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Abstract: Topoisomerases are interesting targets in cancer chemotherapy. Here, we describe the de-
sign and synthesis of a novel copper(II) indenoisoquinoline complex, WN198. The new organometal-
lic compound exhibits a cytotoxic effect on five adenocarcinoma cell lines (MCF-7, MDA-MB-231,
HeLa, HT-29, and DU-145) with the lowest IC50 (0.37 ± 0.04 µM) for the triple-negative MDA-MB-231
breast cancer cell line. Below 5 µM, WN198 was ineffective on non-tumorigenic epithelial breast
MCF-10A cells and Xenopus oocyte G2/M transition or embryonic development. Moreover, cancer
cell lines showed autophagy markers including Beclin-1 accumulation and LC3-II formation. The
DNA interaction of this new compound was evaluated and the dose-dependent topoisomerase I
activity starting at 1 µM was confirmed using in vitro tests and has intercalation properties into DNA
shown by melting curves and fluorescence measurements. Molecular modeling showed that the
main interaction occurs with the aromatic ring but copper stabilizes the molecule before binding
and so can putatively increase the potency as well. In this way, copper-derived indenoisoquinoline
topoisomerase I inhibitor WN198 is a promising antitumorigenic agent for the development of future
DNA-damaging treatments.

Keywords: indenoisoquinoline; copper(II) complex; topoisomerase I; adenocarcinoma; molecular
modeling; DNA intercalation

1. Introduction

Metal-based drugs have been designed and developed for their cytotoxic effects on
cancer cells since the discovery of platinum’s antitumor properties [1–4]. As they adopt
a variety of coordination geometries, essential trace metals [5,6] are used for the imple-
mentation of metal-based complexed drugs in anticancer chemotherapies. In particular,
numerous developed copper complexes have highly efficient antitumor activity [7–9] asso-
ciated with various action mechanisms ranging from chelators [10], ionophores [11], and
proteasome inhibitors [12] to inhibition of topoisomerase I and/or topoisomerase II that
results in severe DNA damage, cell cycle arrest, and ultimately cancer cell death [13–15].

Novel topoisomerase I inhibitors, named indenoisoquinolines [16–19], were identified
to have greater chemical stability compared to camptothecin and its derivatives currently
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used as a second-line treatment against endocrine-resistant breast cancer. The indenoiso-
quinoline derivatives indotecan (LMP400) and indimitecan (LMP776) have completed
phase I/II clinical trials (Figure 1).
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Figure 1. Biologically active indenoisoquinolines.

In previous studies, we have shown that copper complex WN197, derived from
WN170, could be a new efficient drug to counteract cancer cells at low doses and exerts
a specific cytotoxic effect at low concentration (IC50 of 0.5 µM) on three adenocarcinoma
cell lines from breast, cervix, and colon but not on non-cancerous breast MCF-10A cells
and chemo-resistant pulmonary cancer H69AR cells (Figure 1) [15]. To our knowledge,
no studies on the presence of branching on the indenoisoquinoline side chain have been
reported. Our interest in the search for anticancer organometallic drugs has been focused
on the synthesis of a novel triamine ligand WN191 and its corresponding tridentate Cu(II)
complex WN198 (Figure 1). The DNA interaction of this new compound was evaluated
and its cytotoxicity was tested on adenocarcinoma cell lines, revealing the lowest IC50 for
the triple-negative MDA-MB-231 breast cancer cell line.

2. Results
2.1. Synthesis and Characterization

The synthesis of the ligand WN191 and its corresponding copper complex WN198 are
described in Figure 2. Indenoisoquinoline WN191 was first obtained in a four-step reaction.
Condensation of the commercially available benzo[d]indeno [1,2-b]pyran-5,11-dione 1 with
a primary aminoalcohol was followed by tosylation of the alcohol function to lead to
compound 2 in 85% yield. The substitution of the tosyl group by the diprotected triamine
and the deprotection of the Boc group led to the indenoisoquinoline derivative WN191 in
88% yield. Their complexation by copper(II) perchlorate in methanol afforded the copper
indenosisoquinoline WN198 in 70% yield.
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Figure 2. Synthesis of the ligand WN191 and the Cu(II) complex WN198.

The structure of WN198 was established by single-crystal X-ray analysis. The drawing
is displayed in Figure 3. The Cu complex crystallizes in the triclinic space group P1 with
two formula units per unit cell. The XRD results show that the Cu(II) complex consists
of a mononuclear [Cu(II)L(H2O)(CH3OH)]2− (where L is the indenoisoquinolinetriamine
ligand) unit and two (ClO4)−. The five coordinated Cu(II) ions occupy the center of
the distorted square base of the pyramid consisting of three nitrogen atoms from the
indenoisoquinolinetriamine ligand and one oxygen atom of a water molecule (1.995 Å).
One O atom of (CH3)OH completes the pyramidal environment with an axial bond distance
of Cu–O = 2.333 (7) Å.
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2.2. WN191 and WN198 Display Cytotoxic Activity on Five Adenocarcinoma Cell Lines at
Low Doses

Cell viability was assayed on breast cancer cells (MCF-7), triple-negative breast cancer
cells (MDA-MB-231), cervix cancer cells (HeLa), colorectal cancer cells (HT-29), and prostate
cancer cells (DU-145), Table 1. The IC50 values obtained for WN191 were respectively
0.58 µM, 1.12 µM, 0.80 µM, 0.53 µM, and 1.09 µM. The copper metal significantly enhances
the toxicity of the indenoisoquinoline on the triple-negative breast cancer line MDA-MB-
231. For WN198, IC50 values were lower by a factor of 3.02 for MDA-MB-231 (0.37 µM),
or close to a factor of 1.11 for HeLa (0.72 µM) and 1.04 for DU-145 (1.04 µM), or slightly
higher by a factor 1.53 for breast cancer hormone-dependent MCF-7 (0.89 µM) and by a
factor of 2 for HT-29 (1.06 µM). All IC50 values for compounds WN191 and WN198 were
below the cisplatin values ranging from 2 to 40 µM. Compared to WN170 [15], WN198’s
IC50 value was lower by a factor of 2.36 for MDA-MB-231 but not for all the other cell lines.

