemolysis, and the

heterogeneity of patients’ blood)

Ability to mimic a
particular clinical

situation

√ √ √ √

Ease and safety of use: cost, ease of supply, ease of disposal,
inter-batch reproducibility, and ability to combine products Ease and safety of use

√ √ √ √

Blood-correlated simulant-plastic interaction: ability to dissolve in
the simulant, and structural change with plasticizers

Simulant-plastic
interaction

√ √ √ √

Compatibility with extraction and analysis method Compatibility
√ √ √ √

Number of criteria 10 10 9 9

WB: whole blood; RBC: red blood cell concentrate; P: plasma; PC: platelet concentrate;
√

: applicable; X: not applicable.

Table 4. Three-level classification of the criteria from the nominal group’s qualitative analysis.

Criteria
LBP

WB RBC P PC

Important
“Physical characteristics”

“Chemical characteristics”
“Composition”

Moderately
important

“Stability”
“Ease and safety of use”

“Simulant–plastic interaction”

“Form”
“Stability”

“Ease and safety of use”
“Simulant–plastic

interaction”

Less important

“Opacity”
“Form”

“Ability to mimic a particular clinical situation”
“Compatibility”

“Form”
“Ability to mimic a

particular clinical situation”
“Compatibility”

“Ability to mimic a
particular

clinical situation”
“Compatibility”

LPB: labile blood product; WB: whole blood; RBC: red blood cell concentrate; P: plasma; PC: platelet concentrate.
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Figure 2. Box plots of the scores obtained for each criterion related to each labile blood product, as attributed by the 
members of the nominal group. (a) Whole blood, (b) red blood cell concentrate, (c) plasma, and (d) platelet concentrate. +: 
mean value; ◆: outlier value. 
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Figure 2. Box plots of the scores obtained for each criterion related to each labile blood product,
as attributed by the members of the nominal group. (a) Whole blood, (b) red blood cell concentrate,
(c) plasma, and (d) platelet concentrate. +: mean value; �: outlier value.

Although the score obtained for each criterion differed according to the expert’s
speciality, it was possible to establish an order of importance by summing the ranking
scores given by each member of the nominal group for each LBP (Table 5). It was found that
the ranking of the criteria is identical for WB and RBC. For plasma, an inversion between
the “form” and “compatibility” criteria ranking compared to RBC and WB was observed
as well as an absence of the “opacity” criterion, which was not selected for this LBP. Except
for the opacity factor, which was not assessed, the specifications for PC are similar to those
for WB and RBC.



Biomolecules 2021, 11, 1081 8 of 17

Table 5. Ranking of the criteria for each labile blood product.

Criterion
WB RBC P PC

Ranking Score Ranking Score Ranking Score Ranking Score

Chemical characteristics 1 32 1 33 1 29 1 30
Physical characteristics 2 37 2 34 2 30 2 32

Compositions 3 39 3 40 3 42 3 42
Stability 4 59 4 51 4 61 4 54

Simulant–plastic
interaction 5 64 5 66 5 63 5 67

Ease and safety of use 6 69 6 70 6 70 6 71
Forms 7 81 7 77 8 90 7 72

Compatibility 8 82 8 79 7 77 8 81
Ability to mimic a

particular clinical situation 9 104 9 98 9 97 9 91

Opacity 10 109 10 104 - - - -

WB: whole blood; RBC: red blood cell concentrate; P: plasma; PC: platelet concentrate; -: no value.

3.2. Review of the Literature and Elaboration of Questionnaires

The literature review was performed by combining the keywords defined in Table 1.
A total of 497 publications were screened successively by title, abstract, and full text:
82 articles met all the acceptance criteria (Figure 3).
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The literature review enabled us to identify several technical solutions for simulat-
ing human blood in studies of the migration of plasticizers from medical devices [7–89].
The solutions were classified as natural versus synthetic products (Table 6). The study
questionnaire, therefore, covered the criteria that must be met by a simulant (as proposed
by the nominal group) and the technical solutions extracted from the literature review.

