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Abstract: This study assessed the corrosion inhibitory and adsorption properties of two imidazol
derivatives, namely 5-((2,4,5-triphenyl-1H-imidazol-1-yl)methyl)quinolin-8-ol (TIMQ) and 5-((2-(4-
chlorophenyl)-4,5-diphenyl-1H-imidazol-1-yl)methyl)quinolin-8-ol (CDIQ), on carbon steel (CS) in
1 M of HCl using electrochemical methods, including electrochemical impedance spectroscopy
(EIS), potentiodynamic polarization measurements (PDP), UV–visible spectroscopy (UV–v), scanning
electron microscopy (SEM), and molecular modeling. The findings showed that TIMQ and CDIQ were
potent inhibitors with inhibition efficiencies of 94.8% and 95.8%, respectively. The potentiodynamic
polarization experiments showed that the inhibitors worked as mixed-type inhibitors, and the
impedance investigations supported the improvement of a protective layer for the inhibitor on the
metal surface. Each inhibitor was adsorbed onto the carbon steel surfaces, according to the Langmuir
adsorption method. The steel was shielded from acidic ions by an adsorbed coating of the inhibitor
molecules, according to SEM. Density functional theory (DFT) calculations and molecular dynamics
(MD) simulations were used to inspect the results, and a good correlation was found between these
results and those of the study. This information can be applied to determine the effectiveness of
inhibitors in a HCl acid solution.
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1. Introduction

The nemesis of many industrial fields is corrosion. According to certain estimates,
corrosion destroys over 150 million tons of steel annually, or approximately a fourth of the
total amount produced [1]. This industrial blight can appear in a variety of ways, from
straightforward uniform corrosion to more intricate characteristics found in tough indus-
trial situations. The remedies differ depending on the industrial sectors, and whichever
remedy is selected is always the product of a technological, environmental, and frequently
economic compromise. Utilizing corrosion inhibitors is one of the most practical and
effective ways to prevent corrosion [2–6].

Metallic corrosion is thought to be effectively inhibited by organic inhibitors contain-
ing aromatic rings, multiple bonds, and heteroatoms (N, S, and O) in the form of polar
functional groups [7–12]. Their adsorption (electron-rich) centers adhere to the metal’s
surface, preventing corrosion. Metal corrosion inhibition can vary according to the particu-
lar type of metal and the properties of the inhibitor compounds. They may bind to metal
surfaces through physisorption, chemisorption, or both [13,14]. Due to their higher chelat-
ing activity and reduced electronegativity, compounds containing nitrogen demonstrated
effective protection levels [15,16]. However, due to the variety of heterocyclic compounds,
creating green and highly effective corrosion inhibitors is a significant challenge.

Utilizing efficient computational chemistry methods such as the DFT, it is possible
to employ the quantum chemical principle to explain the reactivity and anticorrosive
behavior of the inhibitor compounds [17–24]. Computational chemistry was used in the
current study to confirm and complete the experimental results for correlating the corrosion
efficiencies of the two investigated inhibitors using calculated quantum global and local
chemical reactivity indices and to elucidate the mechanism of the studied compounds
anticorrosive effect.

This study is original in that it examines the inhibitory action of two synthetic imidazol
analogs, i.e., TIMQ and CDIQ, as effective corrosion inhibitors for CS in 1 M HCl media. The
inhibiting effects of TIMQ and CDIQ on the corrosion of CS in 1 M HCl were examined using
PDP, EIS, UV–v, and SEM. A quantum chemical analysis was used to assess the relationship
between the chemical structure and the inhibitory effects of the two imidazole analogues.

The advantages of TIMQ and CDIQ is that they are fully soluble, easy to prepare,
inexpensive, and have a low toxicity. Examining their anticorrosive properties is important
in the current context to synthesize inhibitors with a low environmental impact.

The information on the anticorrosive properties of some important imidazole analogue
derivatives in 1 M of hydrochloric acid for carbon steel are listed in the Table 1. The
efficiencies presented in this table are lower than those of the two studied inhibitors, TIMQ
(94.8%) and CDIQ (95.8%), which is an added advantage for the present study.

Table 1. Anticorrosive properties of some important imidazole analogue derivatives in 1 M of
hydrochloric acid for CS.

Imidazole Analogue Derivatives Anticorrosive Properties (%) References
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2. Experiment 
2.1. Materials 

The iron alloy under investigation, known as CS, was composed of the following el-
ements (in weight percentages): C = 0.3820, Si = 0.2430, Mn = 0.6540, Ni = 0.0780, S = 

91.80 [27]

2. Experiment
2.1. Materials

The iron alloy under investigation, known as CS, was composed of the following
elements (in weight percentages): 0.370% C, 0.680% Mn, 0.059% Ni, 0.009% Co, 0.160% Cu,
0.016% S, 0.011% Ti, 0.230% Si, 0.077% Cr, and the rest iron. For electrochemical testing,
the CS surface samples were exposed at 1 cm2 in the acid solution. The CS substrates were
prepared prior to use. They were polished with a range of grains, degreased with acetone,
cleaned with distilled water, and then dried in an air dryer. The ASTM standardization
was applied to the CS surface preparation [28]. In order to create the 1 M HCl solution, 37%
hydrochloride acid was diluted with distilled water. The structures of both compounds
used in this study are illustrated in Figure 1.
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2.2. Electrochemical Analysis

To study the corrosion inhibition, electrochemical tests were conducted using a con-
ventional three-electrode cell. This consisted of a small 1 cm2 CS surface as the working
electrode, a saturated calomel electrode (SCE), and a platinum wire as the reference and
counter electrode. The test was then associated with a PGZ100-type potentiostat, and all
the experiments were conducted in a constant temperature environment in a thermostatic
bath, and underwent a 30-min immersion period to reach a balanced open-circuit potential
(OCP). The PDP tests were performed using a 5 × 10−4 V s−1 sweep rate from −8 × 102 mV
to −1 × 102 mV/OCP. The definition of the inhibitory action (ηTF(%)) is as follows.

ηTF(%) =

(
icorr,◦ − icorr

icorr,◦

)
× 100% (1)

where icorr,◦ and icorr represent the corrosion current densities in the presence and absence
of the imidazol analogs, respectively.

Steady-state electrochemical impedance spectroscopy was performed using the AC
signal in a frequency interval from 100 kHz to 10 mHz at an amplitude of 10 mV. The
following equation provides the inhibitory efficiency using the Nyquist plots’ forms.

ηEI(%) =

(
RP,i − RP,◦

RP,i

)
× 100% (2)

where RP,i and RP,◦ represent the polarization resistance with and without the imidazole
analogs, respectively.

To ensure the results were reliable and reproducible, the measurements were con-
ducted three times for each experimental trial, and the average values were then reported.

In the absence of TIMQ and CDIQ, we used the previously published results from
our team for both the stationary and transitory techniques regarding the effect of the
temperature and concentration. These experiments were conducted under similar circum-
stances [29].

2.3. SEM Analysis

The SEM equipment (JEOL-JSM-IT-100, JEOL, Akishima, Tokyo) was used to analyze
the surface morphology and energy-dispersive X-Ray spectroscopy (EDS) (Thermo Fisher,
Waltham, MA, USA) of the CS samples. The plates were placed in a 1 M HCl bath at 303 K
with and without the addition of the TIMQ and CDIQ inhibitors and maintained for 24 h.
We used the SEM results that our team had previously released in the absence of inhibitors,
which were performed under identical conditions. These works were almost immediately
submitted for publication.
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2.4. UV–Visible Analysis

Using a JASCO V-700-type device (Thermo Fisher, Waltham, MA, USA), the corrosive
solutions generated by immersing the plate in the corrosive environment both without and
with the TIMQ and CDIQ inhibitors at concentrations of 10−3 M were analyzed.