Table 1. Cell viability IC50 (in µM).

MCF-7 MDA-MB-231 HeLa HT-29 DU-145

WN191 0.58 ± 0.02 1.12 ± 0.01 0.80 ± 0.09 0.53 ± 0.01 1.09 ± 0.05
WN198 0.89 ± 0.22 0.37 ± 0.04 0.72 ± 0.06 1.06 ± 0.02 1.04 ± 0.34
WN170 0.46 ± 0.17 0.875 ± 0.01 0.630 ± 0.09 0.479 ± 0.07 0.305 ± 0.04

Cisplatin 40.396 ± 11.9 33.802 ± 1.27 19.287 ± 5.323 21.313 ± 7.475 2.308 ± 0.04
Statistical difference
(WN191/WN198) **** **** *** **** *

Data are expressed as the mean ± SD of three independent experiments. Statistics were based on the Student’s
t-test of the difference between WN191 and WN198. * p < 0.05, *** p < 0.005, and **** p < 0.001. Cisplatin and
WN170 were used as positive controls.

MTS viability assays were performed on the MCF-10A human non-tumorigenic ep-
ithelial cell line, most commonly used as a model for normal human breast cells (Figure 4A).
The concentration of WN198 required to inhibit 50% of the MCF-10A viability was signifi-
cantly higher compared to the mean obtained from the other five adenocarcinomas’ IC50.
WN198’s IC50 was smaller compared to cisplatin but higher than that of WN197, a copper
complex and a topoisomerase inhibitor [15]. Additionally, we tested the ability of WN198
to alter Xenopus oocyte maturation and embryonic development, two useful single and
highly organized cell systems to test metals and chemical effects [20–23]. Xenopus oocytes
undergo a G2/M transition, after progesterone stimulation and concomitant microinjection
and balneation with WN198 (0.5, 1, and 5 µM). At those doses, oocytes treated with dox-
orubicin, a topoisomerase II inhibitor, displayed an inhibition of their meiosis progression
(Figure 4B). Xenopus embryos could survive WN198 but not doxorubicin treatment. For 1
and 5 µM of doxorubicin, the percentage of surviving embryos was lowered at segmen-
tation (cell division), and only half of the embryos survived gastrulation (involving cell
mobility to build a three-layered organized embryo). For all doxorubicin concentrations
tested, the percentage of live embryos was drastically lowered at the time of neurulation
and organogenesis (Figure 4C).
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Figure 4. Non-cancerous cell viability under WN198 treatment. (A) MCF-10A IC50 values are
expressed as the mean ± SD of three independent experiments. Cisplatin and WN197 were used
as control. (B) Xenopus oocyte G2/M transition was scored by the determination of a white spot at
the animal pole showing the progression from prophase I to metaphase II (meiosis maturation) 12 h
after microinjection and balneation with corresponding drugs (0.5, 1, 5 µM) and external stimulation
by progesterone as a natural inducer (4 µM). Experiments were performed on 10 to 20 oocytes from
three different females. (C) The viability of Xenopus embryos was followed after incubation with
corresponding drugs (0.5, 1, 5 µM). Stages were identified using the Nieuwkoop and Faber table [24]:
segmentation, (3 h 30 min after fertilization), gastrulation (9 h after fertilization), neurulation (19 h
45 min after fertilization), tailbud (24 h after fertilization). Experiments were performed on two
independent fertilizations and 10 to 40 embryos in each condition.

2.3. WN191 and WN198 Are Concentration-Dependent Topoisomerase Inhibitors

To determine the effect of WN191 and Cu(II) complex WN198 on topoisomerase activ-
ity, in vitro tests were realized. Topoisomerase I assays rely on the relaxation of supercoiled
DNA by an active topoisomerase I. With topoisomerase I, supercoiled DNA shows a relaxed
profile (Figure 5). With a well-known topoisomerase I inhibitor, camptothecin (CPT), the
DNA relaxation was disturbed and a part of the DNA remained supercoiled. With the
addition of 1 and 2 µM of WN198 in the reactional mixture, the quantity of relaxed DNA
is decreased, indicating disruption of topoisomerase I activity. WN191 disrupted topoiso-
merase I activity at 2 µM. DMSO (solvent control) and VP-16 (etoposide, a topoisomerase
II inhibitor) have no effect on DNA relaxation induced by topoisomerase I, showing their
lack of inhibitory effect on topoisomerase I activity.
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Figure 5. WN191 and WN198 inhibited human topoisomerase I activity in a dose-dependent manner.
Topoisomerase I (Top1) activity is determined by in vitro assays after the addition of either (A) WN198
or (B) WN191 at different concentrations (0.2, 0.5, 1, and 2 µM, lanes 5–8). Relaxed DNA (RDNA,
lane 1) or supercoiled DNA (SCDNA, lane 2) is used as migration control. The Top1 activity control
allowing the relaxation of SCDNA is in lane 3. DMSO is the solvent control (5%, lane 4). SCDNA
is used in all other reactions in the presence of Top1. (C) Etoposide (VP-16, 50 µM; topoisomerase
II (Top2) poison, lane 1) is the negative control of Top1 activity inhibition, and camptothecin (CPT,
10 µM; Top1 poison, lane 2) the positive control of Top1 activity inhibition. After topoisomerase
reactions, DNA is run in a 1% agarose gel, stained with ethidium bromide (0.5 µg/mL), and visualized
under UV light.