Table 6. Classification of technical solutions.

Technical Solution
References

Origin Suggestion

Natural

Pig’s blood [7–26]

Bovine blood [8,12,19,22,24,27–34]

Canine blood [35–37]

Equine blood [8]

Ovine blood [8]

Goat blood [37]

Rabbit blood [38]

Synthetic

Isotonic solutions: physiological saline solutions, NaCl 0.9%, etc. [8,9,12,15,19,21,25,27,34,39–45]

Lipid emulsions: parenteral nutrition products, etc. [39,46–49]

Rheological property modifiers: glycerol, gelatine, gellan gum,
cellulose and its derivatives, dextran, albumin, silicone oil,

polyacrylamide, cutting fluid, etc.
[9,12,13,26,27,30,40–45,50–86]

Desorption agents: solvents, silicone oil, etc. [45,87]

Insoluble particles: carbon fibres, nylon, polyethene and polystyrene
microspheres, polyamide particles, silicon carbides, etc. [9,12,53,55,56,58,59,62,76,78,81–84,88,89]

Surface tension reducing agents: alcohols, glycoproteins,
fatty acids, etc. [45,87]

Preservatives: copper sulfate, potassium sorbate, antifungal agents,
sodium azide, etc. [59,73]

Stabilizing agents: starch, xanthan gum, gellan gum, surfactants like
lecithin, etc. [30,45,58,62–64,84,85]

Buffer solutions: potassium phosphate, etc. [45,86]

Trace elements: potassium chloride, sodium iodide, magnesium sulfate,
calcium gluceptate, etc. [39,72]

Organic compounds: amino acids, dextrose, etc. [9,13,27,39]

Water-soluble dyes: beetroot juice, etc. [45]

3.3. Questionnaire Results and the Consensus Reached

After analyzing the questionnaires, we calculated the relevance scores (in %) for
each technical solution (natural or synthetic) and each LBP (Figure 4). The degree of
consensus was then noted, according to the scale shown in Table 2. The experts’ comments
highlighted differences of opinion with regard to the design of a synthetic simulant for LBPs.
Indeed, some experts considered that a synthetic simulant could not adequately mimic the
migration of plasticizers into an LBP relative to a natural simulant. However, other experts
considered that synthetic products were safer, more reproducible, and potentially available
in larger quantities.
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3.3.1. Technical Solutions of Natural Origin
Technical Solutions of Natural Origin for Whole Blood

For WB, a high level of consensus was found for pig’s blood: all the experts agreed
that this was a relevant technical solution for mimicking the migration of plasticizers into
human WB. Bovine WB was also considered to be a relevant technical solution, albeit
with a lower level of consensus (71%). The five other points of consensus attested to the
irrelevance of canine, equine, ovine, goat, and rabbit WBs for mimicking the migration
of plasticizers into human WB. Indeed, goat, and rabbit WBs had a moderate degree of
consensus, and canine, equine, and ovine WBs had a low level of consensus.

Technical Solutions of Natural Origin for Red Blood Cell Concentrate

A moderate degree of consensus was found for pig RBC since 81% of the experts
agreed that this technical solution was suitable for mimicking the migration of plasticizers
into human RBCs. Regarding bovine RBCs, no consensus was observed because the
experts’ opinions were divided (between 35% and 65%). With a moderate degree of
consensus for canine, ovine, goat, and rabbit RBCs and a low degree of consensus for
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equine, these five technical solutions were irrelevant for mimicking the migration of
plasticizers into human RBCs.

Technical Solutions of Natural Origin for Plasma

For plasma, there was a high level of consensus on pig’s plasma: 88% of the experts
agreed that this solution was a suitable technical solution for mimicking the migration of
plasticizers into human plasma. Bovine plasma also led to a consensus, albeit at a lower
level, since 65% of the experts considered this technical solution to be relevant. Canine,
ovine, and goat plasmas had a low degree of consensus and rabbit plasma had a moderate
degree of consensus with regard to mimicking the migration of plasticizers into human
plasma. No consensus was observed for equine plasma because the experts’ opinions
were divided.