2.5. DFT and MD Details

We attempted to understand the mechanism of the effect of imidazol analogues on CS
surfaces by using the DFT procedure in an aqueous phase [30]. This theoretical adaptation
also allowed for the prognosticated experimental inhibitory efficacy of the neutral and pro-
tonated imidazol analogs to be reconciled with the chemical reactivity indices [31]. The DFT
method using the Becke three-parameter Lee–Yang–Parr (B3LYP) hybrid functional [32–37]
was performed to optimize the geometrical structure of the two investigated inhibitors in
the depicted neutral and non-charged forms. The 6-31+G(d,p) basis set was employed to
conduct the optimization process. The geometry of the optimization approach was realized
in aqueous phases utilizing the polarizable continuum model (PCM) at similar levels of
theory as the electrochemical corrosion that occurred in the H2O phase [38]. The absence
of fictitious frequencies demonstrated the minima of these substrates’ potential energy
surfaces. All the calculations were conducted using the Gaussian-09 software [39]. All
the molecules were assembled with the help of Gaussview [40], a program that provides
graphs of molecular orbitals, including the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO), as well as a graphical representation
of the molecular electrostatic potentials. It is vital to note that the B3LYP approach has
been frequently used in the literature to research electrical characteristics, predict chemical
reactivity, and explore the anticorrosive effects of inhibitor chemicals [17,19,41–45].

The energy gap (∆E) of the analyzed inhibitors was determined by subtracting the
HOMO (EH) and LUMO (EL) energy levels as ∆E = EH − EL. The relativities between the
inhibitors and the metal surface (∆E1 and ∆E2) were evaluated as follows.

∆E1 = Einh
H − EFe

H , and ∆E2 = EFe
H − Einh

H (3)

where Einh
H is the energy HOMO of inhibitor and EFe

H = −7.9024 and EFe
L = −0.0151 eV

are the energies of the HOMO and LUMO of the iron metal, respectively [46]. The main
global reactivity descriptors (GRDs), such as the fundamental deviation (Fg), global hard-
ness for inhibitor (ηinh) and iron (ηFe), softness (S), electronegativity inhibitor (χinh), and
electrophilicity (ω) using the vertical ionization potential (Iv) and vertical electron affin-
ity (Av), were used to assess the report of the transferred electrons (∆N110) and electron
back-donation energy (∆Eb−d) [29,47–53].

Iν ≈ E(N − 1)− E(N), Aν ≈ E(N)− E(N + 1), and Fg = Iν − Aν (4)

χ =
1
2
(Iν + Aν), η =

1
2
(Iν − Aν), S =

1
η

, and ω =
χ2

2η
(5)

∆N =
ΦFe − χinh

2(ηFe + ηinh)
and ∆Eb−d = −ηinh

4
(6)

E(N), E(N − 1), and E(N + 1) stand for the overall energies of the optimized structures
in the above equations at neutral, cations, and anions geometries, respectively.

The work function and hardness of Fe(110) are, respectively, ΦFe = 4.82 eV and ηFe = 0.
Assuming that I = A for CS, ηFe was equal to 0 eV [54]. The inhibitor’s electronegativity
and hardness are represented by the letters “χinh” and “ηinh”, respectively. The adsorption
of an inhibitor compound (adsorbate) on the Fe surface (adsorbent) adsorbent is favored
by suitable centers such as heteroatoms (N and O atom), as well as the π-electrons of the
delocalized rings. Therefore, to obtain information on the site where adsorption occurs,
an analysis of the electronic parameters of the active centers (LRDs) was performed in
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terms of the Fukui functions [55,56]. The condensed Fukui indices were applied to identify
the atoms of the examined inhibitors that were most sensitive to electrophilic and/or
nucleophilic attacks ( f+A and f−A , respectively). A finite difference approximation calculated
the indices using the following formulas.

f+A = qA(N + 1)− qA(N) (for nucleophilic attacks) (7)

f−A = qA(N)− qA(N − 1) (for electrophilic attacks) (8)

where qA(N), qA(N + 1), and qA(N − 1) are the Hierfield charges for the neutral, anion,
and cation electron systems, respectively. The Multiwfn program [57] was applied to extract
the Fukui functions and their dual descriptors. The following algorithm can be used to
quickly determine the local condensed softness (σα

k ) and the local electrophilicity indices
(ωα

k ), which are useful for comparing the reactivity of identical atoms in other compounds.

σ±
A = S × f α

k and ω±
k = ω × f±k (9)

where σ+
A , σ−

A , ω+
k , and ω−

k reflect the local softness and electrophilicity corresponding to
nucelophilic (+) and electrophilic (−) attacks, respectively.

To state it more precisely, the dual Fukui indices offer a straightforward and perceptible
way to comprehend the dual local philicity (∆ωk) and the chemical reactivity in a local
method, also known as the second order Fukui functions ( f 2

k , the associated dual local
softness (∆σk). The following is a definition of these dual descriptors [58–60].

f 2
k = f+k − f−k , ∆σA = σ+

A − σ−
A and ∆ωA = ω+

A − ω−
A (10)

MD simulations were used to examine how TIMQ and CDIQ interacted with the
Fe(110) systems. This approach was produced via the Materials Studio/2016 program
Forcite module [61,62]. A simulation box (27.30 × 27.30 × 37.13 Å3) with an 11 × 11 unit
cell was used to simulate the particle movements (500H2O, 5H3O+, 5Cl−, and imidazol
analogs) within the simulation box with a 27.13 Å3 vacuum at a temperature of 303 K
controlled by the Andersen thermostat in the constant number (N), constant volume (V),
and constant temperature (T) (NVT) ensemble, a simulation time of 1000 ps, and a time
step of 1.0 fs [63].

3. Results and Discussion
3.1. PDP Investigation

The PDP method was used to evaluate the influence of the varying concentrations of
two studied inhibitors, namely TIMQ and CDIQ, on the corrosion behavior of steel in a 1M
HCl solution at 298 K. The anodic and cathodic slopes (βa and βc), as well as the corrosion
current density (icorr), corrosion potential (Ecorr), inhibitory efficiency (IE%), and other
electrochemical characteristics collected from the PDP tests are examined in Figure 2 and
Table 2, respectively. Figure 2 illustrates the PDP plots of five concentrations of the inhibitors
(TIMQ and CDIQ) for steel in 1M of HCl. The corrosion current densities icorr within the
varying concentrations of TIMQ and CDIQ molecules decreased as the concentration of
the TIMQ and CDIQ molecules increased, providing excellent inhibitory efficiencies at an
optimal concentration (10−3 M) for the two studied molecules (TIMQ and CDIQ) [64,65].
In addition, the higher inhibition efficiencies of the two studied molecules TIMQ and
CDIQ (potent inhibitors) were 94.8 and 95.2%, respectively. Furthermore, increasing the
concentrations of the two studied inhibitors led to the formation of a layer that further
reduced the rate of corrosion due to the attack of chloride ions in the electrolytic medium
with the good inhibition efficiency [66,67]. As illustrated in Table 2, the CDIQ inhibitor
presented a higher inhibition efficiency compared to the TIMQ molecule. In addition,
the displacement of the corrosion potential values for the two studied TIMQ and CDIQ
molecules compared to the 1 M HCl solution alone were essentially less than 85 mV/SCE.
Thus, the two investigated molecules (TIMQ and CDIQ) inhibited both anodic and cathodic
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reactions associated with the corrosion of steel in an acidic medium, and were suggested to
be mixed-type inhibitors [22,62,68–70]. Additionally, the anodic and cathodic Tafel slope
(βa and βc) values changed in the existence of four concentrations of the two investigated
molecules, which reflected the effects of the TIMQ and CDIQ molecules on the kinetics of
the anodic and cathodic mechanism.
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Table 2. PDP characteristics for CS in an electrolytic medium at 303 K, both unfettered and inhibited
with varying quantities of two molecules (TIMQ and CDIQ).