2.4. WN198 Intercalates in DNA

Melting curve and fluorescence measurements were performed to confirm the results
shown in Table 2 and ascertain WN191 and WN198 intercalation in DNA.

Table 2. Melting curves and fluorescence measurements for WN191 and WN198.

Compound Kapp (107 M−1) EtBr Displacement

WN191 8.964 ± 0.964 91%
WN198 10.791 ± 1.638 89%

Apparent binding constants were measured by fluorescence using [EtBr]/[DNA] = 1.26. Data are the mean of at
least three independent experiments.

The binding affinities, determined using a fluorescence-quenching assay based on
DNA-binding competition between the intercalating drug ethidium bromide and the tested
molecules, were used to gain insight into the DNA-binding affinity. The apparent DNA-
binding constant Kapp value of the Cu(II) complex (10.791 ± 1.638 107 M−1) is higher
compared to the original ligand WN191 value (8.964 ± 0.964 107 M−1). The complexation
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of indenoisoquinoline ligand by copper allows a stronger interaction with DNA (Table 2).
The EtBr displacement is in contrast only 2% different between the two compounds.

2.5. Modeling of the Interaction between WN170, WN191, and WN198 and Top1

As no experimental structures of complexes were available, we designed an approach
to understand how our putative ligands could bind to Top1 and could intercalate DNA.
The starting point was the crystal structure of human DNA Top1 in complex with topotecan
poison (Figure 6A) (PDB ID: 1K4T, 2.1 Å). Based on the coordinates of the poison, we sub-
sequently modeled the interaction of WN170, WN191, and WN198 by molecular docking.
The full procedure of molecular modeling is detailed in Section 4.7.
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Figure 6. Interaction models of the studied ligands and Top1. (A) Crystal structure of the topotecan
poison (grey sticks) fitting the DNA groove (orange sticks) of Top1 (brown helices) (PDB ID: 1K4T,
2.1 Å). (B) The binding mode of WN170 (salmon sticks) is similar to topotecan’s binding mode. The
main interaction is taking place inside the DNA groove. (C) The interaction model of WN191 (yellow
sticks) is slightly different from WN170 as the larger branched arm has to switch down. The main
part of the infarction is occurring through the aromatic ring. (D) The binding mode of WN198 (pink
sticks with the copper molecule as a blue ball) is similar to the binding mode of WN191.

On one hand, based on these models, the previously described WN170 adopts a
similar conformation to the commercial poison topotecan which has an aromatic moiety
intercalating the DNA (Figure 6B). The relatively small branched chain of WN170 can easily
fit the binding cavity. On the other hand, the complex between WN191 and Top1 is similar
to the previous one with the aromatic moiety totally fitting the DNA groove (Figure 6C).
Nevertheless, one can observe that the larger branched arm of WN191 had to switch to
another position, putatively decreasing with a small impact on the affinity of this molecule.
Moreover, WN198 has a similar structure as WN191 with a copper ion chelating a water
molecule. This interaction was difficult to model by molecular mechanics as copper ions
are not well parametrized in a classical forcefield. One model was proposed (Figure 6D)
that can be easily superimposed on the ligand WN191. Although the binding modes of
WN191 and WN198 are almost the same, their activities are slightly different, which may be
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explained by copper ion playing a role in the stabilization of the ligand before the binding
to the DNA groove as discussed in Section 3.

2.6. WN198 Induces Autophagy but Not Apoptosis

Apoptosis can be activated after DNA damage [25,26]. However, the early and late
apoptosis markers, respectively, cleaved caspase 3 and cleaved PARP, were not detected
after treatments with WN198 at all concentrations tested, in three adenocarcinoma cell lines,
MDA-MB-231, HeLa, HT-29, in contrast to doxorubicin treatment (Figure 7A). γH2AX,
an indicator of DNA breaks, was detected after treatment with WN198 and doxorubicin,
indicating that WN198 and doxorubicin could induce DNA damage. Untreated cells
showed lower γH2AX signals. We then determined whether WN198 could induce au-
tophagy. Several autophagy markers [14] were present after 24h of treatment with 0.5,
1, and 5 µM of WN198 and rapamycin, an inhibitor of the mTOR pathway known to
trigger autophagy [27]. Beclin-1 was synthesized, and LC3-II (LC3-I in association with
phosphatidyl-ethanolamine) was increased while control untreated cells did not show these
markers (Figure 7B).
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Figure 7. WN198-induced autophagy. MDA-MB-231, HeLa, and HT-29 cell lines were treated for
24 h with doxorubicin (Dox, 5 µM), rapamycin (Rap, 0.5 µM), or WN198 (0.5, 1, 5 µM). (A) Western
blots were performed with anticleaved caspase 3 and anticleaved PARP antibodies for detection of
apoptosis. Anti-γH2AX antibody was used for detection of DNA breaks. (B) Western blot analysis of
Beclin-1, and LC3 markers were used for detection of autophagy. LC3-II/LC3-I ratio was determined
(arrow). β-actin level was used as a loading control. Relative protein levels were expressed by
densitometry using software (Fiji Software, v1.52i).