Technical Solutions of Natural Origin for Platelet Concentrate

A moderate degree of consensus was found for pig PC since 81% of the experts agreed
that it was a relevant technical solution for mimicking the migration of plasticizers into
human PC. No consensus was observed for bovine PC because the experts’ opinions were
divided (between 35% and 65%). Canine, equine, ovine, goat, and rabbit PCs had a low or a
moderate degree of consensus and were found to be irrelevant for mimicking the migration
of plasticizers into human PC.

Summary of the Results for Simulants of Natural Origin

The relevance profiles were quite similar for the four LBPs. The majority of the experts
were in favour of using pig LBPs for mimicking the migration of plasticizers into human
LBPs. Indeed, the experts mentioned that pig’s blood was already used in several types of
studies (e.g., in haematology and cardiology) because of its physical–chemical properties
(notably the red blood cell size), its stability, and the immunologic similarity between pigs
and humans. Bovine WB and plasma were also cited as relevant mimics of human WB
and plasma. However, a consensus was not obtained for bovine WB because the red blood
cell size stays too different from that of humans compared to the pig’s one. The other
technical solutions were not considered to be relevant for simulating the migration of
plasticizers into LBPs. Furthermore, the experts emphasized the ease of supply for pig and
bovine blood relative to other animal blood (canine or goat blood, for example), for which
regulations on animal experiments may be stricter. The blood volume variable was also
cited since it was preferable to use blood from an animal with a relatively large volume
of blood. In particular, the use of rabbit blood was not recommended since the rather low
volume might increase the risk of hemolysis and therefore influence the quality of the blood
during sampling. It was mentioned that the use of mammalian plasma would be adequate
for mimicking the migration of plasticizers into human plasma. The use of animal models
with a fairly high platelet count is required to simulate the migration of plasticizers into
human PC: the equine model was not thought to be a good candidate because its platelet
count is very low.

3.3.2. Technical Solutions of Synthetic Origin
Technical Solutions of Synthetic Origin for Whole Blood

Eight points of consensus were reached for synthetic technical solutions. A high
degree of consensus was found for the use of rheological property modifiers and trace
elements, since respectively 90% and 85% of the experts agreed that these were suitable
technical solutions for preparing a simulant that mimicked the migration of plasticizers
into human WB. The use of isotonic solutions, surface tension reducing agents, buffer
solutions, and organic compounds to formulate a WB simulant attracted a moderate level
of consensus since 80% of the experts considered these technical solutions to be relevant.
A lower consensus (70%) was found for the use of a lipid emulsion. With a very low score
(30%), a water-soluble dye was found to be irrelevant for a synthetic simulant. It should be
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noted that no consensus was reached on the other technical solutions (with scores between
35% and 65%).

Technical Solutions of Synthetic Origin for Red Blood Cell Concentrate

Five points of consensus were obtained for RBC. A moderate level of consensus
was found for rheological property modifiers since 75% of the experts agreed that the
use of this type of agent was suitable for mimicking the migration of plasticizers into
human RBC. Isotonic solutions and surface tension reducing agents attracted a lower
level of consensus since 65% of the experts considered these technical solutions to be
relevant. The use of desorbing agents and a water-soluble dye in a synthetic simulant
was judged to be inappropriate, and the level of consensus was moderate (25% and 20%,
respectively). The experts’ opinions were divided with regard to the other technical
solutions, which demonstrated a lack of consensus.

