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The gene ERF, first described in 1995, is located on chromosome
19913.2 and encodes a member of the ETS family of transcription
factors that acts as a key negative regulator of ERK1/2, effectors of
the RAS-MAP kinase pathway (von Kriegsheim et al., 2009; Lavoie
et al, 2020; Le Gallic et al., 2004; Polychronopoulos et al., 2006;
Sgouras et al., 1995). Disease-causing heterozygous loss-of-function
variants of ERF were first described in 2013, in 12 families segre-
gating features of a newly recognized syndrome (termed ERF-related
craniosynostosis or craniosynostosis type 4, OMIM# 600775),
characterized by premature fusion of the cranial sutures (craniosy-
nostosis), hypertelorism, and mild midface hypoplasia (Twigg et al.,
2013). Confirmatory case reports have followed (Chaudhry et al.,
2015; Korberg et al., 2020; Lee et al., 2018; Provenzano et al., 2021;
Timberlake et al., 2017; Tgnne et al., 2020; Yoon et al., 2020), and
the clinical features of the disorder were further delineated and
summarized in 16 additional families by Glass et al. (2019). In addi-
tion to craniosynostosis and facial dysmorphism, additional fre-
quently associated features included Chiari-1 malformation, speech
and language delay, poor gross and/or fine motor control, hyper-
activity, and poor concentration. Importantly, craniosynostosis was
often postnatal in onset, insidious, and progressive with subtle
effects on head morphology, resulting in late median age at pre-
sentation of 42 months among the probands and, in some instances,
permanent visual impairment occurred owing to unsuspected raised
intracranial pressure (ICP) (Glass et al., 2019).

To our knowledge 26 different heterozygous variants in 39 un-
related probands/families have been described in ERF-related cra-
niosynostosis. The pattern of ERF variants (eight frameshifts, three
nonsense, three splice-site, three disrupting the initiation codon, and
nine missense localized to the highly conserved DNA-binding do-
main) is strongly suggestive of a haploinsufficiency mechanism, and
this is supported by functional studies of two of the missense var-
iants that demonstrated loss of DNA binding (Twigg et al., 2013).
Consistent with this, ERF is depleted of loss-of-function variants in
the gnomAD database, with an observed/expected ratio of 0.06
(confidence interval 0.02-0.26) and a probability of loss-of-function
intolerance (pLl) score of 0.99 (Karczewski et al., 2020).

Although partial or complete heterozygous deletions of ERF
would be predicted to be associated with a similar pathogenic effect,
none has previously been specifically reported. Neither the analysis

causes ID. The individual with the most severe ID had a more telomerically ex-
tending deletion, including CIC, a known ID gene. Children found to harbor ERF
deletions should be referred for craniofacial assessment, to exclude occult raised

CNV, craniosynostosis, ERF, haploinsufficiency, intellectual disability, mosaicism

of ERF dosage using multiplex ligation-dependent probe amplification
(MLPA) in 276 samples (Twigg et al., 2013) nor the capture-based
targeted resequencing in an additional 156 samples from craniosy-
nostosis cases without a genetic diagnosis (SRFT, unpublished data)
identified any pathogenic copy number variant (CNV) affecting ERF,
indicating either that such deletions are not a frequent cause of
craniosynostosis, or that they could produce a more complex/severe
syndrome. A few patients have been reported with large chromo-
some 19q13.2 deletions apparently including ERF, although the
phenotype was often confounded by the inclusion of RPS19, which
lies approximately 375kb centromeric to ERF, in patients with
Diamond-Blackfan anemia (Farrar et al., 2011; Kuramitsu et al,
2012; Quarello et al., 2008; Yuan et al., 2016) or ATP1A3, approxi-
mately 250 kb centromeric to ERF, in a case with a neurological
disorder (Kessi et al., 2018); the names and positions of genes around
ERF are given in Figure 1a and Table S1. The majority of individuals
with large (2333 kb) deletions were reported to have combinations
of facial dysmorphism and/or macrocephaly, but “mild craniosynos-
tosis” was noted in one case (Yuan et al., 2016). Here, we describe
the identification of six smaller (32-314 kb) deletions at the ERF
locus, four of them characterized by whole-genome sequencing
(WGS) at base-pair resolution, and two by array comparative geno-
mic hybridization (aCGH).

The research elements of the genetic studies were approved by
respective Research Ethics Committees (RECs): London-Riverside
REC (09/H0706/20 for Genetic Basis of Craniofacial Malformations),
East of England-Cambridge South REC (14/EE/1112 for 100,000
Genomes Project [100kGP]).