3. Discussion

Topoisomerases are overexpressed in cancer cells which divide rapidly and have a
high frequency of M phase in their cell cycle. This overexpression can be exploited by
inhibition of topoisomerases by appropriate drugs that generate a high number of DNA
breaks leading to cancer cell death [28–30]. Cells overexpressing topoisomerases have been
shown to better respond to topoisomerase inhibitors [31,32].
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Since the discovery of platinum’s anticancer properties, platinum-derived drugs
have become a mainstay of cancer therapy [2,33]. Other metal-based drugs have been
designed and developed [3,4], like transition metals from the d-block of the periodic
table (groups 3 to 12) [1,34,35], as they adopt a wide variety of coordination geometries.
Indeed, previous studies have demonstrated organometallic compounds composed of
metallic atoms such as copper [9], iron (e.g., ferrocifen/ferroquine [1,36]), ruthenium
(e.g., indenoisoquinoline [37] and various complexes [38]), or platinum (e.g., cisplatin [39]),
which can be used as efficient anticancer drugs. Among them, copper allows a modification
in complexed ligand backbones and better DNA affinity [11,40,41]. Some copper derivatives
interact with DNA, enhancing DNA damage and antitumor activity [42]. Other copper
complexes inhibit topoisomerase activity and result in DNA damage, cell cycle arrest,
autophagy, and death in cancer cells [13–15]. Recently, a new class of topoisomerase
inhibitors derived from indenoisoquinoline were developed and selected for their capacity
to escape efflux transporters implied in cell resistance and for their high stability [16,43].
These indenoisoquinoline derivatives are in phase I/II clinical trials [16,43].

In an attempt to develop new efficient organometallic compounds, a copper(II) in-
denoisoquinoline complex named WN198 was synthesized with a branched triamine
moiety attached to the indenoisoquinoline core. In this compound, the triamine ligand
copper(II) was inserted at the end of the four-carbon chain as a linker because it was
previously shown this moiety enhances the DNA-binding affinity due to many hydrogen
bonds [36,44,45]. The Cu(II) complex structure displays a mononuclear unit of inde-
noisoquinolinetriamine and two (ClO4)−. At the center of a distorted square with three
nitrogen atoms from the indenoisoquinolinetriamine and one oxygen atom from water
are five coordinated Cu(II) ions.

In vitro tests reveal that WN198 inhibits topoisomerase I in a dose-dependent manner
starting at 1 µM and with optimum efficiency at 2 µM, while the initial compound (WN191)
only starts inhibiting topoisomerase I at 2 µM. Furthermore, WN198 could induce DNA
breaks detected by a γH2AX signal. Because H2AX phosphorylation correlates with DNA
lesions it is used as a marker. When DNA lesions are triggered, the activation of the DNA
damage response (DDR) pathway leads to the phosphorylation of histone H2AX on serine
139 (γH2AX) by phosphoinositide 3-kinase-related kinase family members [46,47].

We could further determine that WN198 interacts with DNA with an apparent DNA-
binding constant value higher by a factor of 1.2 compared to the original indenoisoquinoline
ligand value, showing that the complexation of the ligand with copper allows a slight
improvement in the interaction with DNA. A catalytic mode of inhibition could also occur
through the intercalation of WN198 into the DNA as demonstrated by the melting curves
and the fluorescence measurements. Indenoisoquinolines are composed of a planar skeleton,
and the high affinity of the copper(II) complex for DNA could be the result of the π–cation
interaction between the atom of Cu(II) coordinated with ligands and the base pairs [48,49].
DNA intercalation of WN198 could impede topoisomerase’s access to the DNA fixation sites
as seen for other topoisomerase inhibitors, such as anthracyclines [50,51]. Due to a strong
affinity for DNA duplexes, anthracycline compounds prevent topoisomerase binding to
DNA [50,51]. Doxorubicin, one of the most effective chemotherapeutic drugs used against
solid tumors in the treatment of several cancer types, displays a poison activity at low
doses and an intercalating catalytic inhibitory action at high doses. Indenoisoquinoline
copper derivative WN197 also efficiently induced MDA-MB-231, HeLa, and HT-29 cell
death below 0.5 µM. The planar indenoisoquinoline skeleton of WN197 displays high
intercalation into DNA [15]. Low doses of WN197 inhibit topoisomerases while, at higher
doses, the compound has DNA intercalation properties. However, WN197 exhibits two
complexed ligand backbones around a single Cu(II) atom, compared to a single one in
WN198. While some of the topoisomerase I inhibitors developed do not use intercalation [52],
and knowing DNA-binding and topoisomerase I poisoning activities can be viewed as
separate mechanisms [53], our results nevertheless encourage the synthesis of series of



Int. J. Mol. Sci. 2023, 24, 14590 10 of 17

indenoisoquinoline drugs composed of a backbone with a four-carbon side chain around a
metallic center to keep topoisomerase inhibition and strong DNA interaction properties.

Based on existing structures, we demonstrate by molecular modeling that our drugs
interfere with DNA and thus block the activity. Thanks to the structural approach, we can
clearly see that the most important moiety is the aromatic intercalating one.