Inhibitors
and Corrosive Solution

Conc.
(M)

−Ecorr
(mV/SCE)

icorr
(µA cm−2)

−βc
(mV dec−1)

βa
(mV dec−1) ηTF(%)

HCl 1 456.3 1104.1 155.4 112.2 -

TIMQ

10−6 430.4 239 82.5 53.5 78.3
10−5 442.6 90.5 78.1 123.9 91.8
10−4 417.8 81.2 111.2 62.0 92.6
10−3 389.4 57.2 111.3 52.8 94.8

CDIQ

10−6 430.3 166.1 166.1 91.9 68.6
10−5 423.2 135.3 55.8 51.8 87.7
10−4 427.7 104.2 77.5 69.6 90.5
10−3 433.4 52.1 62.0 76.6 95.2

3.2. EIS Investigation

Figures 3 and 4 illustrate the data obtained from the EIS, Bode, and phase angle for
CS in the existence and absence of TIMQ and CDIQ using varying concentrations of the
two studied inhibitory molecules in an electrolytic medium at 303 K, respectively. As
illustrated in Figure 3, the diameter of the impedance of the two investigated molecules
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(TIMQ and CDIQ) at four concentrations was higher compared to the 1M HCl alone.
Therefore, the two tested molecules had a strong protection influence against corrosion on
the steel electrode [71–73]. The Bode curves (Figure 4) also revealed a time constant that
was a low-frequency surface double layer. Figure 5 displays the equivalent circuit (EC)
employed to interpret the Nyquist and Bode curves. The terms “RS”, “CPE”, and “Rct”
stand for the “solution resistance”, “constant phase element” (or “CPEdl”, which refers to
the double layer), and “charge transfer impedance”, respectively. Due to the influence of
surface heterogeneities on the dispersion, molecule adsorption, and formation of porous
layers, the CPE constant phase element was utilized in place of the capacitor, since, the
anticorrosive behavior of an electric double layer capacitor was not the same as the pure
capacitance [74–76]. Additionally, the impedance of the CPE was calculated according to
Equation (11).

ZCPE= Q−1 × (i × ω)−n (11)

where ω, Q, i, and n are the angular frequency, the proportionality coefficient, the imagi-
nary unit, and the surface irregularity that determine when the imaginary portion of the
impedance achieves its greatest value. The values of the constant phase element (CPE,
Q:charge and n: surface irregularity), which reflects the capacitance of the electric double
layer (Cdl), adsorption inhibitor film, Rs the resistance of the solution, and RP the resistance
for polarization are also determined using Equation (12).

Cdl =
n
√

Q × R1−n
P (12)
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at 303 K.



Coatings 2023, 13, 1405 9 of 32

Coatings 2023, 13, x FOR PEER REVIEW 9 of 33 
 

 

the absence of TIMQ, and its inhibitory efficiency also increased. This result was con-

firmed by the results obtained in the PDP study. In addition, for the steel electrode sur-

face, the Cdl values decreased as the concentrations of the two studied molecules in-

creased, compared to the pure 1M HCl solution, due to a decrease in the dielectric con-

stant or an increase in the thickness of the surface layer [71,80–82]. Due to the differences 

in the surface finish of the steel electrode, the influence of the metal structure and sur-

face on corrosion was greater, leading to increased protection. 

0 50 100 150 200 250 300 350
0

50

100

150

200

-Z
im

 (
W

 c
m

2
)

Zr (W cm2)

    TIMQ
 HCl 1 M

 10-3 M

 10-4 M

 10-5 M

 10-6 M

 

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

-Z
im

 (
W

 c
m

2
)

Zr (W cm2)

     CDIQ
 HCl 1 M

 10-3 M

 10-4 M

 10-5 M

 10-6 M

 

Figure 3. EIS of CS in a 1 M HCl medium with four concentrations of the inhibitors TIMQ and 

CDIQ at 303 K. 

-2 -1 0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

       TIMQ
 1 M HCl

 10-3 M

 10-4 M

 10-5 M

 10-6 M

Log f (Hz)

L
o
g
 ǀ
Z

ǀ 
(Ω

 c
m

2
)

-10

0

10

20

30

40

50

60

70

 -
P

h
a
se

 (
°
)

 

Coatings 2023, 13, x FOR PEER REVIEW 10 of 33 
 

 

-2 -1 0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
     CDIQ

 1 M HCl

 10-3 M

 10-4 M

 10-5 M

 10-6 M

Log f (Hz)

L
o
g
 ǀ
Z

ǀ 
(Ω

 c
m

2
)

-10

0

10

20

30

40

50

60

70

80

 -
P

h
a
se

 (
°
)

 

Figure 4. EIS (Bode and phase angle plots) of a 1 M HCl medium with four concentrations of the 

inhibitors TIMQ and CDIQ at 303 K. 

 

Figure 5. Diagram of the equivalent circuit used to fit the impedance spectra. 

Table 3. EIS parameters for the steel electrode uninhibited and inhibited with four concentrations 

of the investigated molecules (TIMQ and CDIQ) in an electrolytic medium at 303 K. 

Medium 
Conc. 

(M) 

Rs 

(Ω cm2) 

Rp 

(Ω cm2) 

106 × Q 

(µF sn−1 cm−2) 
n 

Cdl 

(µF cm−2) 
χ2 (%)EI  

HCl 1 0.83 21.57 293.9 0.845 116.2 0.002 - 

TIMQ 

10−3 1.45 343.3 77.7 0.871 45.5 0.008 93.8 

10−4 1.25 283.3 91.9 0.868 52.8 0.008 92.4 

10−5 2.13 218.8 101.2 0.860 54.4 0.009 90.1 

10−6 1.31 90.54 90.5 0.851 84.7 0.009 76.2 

CDIQ 

10−3 1.64 390.1 66.7 0.871 38.8 0.009 94.4 

10−4 1.66 240.7 80.4 0.861 42.6 0.009 91.1 

10−5 1.39 175.1 103.2 0.852 51.4 0.009 87.7 

10−6 1.17 62.1 251.7 0.846 118.0 0.009 65.3 

3.3. Temperature Effect and Kinetic Parameters 

To identify the interaction mechanism between the studied inhibitory compounds 

and the metallic surface, a temperature effect was investigated at four temperatures in a 

corrosive environment (Figure 6). The stationary electrochemical parameters, such as 

Ecorr, icorr, βa, and βc as well as the inhibitory efficiency, were calculated using varying 

temperatures on the corrosion of the steel area in both noninhibited and inhibited elec-

trolytic media with the optimum concentration (10−3 M) of the two studied molecules 

(TIMQ and CDIQ), as summarized in Table 4. The results illustrated in Table 4 suggest 

that the corrosion current density increased as the temperature increased in a corrosive 

environment with and without 10−3 M of TIMQ and CDIQ, respectively. These increases 

were explained by the activation reactivity of the corrosive environment [83,84]. The 

findings presented in Table 4 show that the inhibition performance decreased as the 

Figure 4. EIS (Bode and phase angle plots) of a 1 M HCl medium with four concentrations of the
inhibitors TIMQ and CDIQ at 303 K.

Coatings 2023, 13, x FOR PEER REVIEW 10 of 33 
 

 

-2 -1 0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
     CDIQ

 1 M HCl

 10-3 M

 10-4 M

 10-5 M

 10-6 M

Log f (Hz)

L
o
g
 ǀ
Z

ǀ 
(Ω

 c
m

2
)

-10

0

10

20

30

40

50

60

70

80

 -
P

h
a
se

 (
°
)

 

Figure 4. EIS (Bode and phase angle plots) of a 1 M HCl medium with four concentrations of the 

inhibitors TIMQ and CDIQ at 303 K. 

 

Figure 5. Diagram of the equivalent circuit used to fit the impedance spectra. 

Table 3. EIS parameters for the steel electrode uninhibited and inhibited with four concentrations 

of the investigated molecules (TIMQ and CDIQ) in an electrolytic medium at 303 K. 

Medium 
Conc. 

(M) 

Rs 

(Ω cm2) 

Rp 

(Ω cm2) 

106 × Q 

(µF sn−1 cm−2) 
n 

Cdl 

(µF cm−2) 
χ2 (%)EI  

HCl 1 0.83 21.57 293.9 0.845 116.2 0.002 - 

TIMQ 

10−3 1.45 343.3 77.7 0.871 45.5 0.008 93.8 

10−4 1.25 283.3 91.9 0.868 52.8 0.008 92.4 

10−5 2.13 218.8 101.2 0.860 54.4 0.009 90.1 

10−6 1.31 90.54 90.5 0.851 84.7 0.009 76.2 

CDIQ 

10−3 1.64 390.1 66.7 0.871 38.8 0.009 94.4 

10−4 1.66 240.7 80.4 0.861 42.6 0.009 91.1 

10−5 1.39 175.1 103.2 0.852 51.4 0.009 87.7 

10−6 1.17 62.1 251.7 0.846 118.0 0.009 65.3 

3.3. Temperature Effect and Kinetic Parameters 

To identify the interaction mechanism between the studied inhibitory compounds 

and the metallic surface, a temperature effect was investigated at four temperatures in a 

corrosive environment (Figure 6). The stationary electrochemical parameters, such as 

Ecorr, icorr, βa, and βc as well as the inhibitory efficiency, were calculated using varying 

temperatures on the corrosion of the steel area in both noninhibited and inhibited elec-

trolytic media with the optimum concentration (10−3 M) of the two studied molecules 

(TIMQ and CDIQ), as summarized in Table 4. The results illustrated in Table 4 suggest 

that the corrosion current density increased as the temperature increased in a corrosive 

environment with and without 10−3 M of TIMQ and CDIQ, respectively. These increases 

were explained by the activation reactivity of the corrosive environment [83,84]. The 

findings presented in Table 4 show that the inhibition performance decreased as the 

Figure 5. Diagram of the equivalent circuit used to fit the impedance spectra.