As part of a broader investigation into the genetic causes of
craniosynostosis, we first analyzed the CNV calls (generated by
Canvas and Manta; Chen et al., 2016; Roller et al., 2016) from Illu-
mina paired-end read data available from WGS of 128 affected in-
dividuals (from 114 families) with craniosynostosis (as the primary
phenotype) available in the Research Environment (main programme
v10; RR65) of the Genomics England 100kGP. This revealed an ap-
parent heterozygous 314 kb deletion, including ERF, in a proband
with syndromic multisuture synostosis (Subject 1; Table 1; Figures 1a
and S1A); the deletion was also detectable in his clinically unaffected
father in a mosaic state; quantification by comparing the numbers of
reads within, compared with outside the deletion on chromosome 19
(Figure S1E), indicated that approximately 75% of blood cells har-
bored the deletion. Previous array CGH in this patient had not
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FIGURE 1 Deletions of 19q13.2 encompassing ERF, and associated phenotype. (a) At the top, genes are represented in the UCSC Genome
Browser with hg19 coordinates and directions of centromere and telomere indicated. In middle, custom tracks show the positions of deletions
characterized by WGS (“WGS-CNVs,” in red) or by aCGH (“Array-CNVs,” in purple). Where aCGH findings were extended by WGS, this is
shown by flanking red coloring. For Subject 6, the minimal deleted region is indicated by the thicker bar and the first flanking nondeleted probes
with the thinner bar. The bottom two tracks show control population copy number variation (deletions in orange/red, duplications in blue)
observed in the gnomAD (Structural Variants, v2.1) and DGV (Gold Standard Variants) databases. The pale blue vertical bar shows the position
of ERF relative to all tracks. (b) Facial appearance of Subject 2 aged 20 years (above) and Subject 5 aged 10 years (below)

detected the chromosome 19 deletion; however, two other im-
balances (one inherited from each parent) had been reported
(Table 1; see Supplementary Case Reports for further description of
each subject).

To identify additional individuals harboring CNVs at the ERF
locus, independently of the phenotype, we performed bioinformatic
screening of all the 74,008 genomes of participants from families
affected with rare disorders available in the 100kGP (main pro-
gramme v10; RR187). This revealed two additional deletions around
ERF (Subjects 2 and 3; Table 1, Figures 1a, and S1). The deletion in
Subject 2 (264 kb; Figure 1a) had previously been detected by array
CGH when it was reported as having arisen de novo; however, closer
inspection of the paternal WGS data suggested low levels of mo-
saicism based on the presence of a few abnormal reads supporting
the deletion (Figure S1B). Using the same method as for Subject 1
(Figure S1E), we estimated that approximately 5% of paternal blood
cells were mosaic. The deletion in Subject 3 (31.7 kb; Figure 1a) was
inherited from his father (Figure S1C), with no indication of mosai-
cism (Figure S1E). Following informed consent, we obtained DNA
samples from each of the family trios and confirmed the previously
deduced molecular nature of each deletion by breakpoint-PCR
(Table S2) and dideoxy-sequencing (Figure S2). No other causative
pathogenic change was identified by 100kGP for any of Subjects 1-3.

In parallel, as part of a clinical genetics investigation, a further de
novo deletion including ERF was identified by aCGH in Subject 4

(Table 1 and Figure 1a); following informed consent, WGS was car-
ried out using the proband's DNA to characterize the breakpoints,
demonstrating a 265 kb deletion (Figure S1D). There was no evi-
dence of a breakpoint-PCR product in samples from either of the
parents of Subject 4, in whom the deletion was quantified as 50%,
indicating a de novo origin at conception (Figure S2). Segregation
analysis of a rare SNV (chr19:2.42783791G>C, hg19) located within
the deleted region established that the deletion arose on the pa-
ternal allele (data not shown).

Toward a more comprehensive analysis of genotype-phenotype
correlations, additional cases harboring heterozygous deletions
around ERF that had been identified by aCGH were retrieved from
the DECIPHER database (Firth et al., 2009) (Subject 5, ~265 kb;
Subject 6, ~51 kb) (Figure 1a), and the respective clinicians/scientists
were contacted. However, in Subject 6, an additional confounding
chromosomal abnormality was present in the proband (Table 1).
Similarly to Subject 1, this rendered it difficult to disentangle
the relative contributions of the different chromosome imbalances to
the phenotype. Hence, to undertake a detailed genotype-phenotype
correlation of deletions surrounding ERF, we focused on Subjects 2-5
only. The major clinical features of these four subjects are sum-
marized in Table 1; see Supplementary Case Reports for more de-
tailed information.

