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Abstract

Heterozygous intragenic loss‐of‐function mutations of ERF, encoding an ETS tran-

scription factor, were previously reported to cause a novel craniosynostosis syn-

drome, suggesting that ERF is haploinsufficient. We describe six families harboring

heterozygous deletions including, or near to, ERF, of which four were characterized

by whole‐genome sequencing and two by chromosomal microarray. Based on the

severity of associated intellectual disability (ID), we identify three categories of ERF‐
associated deletions. The smallest (32 kb) and only inherited deletion included two

additional centromeric genes and was not associated with ID. Three larger deletions

(264–314 kb) that included at least five further centromeric genes were associated

with moderate ID, suggesting that deletion of one or more of these five genes
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causes ID. The individual with the most severe ID had a more telomerically ex-

tending deletion, including CIC, a known ID gene. Children found to harbor ERF

deletions should be referred for craniofacial assessment, to exclude occult raised

intracranial pressure.
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CNV, craniosynostosis, ERF, haploinsufficiency, intellectual disability, mosaicism
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The gene ERF, first described in 1995, is located on chromosome

19q13.2 and encodes a member of the ETS family of transcription

factors that acts as a key negative regulator of ERK1/2, effectors of

the RAS‐MAP kinase pathway (von Kriegsheim et al., 2009; Lavoie

et al., 2020; Le Gallic et al., 2004; Polychronopoulos et al., 2006;

Sgouras et al., 1995). Disease‐causing heterozygous loss‐of‐function
variants of ERF were first described in 2013, in 12 families segre-

gating features of a newly recognized syndrome (termed ERF‐related
craniosynostosis or craniosynostosis type 4, OMIM# 600775),

characterized by premature fusion of the cranial sutures (craniosy-

nostosis), hypertelorism, and mild midface hypoplasia (Twigg et al.,

2013). Confirmatory case reports have followed (Chaudhry et al.,

2015; Korberg et al., 2020; Lee et al., 2018; Provenzano et al., 2021;

Timberlake et al., 2017; Tønne et al., 2020; Yoon et al., 2020), and

the clinical features of the disorder were further delineated and

summarized in 16 additional families by Glass et al. (2019). In addi-

tion to craniosynostosis and facial dysmorphism, additional fre-

quently associated features included Chiari‐1 malformation, speech

and language delay, poor gross and/or fine motor control, hyper-

activity, and poor concentration. Importantly, craniosynostosis was

often postnatal in onset, insidious, and progressive with subtle

effects on head morphology, resulting in late median age at pre-

sentation of 42 months among the probands and, in some instances,

permanent visual impairment occurred owing to unsuspected raised

intracranial pressure (ICP) (Glass et al., 2019).

To our knowledge 26 different heterozygous variants in 39 un-

related probands/families have been described in ERF‐related cra-

niosynostosis. The pattern of ERF variants (eight frameshifts, three

nonsense, three splice‐site, three disrupting the initiation codon, and

nine missense localized to the highly conserved DNA‐binding do-

main) is strongly suggestive of a haploinsufficiency mechanism, and

this is supported by functional studies of two of the missense var-

iants that demonstrated loss of DNA binding (Twigg et al., 2013).

Consistent with this, ERF is depleted of loss‐of‐function variants in

the gnomAD database, with an observed/expected ratio of 0.06

(confidence interval 0.02–0.26) and a probability of loss‐of‐function
intolerance (pLI) score of 0.99 (Karczewski et al., 2020).

Although partial or complete heterozygous deletions of ERF

would be predicted to be associated with a similar pathogenic effect,

none has previously been specifically reported. Neither the analysis

of ERF dosage using multiplex ligation‐dependent probe amplification

(MLPA) in 276 samples (Twigg et al., 2013) nor the capture‐based
targeted resequencing in an additional 156 samples from craniosy-

nostosis cases without a genetic diagnosis (SRFT, unpublished data)

identified any pathogenic copy number variant (CNV) affecting ERF,

indicating either that such deletions are not a frequent cause of

craniosynostosis, or that they could produce a more complex/severe

syndrome. A few patients have been reported with large chromo-

some 19q13.2 deletions apparently including ERF, although the

phenotype was often confounded by the inclusion of RPS19, which

lies approximately 375 kb centromeric to ERF, in patients with

Diamond‐Blackfan anemia (Farrar et al., 2011; Kuramitsu et al.,

2012; Quarello et al., 2008; Yuan et al., 2016) or ATP1A3, approxi-

mately 250 kb centromeric to ERF, in a case with a neurological

disorder (Kessi et al., 2018); the names and positions of genes around

ERF are given in Figure 1a and Table S1. The majority of individuals

with large (≥333 kb) deletions were reported to have combinations

of facial dysmorphism and/or macrocephaly, but “mild craniosynos-

tosis” was noted in one case (Yuan et al., 2016). Here, we describe

the identification of six smaller (32–314 kb) deletions at the ERF

locus, four of them characterized by whole‐genome sequencing

(WGS) at base‐pair resolution, and two by array comparative geno-

mic hybridization (aCGH).

