Auditory pitch modulates the localization of audiotactile stimuli during active touch Maria Casado-Palacios, Giulia Esposito, Alessia Tonelli, Arthur Courtin, Olivier Collignon, Andre Mouraux #### ▶ To cite this version: Maria Casado-Palacios, Giulia Esposito, Alessia Tonelli, Arthur Courtin, Olivier Collignon, et al.. Auditory pitch modulates the localization of audiotactile stimuli during active touch. International Multisensory Research Forum, Jun 2023, Brussels (Belgium), Belgium. hal-04192979 #### HAL Id: hal-04192979 https://hal.univ-lille.fr/hal-04192979 Submitted on 31 Aug 2023 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. # Auditory pitch modulates the localization of audiotactile stimuli during active touch Mouraux A.3 Casado-Palacios M.1,2, Esposito G.3, Tonelli A.1,4, Courtin A.3,5, Collignon O.3,6,7, Gori M.1, 1 UVIP- Unit for visually impaired people Italian Institute of Technology, Italy - 4 University of Sydney, Australia - 5 Center for Functionally Integrative Neuroscience at Aarhus University, Denmark - 6 Institute of Research in Psychological Sciences (IPSY), Université catholique de Louvain, Belgium 7 School of Health Sciences, HES-SO Valais-Wallis, Sion, Switzerland ## Introduction Most studies focus on the role of temporal and spatial parameters in multisensory interaction. However, it is known that cross-modal correspondences can also impact multisensory processing [1]. Between them, we can find the association between frequency and spatial location. Specifically, it has been reported that, in the auditory source location, humans consistently map high positions in space [2]. Some authors explored the associations between this cross-modal correspondence and touch using high and low-frequency tones and vibratory stimulus, reporting an implicit association between the relative elevation of a tactile stimulus and the frequency of a sound in passive touch condition [3,4]. Surprisingly, this cross-modal correspondence in active touch is a neglected topic. Considering that active exploration can impact multisensory interactions, we wanted to explore whether pitch can modulate the localization of a tactile stimulus in active touch conditions. #### Method ### **Participants:** 21 participants (8 men; age mean 29.56) #### **Conditions:** **Neutral**: pinknoise **High Pitch**: 6KHz Low Pitch: 800 Hz #### **Stimulation:** Tactile stimulus: sinusoidal signal with a spatial period of 5000 m and an amplitude of 100%. Height: 2 mm; Width 10 cm. Auditory stimulus: pink noise, a 6KHz, and an 800Hz tone 1. STAIRCASE 2. METHOD OF ADJUSTMENT #### Task: **2AFC** – Participants had to slide their index finger twice against a horizontal haptic display and judge the vertical position of a target audio-tactile stimulus (second slide) relative to a reference audio-tactile stimulus (first slide). 3. MARGINALIZED PSI-METHOD Standard position: $Y - \Delta/2$ Comparison position: $Y + \Delta/2$ # Data fitted to Cumulative Gaussians Threshold and slope of the psychometric curve as # **THRESHOLD** 24 Threshold (mm) 22 Results lower position than the standard, while the positive values means that the comparison was above the standard. **SLOPE** Significant difference in the threshold between High pitch and Neutral conditions (p adjusted (adj)=.021) #### Conclusions - Significance difference in threshold between high pitch condition and the neutral one - No differences in slope between conditions Relationship between auditory pitch and perceived location of the audiotactile stimulus, with the high pitched sound biasing perception of the tactile stimuli towards higher locations on the screen. This modulation is translated into a shifted threshold towards lower values, while the slope does not significantly vary between conditions. This research extend previous findings by reporting the effects of frequency on touch during active explorations. In addition, our research supports that this association is independent of the device's orientation (as in our case, the device is in the horizontal plane) [4]. ## References - 1.Chiou, R., & Rich, A. N. (2012). Cross-modality correspondence between pitch and spatial location modulates attentional orienting. Perception, 41(3), 339-353. https://doi.org/10.1068/p7161 - 2. Parise, C. V., Knorre, K., & Ernst, M. O. (2014). Natural auditory scene statistics shapes human spatial hearing. Proceedings of the National Academy of Sciences of the United States of America, 111(16), 6104–6108. - https://doi.org/10.1073/pnas.1322705111 3.Occelli, V., Spence, C., & Zampini, M. (2009). Compatibility effects between sound frequency and tactile elevation. NeuroReport, 20(8), 793–797. https://doi.org/10.1097/WNR.0b013e32832b8069 - 4.Deroy, O., Fasiello, I., Hayward, V., & Auvray, M. (2016). Differentiated audiotactile correspondences in sighted and blind individuals. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1204–1214. https://doi.org/10.1037/xhp0000152 # Acknowlegments This project has been funded by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 860114