The corrosion protection was investigated and addressed based on the charge transfer
resistance measurements. Additionally, the performance of the CS electrode as a corrosion
inhibitor improved in direct proportion to the Rct value. According to the results analyzed
and compiled in Table 3, the same Rs values indicated the similarity of the electrolyte
conductivity. According to the findings examined and discussed in Table 3, the CS im-
mersed in an aggressive medium exhibited the lowest Rct value, which indicated a low
corrosion resistance. Additionally, since the Rct was low, the ion diffusion rate was high
under the vacuum conditions [77–79]. This outcome caused a layer to build on the CS
electrode surface. Additionally, in the existence of the ideal concentration of CDIQ, the
charge transfer resistance values for carbon steel surfaces were higher than those in the
absence of TIMQ, and its inhibitory efficiency also increased. This result was confirmed by
the results obtained in the PDP study. In addition, for the steel electrode surface, the Cdl
values decreased as the concentrations of the two studied molecules increased, compared
to the pure 1M HCl solution, due to a decrease in the dielectric constant or an increase in
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the thickness of the surface layer [71,80–82]. Due to the differences in the surface finish of
the steel electrode, the influence of the metal structure and surface on corrosion was greater,
leading to increased protection.

Table 3. EIS parameters for the steel electrode uninhibited and inhibited with four concentrations of
the investigated molecules (TIMQ and CDIQ) in an electrolytic medium at 303 K.

Medium Conc.
(M)

Rs
(Ω cm2)

Rp
(Ω cm2)

106 × Q
(µF sn−1 cm−2)

n Cdl
(µF cm−2) χ2 ηEI(%)

HCl 1 0.83 21.57 293.9 0.845 116.2 0.002 -

TIMQ

10−3 1.45 343.3 77.7 0.871 45.5 0.008 93.8
10−4 1.25 283.3 91.9 0.868 52.8 0.008 92.4
10−5 2.13 218.8 101.2 0.860 54.4 0.009 90.1
10−6 1.31 90.54 90.5 0.851 84.7 0.009 76.2

CDIQ

10−3 1.64 390.1 66.7 0.871 38.8 0.009 94.4
10−4 1.66 240.7 80.4 0.861 42.6 0.009 91.1
10−5 1.39 175.1 103.2 0.852 51.4 0.009 87.7
10−6 1.17 62.1 251.7 0.846 118.0 0.009 65.3

3.3. Temperature Effect and Kinetic Parameters

To identify the interaction mechanism between the studied inhibitory compounds
and the metallic surface, a temperature effect was investigated at four temperatures in
a corrosive environment (Figure 6). The stationary electrochemical parameters, such as
Ecorr, icorr, βa, and βc as well as the inhibitory efficiency, were calculated using varying
temperatures on the corrosion of the steel area in both noninhibited and inhibited elec-
trolytic media with the optimum concentration (10−3 M) of the two studied molecules
(TIMQ and CDIQ), as summarized in Table 4. The results illustrated in Table 4 suggest that
the corrosion current density increased as the temperature increased in a corrosive envi-
ronment with and without 10−3 M of TIMQ and CDIQ, respectively. These increases were
explained by the activation reactivity of the corrosive environment [83,84]. The findings
presented in Table 4 show that the inhibition performance decreased as the temperature
increased since the equilibrium on the CS surface shifted from adsorption to desorption as
the temperature increased.

Table 4. PDP parameters for the steel electrode unfettered and inhibited at four temperatures in an
electrolytic medium with 1 mM of the TIMQ and CDIQ molecules.

Inhibitors Temp
(K)

−Ecorr
(mV/SCE)

icorr
(µA/cm2)

βa
(mV dec−1)

−βc
(mV dec−1)

ηPDP
(%)

1 M HCl

303 456.3 1104.1 112.8 155.4 -
313 423.5 1477.4 91.3 131.3 -
323 436.3 2254.0 91.4 117.8 -
333 433.3 3944.9 103.9 134.6 -

TIMQ

303 389.4 57.2 52.8 111.3 94.8
313 405.5 110.2 65.7 159.9 92.5
323 418.9 286.1 86.4 154.7 87.3
333 434.9 673.8 105.2 186.1 82.9

CDIQ

303 433.4 52.1 76.6 62.0 95.2
313 429.3 122.1 78.4 116.5 91.7
323 421.4 235.8 84.3 163.6 89.5
333 438.4 720.4 107.2 162.2 81.7
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The investigation of the Arrhenius curves made it possible to calculate several ther-
modynamic parameters, namely the activation energy (Eacv), standard entropy variation
(∆Sacv) and standard enthalpy variation (∆Hacv). In addition, these three parameters helped
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us to better understand the mechanism of action of these two products on the surface of
the substrate. In addition, the thermodynamic parameters were determined according to
Equations (13) and (14) [73,85].

icorr= Aexp
(
−Eacv

RT

)
(13)

icorr =
RT
hN

exp
(

∆Sacv

T

)
exp

(
−∆Hacv

RT

)
(14)

where icorr, A, R, T, Eacv, and N are the current density, the Arrhenius factor, the molar
gas constant, the absolute temperature, the activation energy, and Avogadro’s number,
respectively. Additionally, ∆Sacv and ∆Hacv denote the standard activation entropy variation
and the standard activation enthalpy variation. The calculated thermodynamic parameter
values are listed in Table 5. Figure 7 illustrates the logarithm of the icorr (ln (icorr)) as a
function of the 1000/temperature with and without 10−3 M of the two studied molecules
(TIMQ and CDIQ). According to the data illustrated in Figure 7, the correlation line curve
indicated that the correlation coefficient for 1 M HCl was 0.967 and the coefficients for the
two elaborated molecules TIMQ and CDIQ were 0.986 and 0.971, respectively. Additionally,
the Eacv values measured for the 1 M HCl solution and the two studied molecules TIMQ
and CDIQ were 35.4, 69.8, and 71.3 kJ/mol, respectively. The activation energy values for
the environments suppressed with TIMQ and CDIQ were higher than those of the blank
environment, as listed in Table 5, indicating that the corrosion mechanism was altered and
the steel area’s corrosion was blocked by a physisorption process [72,81,86]. Furthermore,
the curves of the logarithm of icorr/T as a function of the 1000/T for the media no inhibited
and inhibited by the two molecules TIMQ and CDIQ are illustrated in Figure 8. The study
of the enthalpies ∆H◦ values was positive, as evidenced by the data in Table 5, which
demonstrated the endothermic character of the process of adsorption and the dissolution
of the steel metallic area in a corrosive environment. The ∆Sacv values for the no inhibited
media had a negative sign, whereas the values for the media inhibited by the two examined
inhibitors had a positive sign, as detailed in Table 5. Based on these findings, the speed-
determining phase of the activated complex involved an association step rather than a
dissociation step, increasing the order and decreasing the disorder from the environment
to the activator complex [69,87,88].

Table 5. Kinetic characteristics for the steel electrode unfettered and inhibited at four temperatures in
the electrolytic medium using 1 mM of the TIMQ and CDIQ molecules.

Inhibitors R2 Eacv (kJ/mol) ∆Hacv (J/mol) ∆Sacv
(J/mol K)

HCl 0.967 35.4 32.77 −79.2
TIMQ 0.986 69.8 67.22 98.05
CDIQ 0.971 71.3 68.76 14.37

3.4. Adsorption Model

The amount of the surface (θ) covered using the adsorbed organic molecules was
measured by the ratio E% (EIS)/100. The results were investigated graphically to adapt
to various adsorption isotherm models, such as the Langmuir, Temkin, Freundluich, and
Flory–Huggins models [89].