Based on the relative size and extent of each deletion, and the
degree of associated intellectual disability, we propose that the ERF
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deletions belong to three categories. First, in the case of the smallest
deletion (Subject 3, 31.7 kb), which is constitutionally inherited from
the father, neither individual has ID. This deletion includes three
genes (a small portion of the ZNF526 3’-untranslated region (UTR),
and whole gene deletion of GSK3A and ERF), suggesting that pos-
sessing a single copy of these genes is not associated with ID.

Second, two of the probands (Subjects 2 and 5, Figure 1b) har-
bored deletions of apparently similar extent, although only the
breakpoints in Subject 2 were confirmed at the sequence level. In
addition to deletion of GSK3A and ZNF526, these deletions include
five other genes, DEDD2, POU2F2, ZNF574, GRIK5, and ATP1A3,
extending in a progressively centromeric direction (Figure 1a and
Table S1). Only one, ATP1A3, is a known disease-associated gene:
heterozygous variants have been described in three overlapping
neurological disorders, alternating hemiplegia of childhood 2
(OMIM# 614820), rapid-onset dystonia-parkinsonism (dystonia-12;
OMIM# 128235), and cerebellar ataxia, areflexia, pes cavus, optic
atrophy, and sensorineural hearing loss (CAPOS) syndrome (OMIM#
601338) (Rosewich et al., 2017). Intellectual disability, although re-
ported, is infrequent in these disorders and the causative mutations
are typically missense or small in-frame variants (Heinzen et al.,
2014; Sweney et al., 2015), with evidence of toxic gain-of-function
effects rather than haploinsufficiency (Arystarkhova et al., 2019).
Hence, it cannot be assumed that heterozygous deletion of ATP1A3
would cause moderate ID. Three of the five genes in the extended
deletion interval (ATP1A3, GRIK5, and POU2F2) have a pLl score
greater than 0.9 (Table S1), indicating evolutionary constraint against
loss-of-function alleles (Karczewski et al., 2020). Both Subjects 2 and
5 had a similar degree of moderate ID but were discordant for some
other clinical features (notably Jeavons syndrome-type epilepsy in
Subject 2). Hence we propose that haploinsufficiency for one or a
combination of genes in the ATP1A3-DEDD?2 interval causes mod-
erate ID.

In the third category, the deletion in Subject 4, who has
moderate-severe ID and autistic spectrum disorder (ASD), extended
more telomeric than any of the other deletions, to encompass the
gene CIC. Intragenic mutations of CIC were previously described in
both severe ID and ASD (Guo et al., 2019; Lu et al., 2017), which is
likely to explain the more severe ID phenotype in this case.

Although our observations must be regarded as provisional gi-
ven the small number of cases identified, they represent the begin-
nings of a map of genotype-phenotype correlations for deletions
encompassing ERF. Importantly, each deletion appeared unique, with
no evidence for a recurrent breakpoint mechanism. In the four cases
characterized at the molecular level, most breakpoints occurred in,
or in close proximity to, regions rich in repetitive elements, especially
Alu elements (Figure S3); in three of these, the sequences at the
breakpoints show homology of only 2-3 nucleotides (cases 1, 2, and
4; Figure S3), indicating nonhomologous end-joining as the most
likely mechanism. In Subject 3, however, nonallelic homologous re-
combination between two Alu elements (AluY and AluSx) evidently
occurred (Figure S3). Of note, the aCGH originally used to identify
the deletion in Subject 4 suggested a smaller extent of deletion, not

including CIC, in contrast to the larger 265 kb deletion determined by
WGS. Moreover, the aCGH in the parents of Subject 2 had suggested
that the deletion arose de novo in the child, whereas WGS demon-
strated a low level of mosaicism in the father. These two examples
illustrate the added value provided by WGS, both for refining mo-
lecular diagnoses and for greater precision in recurrence risks.

From a clinical point of view, deletion or functional disruption of
the ERF gene itself is likely to account for the mild dysmorphic facial
features (including variable hypertelorism, exorbitism, and macro-
stomia) in these individuals (Figure 1b). Importantly, ERF haploinsuffi-
ciency may predispose to an insidious presentation of craniosynostosis
and raised intracranial pressure, without any noticeable change in skull
shape (Glass et al, 2019; Twigg et al, 2013). Consequently, we re-
commend that all children found to harbor ERF deletions are referred
for three-dimensional computed tomography scanning of the skull. The
value of this is demonstrated by Subject 4, who was revealed to have
occult sagittal synostosis and pathologically raised ICP. In this in-
dividual, sleep apnea associated with enlarged adenoids appeared to be
contributing to this symptomatology, and adenotonsillectomy led to the
apparent improvement in respiratory function and a burst in newly
acquired language skills (Supplementary Case Reports). Clearly, ameli-
oration of potentially reversible causes of learning or behavioral dis-
ability is particularly critical when deletion of contiguous genes may in
addition be contributing to ID.
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