The research elements of the genetic studies were approved by

respective Research Ethics Committees (RECs): London–Riverside

REC (09/H0706/20 for Genetic Basis of Craniofacial Malformations),

East of England–Cambridge South REC (14/EE/1112 for 100,000

Genomes Project [100kGP]).

As part of a broader investigation into the genetic causes of

craniosynostosis, we first analyzed the CNV calls (generated by

Canvas and Manta; Chen et al., 2016; Roller et al., 2016) from Illu-

mina paired‐end read data available from WGS of 128 affected in-

dividuals (from 114 families) with craniosynostosis (as the primary

phenotype) available in the Research Environment (main programme

v10; RR65) of the Genomics England 100kGP. This revealed an ap-

parent heterozygous 314 kb deletion, including ERF, in a proband

with syndromic multisuture synostosis (Subject 1; Table 1; Figures 1a

and S1A); the deletion was also detectable in his clinically unaffected

father in a mosaic state; quantification by comparing the numbers of

reads within, compared with outside the deletion on chromosome 19

(Figure S1E), indicated that approximately 75% of blood cells har-

bored the deletion. Previous array CGH in this patient had not
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detected the chromosome 19 deletion; however, two other im-

balances (one inherited from each parent) had been reported

(Table 1; see Supplementary Case Reports for further description of

each subject).

To identify additional individuals harboring CNVs at the ERF

locus, independently of the phenotype, we performed bioinformatic

screening of all the 74,008 genomes of participants from families

affected with rare disorders available in the 100kGP (main pro-

gramme v10; RR187). This revealed two additional deletions around

ERF (Subjects 2 and 3; Table 1, Figures 1a, and S1). The deletion in

Subject 2 (264 kb; Figure 1a) had previously been detected by array

CGH when it was reported as having arisen de novo; however, closer

inspection of the paternal WGS data suggested low levels of mo-

saicism based on the presence of a few abnormal reads supporting

the deletion (Figure S1B). Using the same method as for Subject 1

(Figure S1E), we estimated that approximately 5% of paternal blood

cells were mosaic. The deletion in Subject 3 (31.7 kb; Figure 1a) was

inherited from his father (Figure S1C), with no indication of mosai-

cism (Figure S1E). Following informed consent, we obtained DNA

samples from each of the family trios and confirmed the previously

deduced molecular nature of each deletion by breakpoint‐PCR
(Table S2) and dideoxy‐sequencing (Figure S2). No other causative

pathogenic change was identified by 100kGP for any of Subjects 1–3.

In parallel, as part of a clinical genetics investigation, a further de

novo deletion including ERF was identified by aCGH in Subject 4

(Table 1 and Figure 1a); following informed consent, WGS was car-

ried out using the proband's DNA to characterize the breakpoints,

demonstrating a 265 kb deletion (Figure S1D). There was no evi-

dence of a breakpoint‐PCR product in samples from either of the

parents of Subject 4, in whom the deletion was quantified as 50%,

indicating a de novo origin at conception (Figure S2). Segregation

analysis of a rare SNV (chr19:g.42783791G>C, hg19) located within

the deleted region established that the deletion arose on the pa-

ternal allele (data not shown).

Toward a more comprehensive analysis of genotype–phenotype

correlations, additional cases harboring heterozygous deletions

around ERF that had been identified by aCGH were retrieved from

the DECIPHER database (Firth et al., 2009) (Subject 5, ~265 kb;

Subject 6, ~51 kb) (Figure 1a), and the respective clinicians/scientists

were contacted. However, in Subject 6, an additional confounding

chromosomal abnormality was present in the proband (Table 1).

Similarly to Subject 1, this rendered it difficult to disentangle

the relative contributions of the different chromosome imbalances to

the phenotype. Hence, to undertake a detailed genotype‐phenotype
correlation of deletions surrounding ERF, we focused on Subjects 2–5

only. The major clinical features of these four subjects are sum-

marized in Table 1; see Supplementary Case Reports for more de-

tailed information.

Based on the relative size and extent of each deletion, and the

degree of associated intellectual disability, we propose that the ERF

F IGURE 1 Deletions of 19q13.2 encompassing ERF, and associated phenotype. (a) At the top, genes are represented in the UCSC Genome
Browser with hg19 coordinates and directions of centromere and telomere indicated. In middle, custom tracks show the positions of deletions
characterized by WGS (“WGS‐CNVs,” in red) or by aCGH (“Array‐CNVs,” in purple). Where aCGH findings were extended by WGS, this is
shown by flanking red coloring. For Subject 6, the minimal deleted region is indicated by the thicker bar and the first flanking nondeleted probes
with the thinner bar. The bottom two tracks show control population copy number variation (deletions in orange/red, duplications in blue)
observed in the gnomAD (Structural Variants, v2.1) and DGV (Gold Standard Variants) databases. The pale blue vertical bar shows the position
of ERF relative to all tracks. (b) Facial appearance of Subject 2 aged 20 years (above) and Subject 5 aged 10 years (below)
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deletions belong to three categories. First, in the case of the smallest

deletion (Subject 3, 31.7 kb), which is constitutionally inherited from

the father, neither individual has ID. This deletion includes three

genes (a small portion of the ZNF526 3′‐untranslated region (UTR),

and whole gene deletion of GSK3A and ERF), suggesting that pos-

sessing a single copy of these genes is not associated with ID.