Furthermore, the C/θ plots versus the concentrations of the two studied molecules
TIMQ and CDIQ provided additional information, such as a straight line with a correlation
coefficient close to one (Figure 9 and Table 6). Additionally, the strong correlation due to
the two studied molecules were adsorbed onto the steel metallic area, according to the
Langmuir model.
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Table 6. Parameters of the Langmuir adsorption isotherm model for the steel electrode inhibited with
10−3 M of TIMQ and CDIQ molecules in the electrolytic medium.

Inhibitors R2 Kads
(L mol−1)

∆G0
ads

(kJ mol−1)

TIMQ 1 1.312.106 −45.58
CDIQ 0.9999 5.927.105 −43.58

The equilibrium constant determined from the adsorption reaction were 1.312.106

and 5.927.105 L/mol, and the ∆G0
ads values were −45.58 and −43.58 kJ mol−1, respectively.

Additionally, the ∆G0
ads negative values indicated that TIMQ and CDIQ were strongly

adsorbed on the CS area. The ∆G0
ads values that were higher than −40 kJ/mol suggested

that the two tested molecules could be adsorbed by forming the chemical bond, according
to the chemisorption mode [90,91].



Coatings 2023, 13, 1405 14 of 32

Coatings 2023, 13, x FOR PEER REVIEW 14 of 33 
 

 

Table 6. Parameters of the Langmuir adsorption isotherm model for the steel electrode inhibited 

with 10−3 M of TIMQ and CDIQ molecules in the electrolytic medium. 

Inhibitors R2 
Kads  

(L mol−1) 

0

adsG   

(kJ mol−1) 

TIMQ 1 1.312.106 −45.58 

CDIQ 0.9999 5.927.105 −43.58 

The equilibrium constant determined from the adsorption reaction were 1.312.106 

and 5.927.105 L/mol, and the 
0

adsG  values were −45.58 and −43.58 kJ mol−1, respectively. 

Additionally, the 
0

adsG  negative values indicated that TIMQ and CDIQ were strongly 

adsorbed on the CS area. The 
0

adsG  values that were higher than −40 kJ/mol suggested 

that the two tested molecules could be adsorbed by forming the chemical bond, accord-

ing to the chemisorption mode [90,91]. 

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

(A) Langmuir

 TIMQ

 CDIQ

 Fitting curves

C
in

h
/q

 (
M

)

Cinh  

-14 -13 -12 -11 -10 -9 -8 -7 -6

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(B) Temkin

 TIMQ

 CDIQ

 fitting curves

θ

ln(Cinh)
 

Coatings 2023, 13, x FOR PEER REVIEW 15 of 33 
 

 

-14 -13 -12 -11 -10 -9 -8 -7 -6

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

(C) Freundlich

 TIMQ

 CDIQ

 Fitting curves

ln
(θ
)

ln(Cinh)
 

-3.0 -2.5 -2.0 -1.5 -1.0
6

7

8

9

10

11

12

13

14

 TIMQ

 CDIQ

 Fitting curves

ln(1-θ)

 l
n

(θ
/C

in
h
)

(D) Flory-Huggins

6

7

8

9

10

11

12

13

14

 

Figure 9. Langmuir (A), Temkin (B), Freundluich (C), and Flory–Huggins (D) adsorption isotherm 

models for CS inhibited with 10−3 M of TIMQ and CDIQ molecules in the electrolytic medium. 

3.5. SEM/EDS Analysis 

To comprehend how the surfaces of the steel samples were affected by the 1 mM 

concentrations of the two molecules TIMQ and CDIQ following 24 h of immersion in the 

electrolytic medium at 303 K, a SEM–EDS analysis was used (Figure 10) [92]. The image 

of the corroded steel electrode illustrated in Figure 10 shows that there were specific are-

as where the dezincification process was more apparent [84]. Then, in TIMQ and CDIQ 

that were studied at 1 mM, the heterogeneity of the steel substrates was only slightly re-

duced. This improvement in the morphological surface was caused by the prevention ef-

fect of the elaborate molecules (TIMQ and CDIQ) in the electrolytic medium for the steel 

substrate surface [92]. Further, the EDS spectra of CS alone as well as uninhibited and 

inhibited with 1 mM of the two studied inhibitors (TIMQ and CDIQ) after 24 h of im-

mersion in the electrolytic medium are illustrated in Figure 10. The EDS characterization 

obtained for the steel substrates alone as well as uninhibited and inhibited with the two 

molecules at the optimal concentration is listed in Table 7. According to the results illus-

trated in Table 7, the data suggested that the oxygen peak for uninhibited steel sub-

strates (21.24%) decreased with the existence of 1 mM of the two studied inhibitors 

Figure 9. Langmuir (A), Temkin (B), Freundluich (C), and Flory–Huggins (D) adsorption isotherm
models for CS inhibited with 10−3 M of TIMQ and CDIQ molecules in the electrolytic medium.



Coatings 2023, 13, 1405 15 of 32

3.5. SEM/EDS Analysis

To comprehend how the surfaces of the steel samples were affected by the 1 mM
concentrations of the two molecules TIMQ and CDIQ following 24 h of immersion in the
electrolytic medium at 303 K, a SEM–EDS analysis was used (Figure 10) [92]. The image of
the corroded steel electrode illustrated in Figure 10 shows that there were specific areas
where the dezincification process was more apparent [84]. Then, in TIMQ and CDIQ that
were studied at 1 mM, the heterogeneity of the steel substrates was only slightly reduced.
This improvement in the morphological surface was caused by the prevention effect of the
elaborate molecules (TIMQ and CDIQ) in the electrolytic medium for the steel substrate
surface [92]. Further, the EDS spectra of CS alone as well as uninhibited and inhibited
with 1 mM of the two studied inhibitors (TIMQ and CDIQ) after 24 h of immersion in the
electrolytic medium are illustrated in Figure 10. The EDS characterization obtained for the
steel substrates alone as well as uninhibited and inhibited with the two molecules at the
optimal concentration is listed in Table 7. According to the results illustrated in Table 7, the
data suggested that the oxygen peak for uninhibited steel substrates (21.24%) decreased
with the existence of 1 mM of the two studied inhibitors TIMQ and CDIQ up to 9.45% and
16.10%, respectively. The steel substrates inhibited by the two studied inhibitors at the
optimal concentration revealed that the chloride peak decreased from 3.70% to 0.78% for
the uninhibited media and to 1.76% for the media inhibited by 1 mM of the two studied
inhibitors TIMQ and CDIQ, respectively. These results indicated the adsorption of the
TIMQ and CDIQ inhibitors onto the steel metallic surface, thus resulting in the successful
protection of the steel surface against direct attack by chloride ions [84].
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Table 7. EDS analysis (%) of CS alone as well as uninhibited and inhibited by 1 mM of TIMQ and
CDIQ in the electrolytic medium at 303 K.

Chemical Species C (%) N (%) Cr (%) Mn (%) O (%) Cl (%) Fe (%)

CS Only 1.43 0.81 0.33 0.77 - - 96.66

1 M HCl 1.40 - - - 21.24 3.70 73.66

10−3 M of TIMQ 1.62 - - - 9.45 0.78 88.16
10−3 M of CDIQ 1.27 - - - 16.10 1.76 80.87

3.6. UV–Visible Investigation

UV–vis testing was used to understand the behavior between the steel substrates and
the tested inhibitors. The uninhibited and inhibited solutions at the optimum concentration
after corrosion testing were examined (Figure 11). This method was based on the dosage of
iron ions (Fe2+) to calculate the difference between the number of Fe ions for the uninhibited
and inhibited media with 10−3 M of TIMQ and CDIQ. It was shown that the number of Fe2+

ions decreased at the optimal concentration of the two inhibitors. Furthermore, the Fe2+

ions were complexed with TIMQ and CDIQ elaborated molecules. Nitrogen heteroatoms,
aromatic rings, pair electron of chloride atoms, and functional alcohol were responsible
for the formation of the complex. The UV–vis spectra indicated that the data was obtained
according to the UV analysis with the complexation of the Fe2+ ions dissolved in the studied
environment. According to the data illustrated in Figure 11, it was suggested that after the
addition of the optimal concentration of the two studied inhibitors (TIMQ and CDIQ), the
values of the wavelengths shifted towards a maximum region [68]. Additionally, the data
reflected that the wavelength values appeared in a weak zone towards a maximum zone of
250 nm for the 1 M HCl solution and a maximum zone of 350 nm and 380 nm for TIMQ
and CDIQ, respectively. The obtained data indicated that the two studied molecules TIMQ
and CDIQ decreased the dissolution of iron ions (Fe2+) in the 1 M HCl environment by
forming the complex between the steel substrates and the TIMQ and CDIQ molecules [74].
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Figure 11. UV–vis spectrum for TIMQ and CDIQ in the absence and existence of CS. Figure 11. UV–vis spectrum for TIMQ and CDIQ in the absence and existence of CS.