Technical Solutions of Synthetic Origin for Plasma

Eleven points of consensus were obtained for plasma. A high degree of consensus
was found for the use of buffer solutions because 90% of the experts agreed that these were
relevant technical solutions for mimicking the migration of plasticizers into human plasma.
A synthetic simulant supplemented with an isotonic solution, a lipid emulsion, a rheological
property modifier, a surface tension reducing agent, and certain organic compounds
attracted a moderate degree of consensus for relevance. With scores ranging from 15 to
35%, the four other points of consensus attested to the irrelevance of desorbing agents,
insoluble particles, preservatives, and water-soluble dyes as components of synthetic
simulants for mimicking the migration of plasticizers into human plasma. However,
no consensus was observed on the use of stabilizing agents since the experts’ opinions
were divided.

Technical Solutions of Synthetic Origin for Platelet Concentrate

For PC, six points of consensus were reached. A moderate level of consensus was
highlighted for the use of rheology modifying agents and buffer solutions, where respec-
tively 76% and 82% of the experts agreed on the suitability of these technical solutions for
mimicking the migration of plasticizers into human PC. The use of an isotonic solution
and trace elements led to a lower consensus since, respectively, 71% and 65% of the experts
considered these technical solutions to be relevant. The two other points of consensus
emphasized the irrelevance of the use of desorbing agents and soluble dyes in an aqueous
phase for mimicking the migration of plasticizers into human PC; these technical solutions
had scores of 35% and 24%, respectively. However, no consensus was observed for the
other technical solutions since the experts’ opinions were divided.

Summary of the Results for Simulants of Synthetic Origin

In contrast to the results for the simulants of natural origin, profiles for the four LBPs
differed when considering the simulants of synthetic origin. However, it was noted that
the use of an isotonic solution and a rheological property modifier might be of value in
a simulant capable of mimicking the migration of plasticizers from a PVC bag into an
LBP. The other technical solutions for simulants must be studied specifically for each LBP.
The experts differed in their estimation of the value of synthetic simulants. Some experts
considered that it is essential to use natural blood components, while others considered
that simulation of the affinity between plasticizers and the LBP is most important—even
if the simulant’s chemical composition does not match that of the LBP. Hence, the use of
synthetic technical solutions appears to be relevant as long as the proportions of each of
the constituents are considered carefully. For the development of simulants, particular
attention was paid to the following parameters: pH, viscosity, osmolarity, ionic strength,
hydrophobicity, and density. The notion of the complexity of a mixture was also raised
by several experts. Indeed, it was often stated that only the components necessary for the
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development of plasticizer migration simulants should be used, i.e., so that the technical
solution is as simple as possible. For example, the use of insoluble particles, water-soluble
dyes, preservatives, and stabilizers was widely considered to be non-essential. Moreover,
it was suggested that non-essential components might interfere with the essential compo-
nents and might thus impair the simulant’s ability to mimic the migration of plasticizers
into the LBP.

4. Conclusions

Our Delphi working group was able to set out specifications for the development
of human LBP simulants and evaluated technical solutions that might meet these spec-
ifications. Despite the Delphi method’s inherent limitations and the absence of a truly
international context (our study was limited to France and Belgium), the study’s main
strength was the multidisciplinary working group on the development of simulants. In con-
trast to most usual Delphi studies, we decided not to carry out a second survey after the
initial questionnaires had been processed. Indeed, the proposals made by the experts were
very precise and were easily integrated into the categories studied here. The comparison of
a number of relevant natural or synthetic products with human blood is now warranted,
with a view to assessing their experimental relevance and determining the amount of
plasticizer that transfers from PVC medical devices to LBPs.

The points of consensus highlighted by our qualitative study might constitute a
database for a draft approach to the standardization of plasticizer migration tests, in which
human blood would be replaced by a natural or synthetic simulant. Among all proposed
technical solutions, pig’s blood could be the most suitable and convenient one. Indeed,
pig’s blood possesses the closest physical–chemical and biological properties to human
blood, and it can be processed to obtain plasma, PC, and RBC using the same protocol
applied for human blood. The availability and standardization of pigs for experimental
research also constitute two clear benefits. However, it could be necessary to check that
pig’s blood is not contaminated by plasticizers before migration studies.

This approach could also be extended to other types of biological tests in order to
reduce the need for scarce human blood.
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