Second, two of the probands (Subjects 2 and 5, Figure 1b) har-

bored deletions of apparently similar extent, although only the

breakpoints in Subject 2 were confirmed at the sequence level. In

addition to deletion of GSK3A and ZNF526, these deletions include

five other genes, DEDD2, POU2F2, ZNF574, GRIK5, and ATP1A3,

extending in a progressively centromeric direction (Figure 1a and

Table S1). Only one, ATP1A3, is a known disease‐associated gene:

heterozygous variants have been described in three overlapping

neurological disorders, alternating hemiplegia of childhood 2

(OMIM# 614820), rapid‐onset dystonia‐parkinsonism (dystonia‐12;
OMIM# 128235), and cerebellar ataxia, areflexia, pes cavus, optic

atrophy, and sensorineural hearing loss (CAPOS) syndrome (OMIM#

601338) (Rosewich et al., 2017). Intellectual disability, although re-

ported, is infrequent in these disorders and the causative mutations

are typically missense or small in‐frame variants (Heinzen et al.,

2014; Sweney et al., 2015), with evidence of toxic gain‐of‐function
effects rather than haploinsufficiency (Arystarkhova et al., 2019).

Hence, it cannot be assumed that heterozygous deletion of ATP1A3

would cause moderate ID. Three of the five genes in the extended

deletion interval (ATP1A3, GRIK5, and POU2F2) have a pLI score

greater than 0.9 (Table S1), indicating evolutionary constraint against

loss‐of‐function alleles (Karczewski et al., 2020). Both Subjects 2 and

5 had a similar degree of moderate ID but were discordant for some

other clinical features (notably Jeavons syndrome–type epilepsy in

Subject 2). Hence we propose that haploinsufficiency for one or a

combination of genes in the ATP1A3‐DEDD2 interval causes mod-

erate ID.

In the third category, the deletion in Subject 4, who has

moderate‐severe ID and autistic spectrum disorder (ASD), extended

more telomeric than any of the other deletions, to encompass the

gene CIC. Intragenic mutations of CIC were previously described in

both severe ID and ASD (Guo et al., 2019; Lu et al., 2017), which is

likely to explain the more severe ID phenotype in this case.

Although our observations must be regarded as provisional gi-

ven the small number of cases identified, they represent the begin-

nings of a map of genotype–phenotype correlations for deletions

encompassing ERF. Importantly, each deletion appeared unique, with

no evidence for a recurrent breakpoint mechanism. In the four cases

characterized at the molecular level, most breakpoints occurred in,

or in close proximity to, regions rich in repetitive elements, especially

Alu elements (Figure S3); in three of these, the sequences at the

breakpoints show homology of only 2–3 nucleotides (cases 1, 2, and

4; Figure S3), indicating nonhomologous end‐joining as the most

likely mechanism. In Subject 3, however, nonallelic homologous re-

combination between two Alu elements (AluY and AluSx) evidently

occurred (Figure S3). Of note, the aCGH originally used to identify

the deletion in Subject 4 suggested a smaller extent of deletion, not

including CIC, in contrast to the larger 265 kb deletion determined by

WGS. Moreover, the aCGH in the parents of Subject 2 had suggested

that the deletion arose de novo in the child, whereas WGS demon-

strated a low level of mosaicism in the father. These two examples

illustrate the added value provided by WGS, both for refining mo-

lecular diagnoses and for greater precision in recurrence risks.

From a clinical point of view, deletion or functional disruption of

the ERF gene itself is likely to account for the mild dysmorphic facial

features (including variable hypertelorism, exorbitism, and macro-

stomia) in these individuals (Figure 1b). Importantly, ERF haploinsuffi-

ciency may predispose to an insidious presentation of craniosynostosis

and raised intracranial pressure, without any noticeable change in skull

shape (Glass et al., 2019; Twigg et al., 2013). Consequently, we re-

commend that all children found to harbor ERF deletions are referred

for three‐dimensional computed tomography scanning of the skull. The

value of this is demonstrated by Subject 4, who was revealed to have

occult sagittal synostosis and pathologically raised ICP. In this in-

dividual, sleep apnea associated with enlarged adenoids appeared to be

contributing to this symptomatology, and adenotonsillectomy led to the

apparent improvement in respiratory function and a burst in newly

acquired language skills (Supplementary Case Reports). Clearly, ameli-

oration of potentially reversible causes of learning or behavioral dis-

ability is particularly critical when deletion of contiguous genes may in

addition be contributing to ID.
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