The viability assays showed that low doses between 0.37 and 1.6 µM could induce
cell death in breast, cervix, colon, and prostate cancer cell lines, from five highly prevalent
adenocarcinomas. The lowest IC50 values were obtained for cervix and breast triple-
negative cancer cell lines at doses below that of the original compound (respectively, by
a factor of 1.1 and 3). These IC50 values are under the values determined for many other
topoisomerase I inhibitors [9]. Higher doses were necessary to affect the MCF-10A human
non-tumorigenic epithelial breast line or Xenopus oocyte G2/M transition and embryonic
development. The IC50 of WN198 on MCF-10A cells was higher compared to WN197,
respectively, 9.73 and 1.080 µM, which makes WN198 a better candidate to avoid side
effects of chemotherapies on non-cancerous cells. The toxicity characteristics of WN198
need further determination with respect to membrane permeability and the determination
of cellular uptake.

Copper complexes or topoisomerase inhibitors arrest the cancer cell cycle in different
phases and trigger cell death differently by apoptosis or senescence or have bimodal
action through both apoptosis and autophagy [54–56]. Recently, another copper complex
derived from the topoisomerase I inhibitor indenoisoquinoline was shown to arrest the
cell cycle in the G2 phase through inhibition of Cdc25C phosphatase necessary to activate
MPF (Cdk1/cyclin B) and to trigger cell death by autophagy [9,14,15]. WN198 triggers
autophagy, shown by the accumulation of Beclin-1 and the formation of LC3-II, but no
apoptosis as cleaved markers such as PARP and caspase 3 were not detected in the cell
lines MDA-MB-231, HeLa, and HT-29 for doses of WN198 equal to and above the IC50.

The influence of indenoisoquinoline amine complexations with other metals should
be examined in future studies with the knowledge that low minimum and necessary doses
of chemotherapeutic compounds could be useful in circumventing normal cell death and
limiting cardiotoxicity, a strategy employed for anthracyclines [57,58].

4. Materials and Methods
4.1. Chemistry

All commercial reagents and solvents were used without further purification. Cisplatin
was procured from Alfa Aesar (Heysham, UK); DMSO from Sigma-Aldrich (Saint-Quentin-
Fallavier, France). Stock solutions were prepared in DMSO. Melting points were determined
with a Barnstead Electrothermal (BI 9300) capillary melting point apparatus and are uncor-
rected. The 1H and 13C NMR spectra were recorded on a Bruker AC300 spectrometer at
300 and 75.5 MHz, respectively, using tetramethylsilane (TMS) as internal standard and
DMSO-d6 as solvent. Elemental analyses were performed with a vario MICRO element
analyzer. Thin layer chromatography (TLC) was carried out on aluminum-baked Macherey-
Nagel silica gel 60. Column chromatography was performed on silica gel (230–400 mesh).
The electronic absorption spectra were acquired on a SPECORD® PLUS UV–Vis double-
beam spectrophotometer (Analytik Jena GmbH, Jena, Germany)). The molar conductance
measurement was carried out using a CDRV 62 Tacussel electronic bridge, employing a
calibrated 10−2 M KCl solution and 10−3 M solutions of compounds in DMSO. Purities of
all tested compounds were ≥95%, as estimated by HPLC analysis. The high-resolution
mass spectrum (HR-MS) was measured by REALACAT, University of Lille on a Synapt
G2Si (Waters SAS, Saint-Quentin-en-Yvelines) equipped with an ion mobility cell, recorded
in positive ion mode with an electrospray ionization (ESI) source.

4.1.1. Synthesis of WN191

• 4-(5,11-Dioxo-5,11-dihydro-6H-indeno[1,2-c]isoquinolin-6-yl)butyl-4-methylbenzene
sulfonate [59].
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4-Aminobutan-1-ol (8 mmol, 0.74 mL) was added to a solution of indenopyranedione 1
(1.0 g, 4.0 mmol) in CHCl3 (40 mL). After stirring at room temperature for 18 h, the reaction
mixture was diluted in CHCl3 (100 mL) and subsequently washed with distilled water
(2 × 50 mL), HCl 0.1 M (1 × 25 mL), and brine (1 × 50 mL), dried over MgSO4, filtered,
and concentrated in vacuo to afford dark-orange needles (1.2 g, 96%). To the crude product
in CH2Cl2 (8 mL) was added TsCl (7.8 g, 4.1 mmol). Triethylamine (1.5 mL, 11 mmol) was
added and the mixture was stirred at room temperature for 16 h. The resulting mixture
was diluted with CH2Cl2 (50 mL) and washed with distilled water (2 × 20 mL) and then
brine (20 mL). The organic layer was dried over Na2SO4 and concentrated. Purification by
flash column chromatography on silica gel (CH2Cl2/MeOH, 99:1, as eluent) afforded the
desired product 2 as a dark-red solid (1.5 g, 85%). Mp: 154 ◦C. 1H NMR (300 MHz, CDCl3)
δ 8.60 (dd, J = 7.2, 0.3 Hz, 1H), 8.26 (dd, J = 6.8, 0.5 Hz, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.69 (td,
J = 6.9, 1.3 Hz, 1H), 7.59 (dd, J = 6.1, 0.6 Hz, 1H), 7.45 (m, 4H), 7.30 (d, J = 7.9 Hz, 2H), 4.48
(t, J = 7.2 Hz, 2H), 4.13 (t, J = 5.6 Hz, 2H), 2.40 (s, 3H), 1.90 (m, 4H). ESI-MS (m/z): found:
474.1382 [M + H]+, calculated: 474.1375 [M + H]+.