Coatings 2023, 13, 1405 17 of 32

3.7. DFT Results

The microspecies of these inhibitors were determined using MarvinSketch 17.1.30.0
(Chemaxon, Budapest, Hungary) as a function of pH [93] in the range of 0.0–14.0. As
described in the MarviSketch manual. The most molecules contain specific functional
groups that are likely to lose or gain proton(s) under specific circumstances. The equilibrium
between the protonated and deprotonated forms of the molecule can be described using
a constant value called pKa. The pKa plugin calculates the pKa values of the molecule
based on its partial charge distribution. For more details, the reader is directed to the
chemaxon’ webpage [94]. There are five different types of TIMQ and CDIQ inhibitors,
according to the output of the Marvin Sketch software. Figure 12 shows the inhibitors’
most noticeable forms, which were identified at pH = 0.00 (form 5). Form five contains
the principal microspecies forms, with TIMQ and CDIQ percentages (%) of 99.99%. In
this form, the two sp2 nitrogen atoms (N1 and N3) were subjected to attack by protons in
an acidic solution. Then, using this form, the theoretical computations were conducted.
Additionally, for the sake of comparison, the theoretical calculations of the neutral form
(form one) is also presented.
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Figure 12. The microspecies percentages of the two investigated inhibitors TIMQ and CDIQ at
pH = 0–14.

The two examined inhibitors’ optimal geometrical structures and molecule electrostatic
potential maps are shown in Figure 13. The molecular electrostatic potential (ESP) maps
were utilized to qualitatively indicate and visualize the active centers that are susceptible
electrophilic and nucleophilic attacks. These maps switched from a negative to a positive
potential as follows: red (−Ve) < orange < green < blue (+Ve). The potential values
were in the range of −0.0652 to +0.0652 au for the neutral molecules and from −0.277 to
+0.277 au for the protonated species. In these maps, the negative regions (strong red color)
correspond to the regions that exhibited a tendency to transfer electrons from the inhibitor
to the metal surface, which were responsible for electrophilic attacks. The positive potential
(blue regions) refer to the parts of the molecule that exhibited a capability to receive
electrons from the metal surface, which consequently, were responsible for nucleophilic
attacks [95,96]. In the neutral forms, the imine nitrogen atoms in both the pyridine and
imidazole rings, as well as the π-electron of the phenyl groups, were shaded with the red
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color at the center, which were responsible for donating electrons to the unoccupied 3D
orbitals of the Fe metal. The part of the molecules that captured electrons from the occupied
3D orbitals of the Fe metal were shaded by a dark blue color, such as some of the carbon
atoms of the from the phenyl ring of the quinoline moiety. The ESP maps of the protonated
forms were mostly covered by a blue color due to the protonation of the two nitrogen
atoms that exhibited sp2 hybridization. These results indicate that in acidic medium the
two inhibitors could interact with the metal surface due to the donation of the π-electrons
from the phenyl groups.
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Figure 13. Optimized structures and molecular electrostatic potential maps of the two investigated
inhibitors in their (a) neutral and (b) protonated forms, as obtained using the B3LYP/6-31+G(d,p)
level in an aqueous solution.

The frontier molecular orbitals, FMOs (HOMO and LUMO), of the ∆E diagram of
the TIMQ and CDIQ neutral and protonated forms are shown in Figure 14. As previously
discussed for the ESP maps, the distribution of the HOMO surface was located at the
triphenyl imidazole moiety, which contain sp2 N atoms and delocalized π-electrons from
the phenyl rings. The LUMO was distributed at the quinoline moiety of the investigated
inhibitors. A similar behavior was also visualized for the protonated species. This con-
firmed that the imidazole, phenyl, and pyridine groups represented the parts that could
contribute electrons to the metal surface. Moreover, the quinoline part of the molecule
represented the segment of the molecule that could transfer electrons from the metal to
form a back-donation interaction with the surface.

Coatings 2023, 13, x FOR PEER REVIEW 19 of 33 
 

 

idine and imidazole rings, as well as the π-electron of the phenyl groups, were shaded 

with the red color at the center, which were responsible for donating electrons to the un-

occupied 3D orbitals of the Fe metal. The part of the molecules that captured electrons 

from the occupied 3D orbitals of the Fe metal were shaded by a dark blue color, such as 

some of the carbon atoms of the from the phenyl ring of the quinoline moiety. The ESP 

maps of the protonated forms were mostly covered by a blue color due to the protona-

tion of the two nitrogen atoms that exhibited sp2 hybridization. These results indicate 

that in acidic medium the two inhibitors could interact with the metal surface due to the 

donation of the π-electrons from the phenyl groups. 

 

Figure 13. Optimized structures and molecular electrostatic potential maps of the two investigated 

inhibitors in their (a) neutral and (b) protonated forms, as obtained using the B3LYP/6-31+G(d,p) 

level in an aqueous solution. 

The frontier molecular orbitals, FMOs (HOMO and LUMO), of the ΔE diagram of 

the TIMQ and CDIQ neutral and protonated forms are shown in Figure 14. As previous-

ly discussed for the ESP maps, the distribution of the HOMO surface was located at the 

triphenyl imidazole moiety, which contain sp2 N atoms and delocalized π-electrons from 

the phenyl rings. The LUMO was distributed at the quinoline moiety of the investigated 

inhibitors. A similar behavior was also visualized for the protonated species. This con-

firmed that the imidazole, phenyl, and pyridine groups represented the parts that could 

contribute electrons to the metal surface. Moreover, the quinoline part of the molecule 

represented the segment of the molecule that could transfer electrons from the metal to 

form a back-donation interaction with the surface. 

 

Figure 14. HOMO and LUMO molecular orbital diagrams of the TIMQ (Q1) and CDIQ (Q2) inhib-

itors in their (a) neutral and (b) protonated forms. The energy level diagrams of the investigated 

molecules are also depicted. 

Figure 14. HOMO and LUMO molecular orbital diagrams of the TIMQ (Q1) and CDIQ (Q2) inhibitors
in their (a) neutral and (b) protonated forms. The energy level diagrams of the investigated molecules
are also depicted.



Coatings 2023, 13, 1405 19 of 32

The quantum chemical reactivity descriptors obtained using the B3LYP/6-31+G(d,p)
level of theory in an aqueous solution for the non-charged and protonated forms of TIMQ
and CDIQ are regrouped in Table 8. These descriptors included the energies of the (E(N),
E(N + 1), E(N − 1), dipole moment (µ), energies of the frontier molecular orbitals (HOMO
and LUMO), EH and EL, inhibitor energy gaps (∆E), metal inhibitor energy gaps (∆E1 and
∆E2), vertical ionization potential (Iv), vertical electron affinity (Av), fundamental gap (Fg),
electronegativity (χ), hardness (η), softness (S), electrophilicity (ω), fraction of electron
transfer (∆N110), and back-donation energy (∆Eb−d). In other words, applying an inhibitor
to a metal surface helped prevent corrosion. This process involved an electron transfer
between the adsorbent (metal surface) and the adsorbate (inhibitor molecule), implying an
interaction of accepted-donation electrons. That is to say, one species accepted an electron,
while the other donated an electron. EH designates the propensity of a molecule to donate
an electron to an acceptor species [17–19,97,98], while the EL describes the tendency of an
inhibitor to accept electrons from a donor molecule. Previous studies reported that the
higher the EH values, the easier of adsorption of molecules on the metal surface, while the
lower the value of EL, the better the inhibition potential [41,99,100]. In contrast, the energy
gap (fundamental gap) is the difference between EL and EH (Iv and Av) and is related to
the energy barrier or gap that must be overcome before inhibition. Additionally, the ∆E is
related to reactivity of the molecule. Therefore, the more reactive a molecule, the lower the
∆E (fundamental gap) value, and vice versa. In addition, within the framework of the hard
and soft acid and base (HSAB), the ∆E is a descriptor than can determine the hardness and
softness of the molecules. Soft molecules have a lower energy gap (and vice versa), and
thus a better inhibition efficiency is expected.

