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Abstract 

 In a signal detection theory (SDT) approach to associative learning, the perceived 

(i.e., subjective) contingency between a cue and an outcome is a random variable drawn from 

a Gaussian distribution. At the end of the sequence, participants report a positive cue-

outcome contingency provided the subjective contingency is above some threshold. Some 

researchers have suggested that the mean of the subjective contingency distributions and the 

threshold are controlled by different variables. The present data provide empirical support for 

this claim. In three experiments, participants were exposed to rapid streams of trials at the end 

of which they had to indicate whether a target outcome O1 was more likely following a target 

cue X. Two interfering treatments were incorporated in some streams to impend participants’ 

ability to identify the objective X-O1 contingency: interference trials (X was paired with an 

irrelevant outcome O2), nonreinforced trials (X was presented alone), plus control trials (an 

irrelevant cue W was paired with O2). Overall, both interference and nonreinforced trials 

impaired participants’ sensitivity to the contingencies as measured by SDT’s d’, but they also 

enhanced detection of positive contingencies through a cue density effect, with nonreinforced 

trials being more susceptible to this effect than interference trials. These results are explicable 

if one assumes interference and nonreinforced trials impact the mean of the associative 

strength  distribution, while the cue density influences the threshold. 

   

Keywords: contingency assessment, signal detection theory, streaming procedure, associative 

interference, cue density effect.  
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In Pavlovian conditioning, the pairing of an initially-neutral conditioned stimulus (CS) 

with a biologically-relevant unconditioned stimulus (US) causes the CS to subsequently 

trigger a conditioned response (CR). In a human contingency assessment task, participants are 

exposed to sequences of stimuli: pairings of a target cue (X) and a target outcome (O) within 

such sequences allow participants to predict the outcome on the basis of the cue. Both 

phenomena are thought to be the consequence of associative learning, that is, the formation of 

an association between the internal representations of the CS/cue and the US/outcome, 

allowing the former to activate the latter. Most of the variables that determine whether a CS 

will elicit a CR in Pavlovian conditioning also determine whether a cue will predict an 

outcome in contingency assessment. Among these variables is the objective predictive value 

of the CS/cue with respect to the US/outcome as measured by the ∆P metric of contingency. 

∆P is the conditional probability of the US/outcome occurrence given the CS/cue minus its 

conditional probability in the absence of the CS/cue. When ∆P is positive (i.e., a positive 

contingency), the CS/cue is a genuine predictor of the US/outcome; when ∆P is negative (i.e., 

a negative contingency), the CS/cue is a genuine predictor of the absence of the US/outcome 

where it might otherwise be expected; finally, when ∆P is null (i.e., a null contingency), the 

CS/cue does not provide information regarding the occurrence or the absence of the 

US/outcome. As first demonstrated by Rescorla (1968), the likelihood that a CS will trigger a 

CR is directly related to the ∆P value between the CS and the US. Likewise, contingency 

judgments in human participants track the ∆P value between the cue and the outcome (Allan, 

1980; see Shanks, 1995, 2007, for reviews). 

 Allan and collaborators have analyzed contingency assessment using a signal 

detection theory (SDT) framework (Allan, Hannah, Crump, & Siegel, 2008; Allan, Siegel, & 

Tangen, 2005; Siegel, Allan, Hannah, & Crump, 2009; see also Jozefowiez, 2021; Laux, 

Goedert, & Markman, 2010; Maia, Lefèvre, & Jozefowiez, 2018; Perales, Catena, Shanks, & 
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Gonzalez, 2005; see Wickens, 2002, for an introduction to SDT). Exposing participants to a 

sequence of trials with and without the cue and with and without the outcome presumably 

results in the development of a subjective contingency that reflects the strength of the cue-

outcome association. If the subjective contingency is above a critical value, participants 

report is a positive contingency between the cue and the outcome; otherwise, they do not. The 

subjective contingency is ‘noisy;’ if a participant is exposed to two sequences of stimuli 

implementing the same cue-outcome contingency, the subjective contingency value at the end 

of those two sequences is not apt to be identical because, even though it would be drawn from 

the same Gaussian distribution, it is drawn anew for each stimulus sequence.  