• 6-(4-(Bis(2-aminoethyl)amino)butyl)-5H-indeno[1,2-c]isoquinoline-5,11(6H)-dione WN191

Compound 2 (800 mg, 1.7 mmol) was added to a solution of di-tert-butyl(azanediylbis
(ethane-2,1-diyl))dicarbamate (2.6 mg, 8.4 mmol) in acetonitrile (25 mL). The resulting
mixture was heated at 80 ◦C for 16 h. The solvent was evaporated in vacuo. The residue
was taken up in CH2Cl2 (50 mL), washed with brine (2 × 25 mL), dried over MgSO4,
and concentrated in vacuo. Purification by flash column chromatography on silica gel
(CH2Cl2/EtOAc, 7:3, as eluent) afforded the N-protected product as a red solid (663 mg,
65%). Mp: 94 ◦C. 1H NMR (300 MHz, CDCl3) δ 8.79 (d, J = 7.8 Hz, 1H), 8.35 (d, J = 8.7
Hz, 1H), 7.72 (td, J = 6.9, 1.7 Hz, 1H), 7.64 (d, J = 6.5 Hz, 1H), 7.48–7.38 (m, 4H), 5.37
(m, 2H), 4.52 (t, J = 7.9 Hz, 2H), 3.18 (m, 4H), 2.55 (m, 6H), 1.98–1.18 (m, 2H), 1.70–1.65
(m, 2H), 1.36 (s, 18H). To a solution of protected amine (663 mg, 1.1 mmol) in CHCl3
(5 mL) was slowly added a solution of HCl 5M in 2-propanol (40 mL) at 0 ◦C. After
stirring at room temperature for 18 h, the mixture was neutralized by KOH, extracted
with CH2Cl2 (3 × 25 mL), dried over MgSO4, and concentrated in vacuo. Purification by
recrystallization (Et2O/EtOH) afforded compound WN191 as an orange solid (394 mg,
88%). Mp: 172 ◦C. 1H-NMR (300 MHz DMSO-d6) δ 8.41 (d, J = 8.2 Hz, 1H), 8.08 (d,
J = 8.2 Hz, 1H), 7.72–7.60 (m, 2H), 7.52–7.35 (m, 4H), 4.34 (t, J = 8.9 Hz, 2H), 2.85 (m, CH2,
4H), 2.45 (m, 6H), 1.74 (q, J = 7.4 Hz, 2H), 1.53 (q, J = 8.9 Hz, 2H). 13C NMR (75 MHz
DMSO-d6) δ 192.5, 1623, 156.1, 136.5, 134.8, 134.0, 133.9, 131.9, 131.7, 131.2, 128.0, 126.9,
106.8, 53.5, 53.3, 43.9, 31.5, 29.3, 28.9, 27.3, 26.7, 23.3. ESI-MS (m/z): found: 405.2279
[M + H]+, calculated: 405.2285 [M + H]+.

4.1.2. Synthesis of Cu(II) Complex WN198

To a solution of WN191 (298 mg, 0.74 mmol) in MeOH (8 mL) was slowly added a
solution of Cu(ClO4)2.6H2O (273 mg, 0.74 mmol) in MeOH (7 mL). After stirring at room
temperature for 24 h, the mixture was filtered and washed with methanol. The powder
was recrystallized in a mixture of methanol/ether to give orange crystals (367 mg, 70%).
Anal. calc. for C25H34Cl2CuN4O12: C, 41.88; H, 4.78; N, 7.81; found: C, 41.61; H, 4.60; N,
7.90. UV-vis in DMSO-H2O (19/01) 5.10 at 5.0 M, [λmax, nm (ε, M−1 cm−1)]: 659 (200),
460 (2980), 372 (12320), 349 (11920), 327 (11120). 1.21. Λm (Ω−1.cm2.mol−1): 51. IR (cm−1):
3326 (m) νas (NH2), 3269 (m) νs (NH2), 1656 (m) ν (C = O), 1548 (s) ν (C = C), 1077 (s), 622
(m) ν (ClO4

−), 562 (s) ν (Cu-N). ESI-MS (m/z): found: 467.1507 [M − (H2O + MeOH)]+,
calculated: 467.1508 [M − (H2O + MeOH)]+.

Crystal data, data collection, and structure refinement details are summarized in
Table 3.
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Table 3. Crystal data and structure refinement for Cu complex WN198.

Empirical Formula C25H34Cl2CuN4O12

Formula weight 714.98
Temperature/K 296.15
Crystal system Triclinic

Space group P-1
a/Å 9.0523(12)
b/Å 11.6041(14)
c/Å 14.3430(19)
α/◦ 89.459(8)
β/◦ 87.775(8)
γ/◦ 87.345(9)

Volume/Å3 1503.8(3)
Z 2

ρcalcg/cm3 1.579
µ/mm−1 0.972

F(000) 738.0
Crystal size/mm3 0.213 × 0.177 × 0.034

Radiation MoKα (λ = 0.71073)
2Θ range for data collection/◦ 2.842 to 51.992

Index ranges −11 ≤ h ≤ 12, −15 ≤ k ≤ 15, −19 ≤ l ≤ 19
Reflections collected 24167

Independent reflections 5754 [Rint = 0.0575, Rsigma = 0.0819]
Data/restraints/parameters 5754/3/350

Goodness-of-fit on F2 1.028
Final R indexes [I ≥ 2σ (I)] R1 = 0.1042, wR2 = 0.2914
Final R indexes [all data] R1 = 0.1547, wR2 = 0.3380

Largest diff. peak/hole/e Å−3 1.49/−1.39

4.2. Cell Culture

Human cell lines from cervix cancer (HeLa), breast cancer (MCF-7), triple-negative
breast cancer (MDA-MB-231), colorectal cancer (HT-29), prostate cancer (DU-145), and a
human breast epithelial cell line, arguably the most commonly used normal breast cell
model (MCF-10A), were obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA). Cells were cultured at 37 ◦C in a humid atmosphere containing 5%
CO2, in a DMEM culture medium supplemented with 10% fetal bovine serum (Dutscher,
Dernolsheim, France), 1% Zell Shield (Dutscher), and 1% non-essential amino acids (Lonza,
Basel, Switzerland). MCF-10A cells were maintained in MEBM (Lonza) supplemented with
MEGM (Lonza) and 1% Zell Shield.