Table 8. Computed quantum chemical reactivity descriptors for the investigated inhibitors in
their neutral and protonated forms obtained using the B3LYP/6-31+G(d,p) level of theory in an
aqueous solution.

Descriptors
Neutral Protonated

TIMQ CDIQ TIMQ CDIQ

E(N) (Ha) −1434.75318 −1894.3477 −1435.6498 −1895.2404
E(N + 1) (Ha) −1434.82767 −1894.4227 −1435.7768 −1895.3678
E(N − 1) (Ha) −1434.54517 −1894.1386 −1435.4070 −1894.9892

µ (Debye) 6.5 7.1 13.9 12.6
Iv (eV) 5.660 5.691 6.607 6.836
Av (eV) 2.027 2.042 3.456 3.469
Eg (eV) 3.633 3.648 3.151 3.367
χ (eV) 3.844 3.866 5.031 5.152
η (eV) 1.817 1.824 1.575 1.684

S (eV−1) 0.550 0.548 0.635 0.594
ω (eV) 4.066 4.098 8.034 7.884

ω+ (eV) 2.372 2.393 5.716 5.518
ω− (eV) 6.215 6.259 10.747 10.671
∆ω (eV) 8.587 8.652 16.463 16.189

∆N 0.269 0.261 −0.067 −0.099
∆Eb−d (eV) −0.454 −0.456 −0.394 −0.421

EHOMO (eV) −5.792 −5.822 −6.734 −6.956
ELUMO (eV) −1.883 −1.897 −3.356 −3.369

∆E (eV) 3.909 3.925 3.378 3.588
∆E1 (eV) 6.019 6.005 4.547 4.534
∆E2 (eV) 5.641 5.671 6.583 6.805

The data shown in Table 8 indicated that EH and EL of the protonated TIMQ were
higher than CDIQ. The EL values were more in line with the experimental data provisions,
compared to the EH values. However, the ∆E of TIMQ (3.378 eV) was lower than CDIQ
(3.588 eV), which did not agree with the experimental data. From the results obtained by
the experiment and calculations, it can be suggested that the inhibition process using these
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types of inhibitors may not depend on the ease of donating electrons to the metal surface,
but on the ease of accepting electrons. It is also possible to propose that the inhibition
process may not be only dependent on how easily electrons migrate from the HOMO to
the LUMO.

The protonated CDIQ (12.6 Debye) had a slightly larger dipole moment than TIMQ
(13.9 Debye), and both of their dipole moments were greater than that of water (1.8 Debye).
This indicated that CDIQ and TIMQ were able to remove water from the metal surface,
preventing the corrosion of the metal. It was experimentally identified that there was no
significant difference between the IE% of TIMQ and CDIQ (94.8 and 95.2%), which agreed
with the computed results of the dipole moment. Hence, the two inhibitors theoretically
exhibited nearly the same IE%, favoring the TIMQ inhibitor. When the other global
chemical reactivity descriptors, including the electronegativity, softness, hardness, and
electrophilicity, were taken into consideration, the examined inhibitors exhibited the same
behavior and trend.

An important global descriptor was the ∆N from the compound to the metal surface,
and vice versa. According to a report, the highest value of ∆N among a group of compounds
was correlated to a strong inhibitory effectiveness. The data shown in Table 8 suggested
that the two investigated inhibitors exhibited nearly similar ∆N values with a difference of
0.008 in the case of the neutral species, and 0.032 in the case of the charged form. It was
also identified that the ∆N values were negative in the case of the protonated forms and
positive in the case of the neutral species. The positive sign indicated that the electrons
were transferred from the molecule to the metal, while the reverse was true in the case of
the negative ∆N values. This change in the direction of the electron transfer was expected
due to the existence of two positive charges on the two sp2 nitrogen atoms in the protonated
forms. In the case of the protonated forms, the results showed that the trend followed
CDIQ > TIMQ, which agreed with the experimental findings. However, the reverse trend
was observed for the neutral species.

The energy that drove the electronic back-donation process, specifically the electron
transfer to the molecule and the back-donation (∆Eb−d) (Equation (6)), was another measure
of the global energy (Table 8). This shift in the energy suggested that the charge transfer
to a molecule followed by a back-donation from the molecule was energetically preferred
when η > 0 and ∆Eb−d < 0. Therefore, the stabilization between the inhibiting molecules
could be compared. This resulted in an increase in both the hardness and the interaction
with the same meal. The data presented in Table 8 shows that for both forms, the order
followed TIMQ > TIMQ, indicating that ∆Eb−d was favored for CDIQ, which agreed with
the experimental data.

The energy gaps ∆E1 and ∆E2 were approximated using Equation (3) to explore the
impact of the inhibitors on the metal surfaces. The results are recapitulated in Table 8. It
was clear that the ∆E1 referred to the electron transfer from the occupied 3d-Fe (Lewis acid)
to the LUMO of the inhibitor (Lewis base), while the ∆E2 corresponded to the electron
transfer from the HOMO of the inhibitor (Lewis base) to the unoccupied 3d-Fe (Lewis
acid). The values displayed in Table 8 show that, for both inhibitors, the value of ∆E2
was significantly greater than that of ∆E1, suggesting that the movement of electrons from
the molecule with the HOMO to the unoccupied 3d-Fe was energetically preferable to the
reverse. These results suggest that the investigated inhibitors acted similar to the Lewis
acid, where ∆E1 was smaller than ∆E2, and the metal acted as a Lewis base. It was also
found that that the order of ∆E1 followed CDIQ < TIMQ, which indicated that the transfer
of the electrons from the HOMO of the metal to the LUMO of the CDIQ (∆E1 = 4.534 eV)
and to the metal surface was easier than the CDIQ inhibitor (∆E1 = 4.547 eV).

In summary, from the results of the global quantum reactivity descriptors in agreement
with the experimental data, we can conclude that the two investigated inhibitors exhibited
almost the same corrosion inhibition efficacy, favoring the CDIQ inhibitor. However, some
descriptors showed that TIMQ was slightly more efficient than CDIQ.
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3.8. Local Reactivity Descriptors (LRD)

The most relevant nucleophilic and nucleophilic Fukui functions are presented in
Table 9, while the full set of results are listed in Tables S1–S4 of the Supplementary Materials.
For the atomic numbers, see Figure 1.

Table 9. Selected condensed nucleophilic and electrophilic Fukui functions for the neutral and
protonated forms of the investigated TIMQ and CDIQ sorted from highest (top) to lowest (down).