 In such an SDT framework,  participants belief states at the end of a stimulus 

sequence are the result of several potentially independent processes: (a) the sensitivity to the 

objective cue-outcome contingencies which determines how the mean of the subjective 

contingency distribution varies with the cue-outcome contingency; (b) the noise in the 

perception of cue-outcome contingencies which determines the standard deviation of the 

subjective contingency distributions; (c) the threshold value determining which of two 

dichotomous belief states participants are in (i.e., outcome expected or unexpected) as a 

function of the subjective contingency. Allan and her collaborators have argued that the 

sensitivity to the contingencies and the threshold value are affected by different variables 

(because they worked only within the framework of an SDT model assuming constant 

variance, they did not consider variables potentially affecting the noise in the subjective 

contingency). Notably, Hannah & Allan (2011), Laux et al. (2010), and Siegel, Allan, 

Hannah, & Crump (2009) have argued that the two conditional probabilities of ∆P do not act 

on the same process. They concluded that the probability of the outcome given the cue 

impacts the sensitivity to the contingencies, while the probability of the outcome in the 

absence of the cue impacts the threshold. Likewise, Allan, Siegel, and Tangen (2005) have 
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argued that the outcome density effect (for a given ∆P value, participants are more likely to 

perceive a positive contingency between the cue and the outcome if the overall probability of 

the outcome is higher) is the result of changes in the threshold, rather than in the sensitivity to 

the contingencies. Likewise, Perales et al. (2005) have made a similar argument concerning 

the cue density effect (for a given ∆P, participants are more likely to perceive a positive 

contingency between the cue and the outcome if the overall probability of the cue is higher, 

Allan & Jenkins, 1993; Matute, Yarritu, & Vadillo, 2011; Vadillo, Musca, Blanco, & Matute, 

2011; Wasserman, Kao, Van Hamme, Kategiri, & Young, 1996; White, 2003). 

 Unfortunately, the conclusion that different variables impact the sensitivity to the 

contingencies and the threshold is not entirely warranted by the data collected by these 

authors. As discussed in Maia et al. (2018), their reasoning only holds if one knows whether 

an experimental manipulation has altered the subjective contingency distributions or the 

threshold. But the parameters of an SDT model extracted from a data set are not absolute 

measurements; their values are expressed only relative to each other. For instance, suppose 

SDT is used to model an experiment in which participants have to discriminate between two 

cue-outcome contingencies C1 and C2, both between cue A and outcome O. The parameters 

of the model are the mean and standard deviation of the subjective contingency distribution 

when C1 (or C2) is presented, and the threshold value. To extract the SDT parameters, the 

mean and standard deviation of the subjective distribution for either C1 or C2 are clamped to 

arbitrary values (usually 0 for the mean and 1 for the standard deviation), and the values of 

the other parameters are then expressed relative to them. Hence, depending on whether C1 or 

C2 is used as the reference condition, the absolute values of the SDT parameters will change, 

but their values relative to each other will not. 

As a consequence, it is impossible in many situations to know whether it is the 

threshold value which has shifted while the mean of the distributions remained constant, or 
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the reverse (e.g., Witt, Taylor, Sugovic, & Wixted, 2015; Wixted & Stretch, 2000). For 

instance, Laux et al. (2010) manipulated the contingency between a target cue and the 

outcome, which could be either null or positive, and between a competing cue and the 

outcome, which could also be either null or positive. They found that their data could be 

accounted for by an SDT model assuming that the mean of the subjective contingency 

distribution was determined by the contingency between the target cue and the outcome, 

while the threshold value was controlled by the contingency between the alternate irrelevant 

cue and the outcome. But Maia et al. (2018) showed that this SDT model was mathematically 

equivalent to an SDT model assuming that both probabilities jointly affected the mean of the 

subjective contingency distributions while the threshold remained constant. Hence, it was not 

possible to distinguish between these two models from the available data. The same problem 

affects similar arguments made by Hannah and Allan (2011) and Siegel et al. (2009). For the 

same reason, the conclusions of Allan et al. (2005) and Perales et al. (2005) regarding the cue 

and outcome density effects are not unambiguously supported by their data.  