4.3. Cell Viability Assay

Cell viability was determined using the CellTiter 96® AQueous One Solution Cell
Proliferation Assay (MTS test, Promega, Charbonnières-les-Bains, France). Cells were
seeded in 96-well plates at a density of 2.103 for 24 h before treatment with 0 to 100 µM
of WN198, WN191, WN170, WN197, or cisplatin for 72 h. Cells were incubated for 2 h
with 20 µL of CellTiter solution at 37 ◦C in 5% CO2, and the production of formazan
from reduced 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium (MTS) was measured at 490 nm (SPECTROstar Nano, BMG LABTECH,
Ortenberg, Germany). GraphPad Prism V6.0 software served to calculate IC50. Statistical
differences between WN198 and WN191 were ascertained by a Student’s t-test (* p < 0.05,
** p < 0.001, *** p < 0.0005 and **** p < 0.0001).

4.4. Human Topoisomerase I In Vitro Activity

Topoisomerase I activity was determined with in vitro drug screening kits (TopoGEN,
Inc., Buena Vista, CO, USA assays) based on the relaxation of supercoiled DNA into relaxed
DNA as previously described [15]. Briefly, the assembled reaction mixture was composed of
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supercoiled pHOT1 DNA (250 ng), 10× TGS buffer (10 mM Tris-HCl pH 7.9, 1 mM EDTA),
human topoisomerase I (5 units), the tested compound, and H2O to a final adjusted volume
of 20 µL. WN191 and WN198 were tested at concentrations ranging from 0.2 to 2 µM.
Camptothecin (10 µM) was used as a positive control (poison inhibitor of topoisomerase
I activity), etoposide (100 µM) as negative control (inhibitor of topoisomerase II activity),
1% DMSO alone as vehicle control, and relaxed pHOT1 DNA (100 ng) alone as migration
control. All reaction products were submitted to 1% agarose gel electrophoresis with EtBr
(0.5 µg/mL) at 100 V for 1 h in TAE buffer (Tris-Acetate-EDTA; pH 8.3).

4.5. Ethidium Bromide Competition Test

Titrations of fluorescence were determined as described [36,45]. EtBr/WN191 or
EtBr/WN198 with a molar ratio of 12.6/10 at concentrations ranging from 0.05 to 10 µM
was used in a BPE buffer at pH 7.1. The excitation wavelength was 546 nm and the
emission was monitored in the range of 560 to 700 nm (SPEX Fluorolog, Horiba-Jobin Yvon).
EtBr displacement IC50 values were calculated with a fitting function incorporated into
GraphPad Prism V6.0. The apparent binding constants were calculated using the equation
Kapp = (1.26 (Kapp(EtBr)/IC50) with Kapp(EtBr) = 107 M−1.

4.6. Molecular Modeling

Receptor structure was the crystal structure of human DNA Top1 in complex with
topotecan poison (Figure 4A) (PDB ID: 1K4T, 2.1 Å). All ligands and water molecules were
removed except DNA. Simulation of the binding modes of the receptor and the designed
compounds was performed using the GOLD docking program [60]. GOLD is based on a
genetic algorithm and considered the ligand as flexible, while side chains of most residues
were kept rigid. For the search procedure, a sphere of 30 Å was centered on the X, Y, and Z
coordinates of the topotecan poison (Origin = 22.7 −9.4 26.9). Twenty conformations were
generated for each ligand using default parameters. Then, all the different binding poses
were scored with the ChemPLP scoring function. Subsequent energy minimization was
performed using the AMBER forcefield. Finally, all the molecular representations were
sketched using PyMOL [61].

4.7. Xenopus Laevis Oocyte and Embryo Handling

Xenopus laevis females were obtained from the CRB-University of Rennes I, France.
They were housed at PHExMAR, University of Lille. Xenopus were maintained in accor-
dance with the EU Directive 2010/63/EU and the French National Guidelines for Use of
Animals for Scientific Purposes. The experimental protocols were approved by the “Comité
d’Ethique CEEA-75 en Experimentation Animale Nord-Pas de Calais-France” (Xenopus
project number: F59-00913).

Females were anesthetized by immersion in a solution of Tricaine (MS222, Sandoz) at
3 g.L−1 for 1 h. The ovaries were surgically removed and placed in ND96 medium (96 mM
NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 5 mM HEPES, pH 7.5) at 19 ◦C. Stage VI
oocytes were harvested by using a 1 h collagenase A treatment (1 mg/mL, Boehringer
Mannheim) for 45 min with a manual dissociation under a binocular microscope. Mi-
croinjections were performed under a binocular microscope with a Nishiryo positive
displacement digital micropipette, in the equatorial region of the oocytes, with 60nl of
control DMSO 0.1%, doxorubicin, or WN198 at 0.5, 1, and 5 µM. Meiotic resumption was
triggered by the addition of progesterone (4 µM) after microinjection and the addition of
a corresponding concentration of doxorubicin or WN198 to the external medium (0.5, 1,
and 5 µM). The appearance of a white spot, resulting from the migration of the germi-
nal vesicle at the apex of the pigmented hemisphere of the oocyte, indicated the meiosis
process or G2/M transition. Oocytes arrested in prophase I progress to metaphase II and
arrest [22,23,62].