Neutral Protonated

Sites f+
A Atom f−A Atom f+

A Atom f−A
TIMQ CDIQ

C29 0.1063 C3 0.0835 C29 0.1255 C15 0.0656
N3 0.1052 C2 0.0791 C31 0.1194 C3 0.0605
C31 0.0908 C1 0.0637 N3 0.0846 C2 0.0575
C30 0.0799 C15 0.0523 C30 0.0690 C1 0.0444
C26 0.0611 N1 0.0401 C27 0.0572 C9 0.0442

TIMQ CDIQ

C28 0.1046 C3 0.0824 C29 0.1251 C15 0.0762
N3 0.1033 C2 0.0782 C31 0.1192 C2 0.0668
C30 0.0894 C1 0.0635 N3 0.0844 C3 0.0561
C29 0.0789 C15 0.0519 C30 0.0691 C10 0.0524
C25 0.0607 N1 0.0397 C27 0.0569 C1 0.0463

Figure 15 shows the iso-surface representation of the nucleophilic f+(r) and elec-
trophilic f−(r) Fukui and dual Fukui functions ( f 2(r) or ∆ f (r)) obtained using the equa-
tions listed in the caption of the figure. For both inhibitors, the iso-surfaces suggested that
the nucleophilic attacks were centered at the imidazoline ring and the nitrogen atom of the
pyridine ring. On the other hand, the electrophilic attacks occurred at the quinoline part of
the molecule, especially at certain carbon atoms of the pyridine ring.
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Figure 15. Nucleophilic Fukui functions

(
f+(r) = ρN+1 − ρN

)
, electrophilic Fukui functions(

f−(r) = ρN − ρN−1
)
, and the dual Fukui descriptor

(
f 2(r) = ∆ f (r) = ρN − ρN−1

)
for (a) the

neutral inhibitors and (b) the protonated inhibitors. These functions were positive, monophasic
(just the blue lobes), and highlighted the sites of electrophilic and nucleophilic activity, respectively.
They were produced using the finite difference algorithm (FDA) for the CV molecule. As a biphasic
function, the dual descriptor revealed the electrophilic behavior (∆f (r) > 0) denoted by the blue
colored lobes, and the nucleophilic behavior (∆f (r) < 0) denoted by the yellow colored lobes. The
(U)B3LYP/B3LYP/H2O/PCM model was used to produce all the iso-surfaces at a pace of 0.005 au.
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For the neutral species, TIMQ and CDIQ, the highest electrophilic functions resided
in the C and N atoms of the imidazole ring C1, C2, and C3, while the highest active
nucleophilic functions resided in the C29 and N3, which were located in the pyridine ring.
For the protonated species, the highest electrophilic functions resided at the C15, C3, C2,
and C1 atoms, respectively, while the highest nucleophilic functions resided at the C29, C31,
and N3 centers. A comparison of the activity of the highest centers in the two inhibitors was
conducted by considering the local softness and local electrophilicity. The data presented
in Tables S1–S4 show that the C29, C31, and N3 centers in the protonated CDIQ inhibitor
were more reactive than the analogue centers.

For a more in-depth analysis of the reactivities to nucleophilic and/or electrophilic
attacks, the 3D color pie chart shown in Figure 16 highlights the double-condensed Fukui
functions of the most reactive centers in protonated form. Figure 16 clearly shows that the
most reactive centers responsible for nucleophilic attacks in both inhibitors were C29, C31,
and N3, while those responsible for electrophilic attacks were C15 and C3. These data are
in agreement with the data visualized by the ESP and the FMO.
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3.9. Dynamics Simulation Study
3.9.1. Inhibitors/Fe(110)

The evaluation of the inhibitory efficacy using a theoretical MD approach was con-
ducted to better understand the interfacial interactions between the two inhibitors TIMQ
and CDIQ in both the non-charged and protonated forms and the metal substrate with the
first iron layer atoms [101]. This simulation needed to account for the 303 K temperature,
the acidic research media (H3O+, Cl−, and H2O), the iron metal (Fe(110), and the neutral
and protonated TIMQ and CDIQ [102]. A low-energy arrangement was thought to be the
best description for the researched inhibitors’ adsorption on the metal [103,104]. Figures 17
and 18 show the photographs taken when the MDS achieved the ground state of the neutral
and protonated TIMQ and CDIQ adsorbed on the surface levels of the iron atomic layers.
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Figure 17. Images of the top and side perspectives for the TIMQ and CDIQ neutral adsorption
arrangements on Fe(110) metal atoms.

The observed patterns in Figure 17 show that the TIMQ and CDIQ neutrals were
adsorbed by the entire structure onto the investigated surface (Fe(110)). The simulations
showed that the target molecule had a greater number of reactive centers present in the
region circumscribed by the FMO densities around the Fe atoms, and thus had a high
binding degree on the Fe area.

Concerning the adsorption of the forms carrying the double charge (Figure 18), it
was axiomatic that CDIQ was completely adsorbed and parallel with the atomic support.
Conversely, the neutral form TIMQ was not completely adsorbed. The quinoline base
structure was adsorbed vertically and the remaining structures were completely adsorbed
on Fe(110). This negatively affected the inhibitory performance of this form.
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Generally, the most stable adsorption structure had the lowest interaction energy
(Einteraction) and the highest Ebinding energy. The computed values for these two energy
parameters were given using the Equation (15) [105].

Einteraction = Etotal − (Esurface+solution + EQuinoline) and Ebinding = −Einteraction (15)

Low Einteraction values indicate weak interfacial contacts between the examined chemi-
cals and the atoms of the first iron layer, whereas high Ebinding values indicate a significant
adsorption [106,107]. As shown in Table 10, the quantitative data showed that the strongest
Ebinding value of this system (1163.306 kJ mol−1) indicated that the non-charged forms
where totaly adsorbed onto the atomic layer of Fe than the protonated forms, while the
most negative CDIQ neutral/Fe(110) value (−1163.306 kJ mol−1) showed an improved
CDIQ–steel surface interaction. Thus, CDIQ effectively protected the surface of the iron
and strengthened the energy barrier.

Table 10. Einteraction and Ebinding of Quinoline/Fe(110), all in kJ mol−1.

Systems −Einteraction Ebinding

TIMQ neutral/Fe(110) 1146.28 1146.28

CDIQ neutral/Fe(110) 1163.306 1163.306

TIMQ potonated/Fe(110) 1100.82 1100.82

CDIQ protonated/Fe(110) 1151.29 1151.29

3.9.2. RDF Analysis

The main objective of this strategy was to introduce the radial distribution function
(“RDF”). This evaluation is a crucial strategy used to calculate the interatomic distances
between atoms, such as N1, O11, N14, and N17 for TIMQ and Fe, and N1, O11, N14, and
N17, and Cl36 for CDIQ and iron [106]. According to the research literature, chemical
adsorption is more likely when the bond length values are less than 3.5 Å. A more be-
lievable alternative is physical adsorption [108,109]. The spectral data of this analysis are
represented in Figure 19. The first peak’s results showed that, with the exception of N17-Fe
(3.75 Å), the initial plane layer’s neutral TIMQ and CDIQ bonds with the Fe atoms were
shorter than 3.5 Å in length. As a result, the neutral form was tightly attached to the metallic
substrate, indicating a higher inhibitory defense. The effect of the double protonation on
the bond lengths led to wider distances, which decreased the inhibiting power of the proton
forms against the corrosive process.
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In future work, we plan to study these two inhibitors in different media with different
substrates in order to assess their inhibitory performance and establish a more selective
and reasonable comparative study.

4. Conclusions

This study demonstrated that two classes of imidazole derivatives had an inhibitory
effect for the corrosion behavior of CS specimens in a HCl medium. The inhibition efficien-
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cies of the four inhibitor concentrations were concluded using electrochemical techniques.
By using 10−3 M of the CDIQ in a blank solution, a +maximum corrosion inhibition efficacy
of 95.8% was attained. TIMQ and CDIQ functioned as mixed-type inhibitors, according
to the PDP data. The inhibitor efficiency and semicircle width increased as the inhibitor
concentrations increased, according to the impedance spectra, which also showed that the
inhibitor efficiency increased. The SEM/EDS analysis confirmed the surface film formation.
Quantum chemical descriptors (global and local chemical reactivity) were very important
for understanding that TIMQ and CDIQ inhibitors have essentially the same inhibition
efficiencies, which was in agreement with the experimental data. The Fukui functions
showed that the quinoline and imidazole parts were responsible for the chemical reactivity
during the corrosion mechanism. In addition, the proposed inhibitors were analyzed
using molecular dynamic simulations to support the adsorption process of the proposed
molecules onto the CS area.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/coatings13081405/s1. Table S1: Hirshfeld charges, condensed
Fukui functions (in e units), local softness in e.eV−1), local electrophilicity (in e.eV) and condensed
dual Fukui (in e), softness (in e.eV−1) and philicity (in e.eV) descriptors for the neutral Q1 inhibitor
obtained at B3lYP/6-31+G(d,p) in aqueous solution using PCM solvation model. Units “e” is the
elementary charge. Table S2: As Table S1 but for the protonated form of Q1 inhibitor. Table S3: As
Table S1 but for the neutral form of Q2 inhibitor. Table S4: As Table S1 but for the protonated form of
Q2 inhibitor.
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