For spawning, females were stimulated by a dorsal lymph sac injection of human
chorionic gonadotropic hormone (900 U). Mature oocytes were obtained by a slight pressure
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on the animal’s ovaries. Testicles were surgically removed from a male after anesthesia in
5 g.L−1 MS222. In vitro fertilization was performed under gentle agitation in 0.22 µm fil-
tered water with doxorubicin or WN198 at 0.5, 1, and 5 µM or not. Eggs were deganguated
with 2% L-cysteine with doxorubicin or WN198 or not for 10 min and rinsed three times.
Embryos were kept at 23 ◦C in daily renewed solution with doxorubicin or WN198 or not.
Embryo stages were identified using the Nieuwkoop and Faber table (Nieuwkoop and
Faber, 1994) [24]: morula (segmentation, stage 6.5, 3 h 30 min after fertilization), gastrula
(stage 10, 9 h after fertilization), neurula (stage 18, 19 h 45 min after fertilization), and
tailbud (organogenesis, stage 22, 24 h after fertilization).

4.8. Electrophoresis and Western Blot

First, 7.5 × 105 cells were seeded for 24 h before treatment with 5 µM doxorubicin
(a positive control for apoptosis), 0.5 µM rapamycin (a positive control for autophagy),
WN198 (0.5, 1, 5 µM), or 0.1% DMSO (solvent control). After 24 h, cells were lysed in
RIPA buffer (150 mM EDTA; 150 mM NaCl; 50 mM NaF, 1% Triton X-100; NP40 2%; 0.4%
Na-deoxycholate; 0.6% SDS; 50 mM TRIS-HCl pH 4) supplemented with 1% protease
cocktail inhibitors (Sigma-Aldrich) and phosphatase inhibitors (Roche SAS by Merck).

After centrifugation for 10 min at 12,000× g, the protein concentration of sample su-
pernatants was determined using a Bradford assay (BioRad, Marnes-la-Coquette, France) at
595 nm (SPECTROstar Nano, BMG LABTECH). After denaturation at 75 ◦C for 10 min in 2×
Laemmli buffer (65.8 mM TRIS-HCl pH 6.8; 26.3% glycerol; 2.1% SDS; 0.01% bromophenol
blue; 4% β-mercaptoethanol, BioRad), 15 µg of samples was separated on 4–20% SDS PAGE
gels (mini protean TGX, BioRad, Marnes-la-Coquette, France) for 1 h at 200 V in denaturing
buffer (0.3% TRIS base; 0.1% SDS; 1.44% glycine). Proteins were wet transferred in 0.32%
TRIS; 1.8% glycine; 20% methanol (Sigma-Aldrich, Saint-Quentin-Fallavier, France) onto a
nitrocellulose membrane (Amersham Hybond, Dutscher, Bernolsheim, France) for 1 h at
100 V. After saturation with 5% low-fat dry milk in TBS with 0.05% Tween (Sigma-Aldrich),
membranes were incubated overnight at 4 ◦C with primary antibodies: rabbit polyclonal
antibodies were against cleaved caspase 3 or Beclin-1 (Cell Signalling Technology (CST,
by Ozyme, Saint-Cyr-L’École, France), 1/1000), phosphorylated H2AX (S139, CST, 1/750),
LC3 (CST, 1/50); goat polyclonal antibodies against β-actin (SCB, 1/1200); and cocktail
antibodies against cleaved PARP (Abcam, Cambridge, UK, cell cycle and apoptosis cock-
tail, 1/1500). After three TBS-Tween washes of 10 min, membranes were incubated for
1 h with appropriate horseradish peroxidase-labeled secondary antibodies: antirabbit or
antimouse (Invitrogen, 1/30,000) or antigoat antibodies (SCB, 1/30,000). After three 10 min
TBS-Tween washes, the signals were revealed using a chemiluminescent assay (ECL Select,
GE Healthcare, Dutscher, Bernolsheim, France) on hyperfilms (Amersham hyperfilm MP,
Dutscher). β-actin was used as a loading control. Signals were quantified with ImageJ (Fiji
Software, v1.52i) and normalized to respective loading controls.

5. Conclusions

A new copper(II) complex containing an indenoisoquinoline scaffold was synthesized.
The molecular structure of WN198 was confirmed by single-crystal X-ray diffraction anal-
ysis. WN198 displays a strong DNA interaction and kept a topoisomerase I inhibitory
activity as detected by in vitro tests.

The compound exerts excellent cytotoxic activities against five adenocarcinoma cancer
cell lines at a lower concentration compared to other classical topoisomerase drugs used
in chemotherapies. It is particularly efficient against MDA-MB-231 (triple-negative breast
cancer) cell line proliferation with an IC50 of 0.37 µM. The IC50 on non-cancerous cell
line MCF-10A is significantly high compared to other copper complexes as topoisomerase
inhibitors and no toxicity was detected below 5 µM for Xenopus oocyte maturation and
embryo development.

WN198 appears to be a new efficient drug to counteract cancer cells at low doses.
WN198 could benefit patients overexpressing topoisomerases, sensitize cancer cells to
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DNA-damaging chemotherapies [63], bypass unwanted side effects, or be part of synthetic
lethality or synergic strategies.
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