 Hence, while the idea that the sensitivity to the contingencies and the threshold are 

impacted by different variables is intriguing, it is not well supported by the published data. 

We believe that the evidence presented in this paper provide such empirical support. Yet, this 

was an unexpected outcome for us. The first experiment in this series was designed with a 

different goal in mind. It led to a surprising result that was difficult to anticipate and 

consequently we decided to investigate in its own right. At the conclusion of the series, we 

realized that, if analyzed through the lens of SDT, our results could be explained by 

concluding that the sensitivity to the contingencies and the threshold are affected by different 

variables. Instead of inventing a post hoc rational for Experiment 1 in the light of this 

conclusion, we decided it was preferable to acknowledge the serendipitous nature of our 
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discovery and to lead the reader through the same reasoning we followed during the 

experiments.  

Experiment 1 

 Associative interference (outcome interference, as opposed to cue interference) occurs 

whenever the representation of a cue X becomes associated with two different outcome 

representations, O1 and O2. In retroactive interference, the interfering X-O2 association is 

learned second (i.e., after the X-O1 association), whereas, in proactive interference, it is 

learned first. Following this sort of categorization, there is a third type of interference which 

is curiously rarely mentioned: interspersed interference in which the X-O1 and the X-O2 

pairings occur interspersed and subsequently interfere with expression of the opposing 

association (Pineño, Ortega, & Matute, 2000; Polack, Jozefowiez, & Miller, 2017). 

 As the first step in a larger project, Experiment 1 was aimed at simply identifying 

parameters that would produce robust interspersed interference in a contingency assessment 

task. We used the streaming procedure initially developed by Allan and collaborators (a.k.a. 

the streamed-trial procedure: Crump, Hannah, Allan, & Hord, 2007; Hannah, Crump, Allan, 

& Siegel, 2009; Siegel, Allan, Hannah, & Crump, 2009; see also Jozefowiez, 2021; Laux et 

al., 2010; Maia et al., 2018). In this procedure, participants are exposed to very rapid streams 

of stimuli into which a target cue and a target outcome are repeatedly embedded. At the end 

of each stream, participants have to indicate whether the target outcome is more likely 

following the target cue, using either a Yes/No question or a Likert rating. One advantage of 

this procedure is that, as streams are presented multiple times to a single participant, it 

provides enough data to extract the parameters of a SDT model (see, for instance, Jozefowiez, 

2021, or Maia et al., 2018).  

Method 

Participants and apparatus 
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 We hypothesized a Cohen’s d of 0.6. In a worst-case-scenario where performance in 

the various experimental conditions is not correlated, this would suggest that 45 participants 

are necessary to allow a t-test to detect an effect corresponding to a Cohen’s d of 0.6 80% of 

the time. Thus, we planned on a sample size of 45 participants (10 males and 35 females, with 

mean age 20.28 +/- 1.48, ranging from 19 to 25 years old) recruited from the subject pool at 

the University of Lille. The experiment took place in individual experimental cubicles using a 

MacBook Pros with 15.4-inch screens with a 2880 x 1800 resolution. The program for the 

study was written using the Psychopy2 library (Peirce, 2007).  

Procedure 

 After reading a screen describing the experiment, participants signed a consent form 

indicating that their data would be anonymized and that they could withdraw their consent to 

participate at any time without prejudice. The procedure generally followed that of 

Jozefowiez (2021) and Maia et al. (2018). The experiment was divided into two parts. The 

first part was a warm-up aimed at familiarizing participants with the task and at screening out 

participants who had difficulties discriminating contingencies. This warm-up phase was itself 

divided into three parts: positive warm-up, negative warm-up, and mixed warm-up. The 

second part was the experimental phase per se. 

Positive warm-up: At the beginning of the positive warm-up procedure, participants 

were first presented with instructions explaining them the task. They were also reminded to 

turn off their cellphone and asked to not count the stimuli. They were then presented with a 

stimulus stream. The stream started with a 1-s grey screen with a white fixation cross at the 

center. The fixation cross remained visible throughout the stream. A series of 20 trials was 

then presented to participants. A trial was composed of (a) an 83-ms cue epoch during which 

a white triangle (trial marker A, h x w was 105 x 105 pixels) was shown in the upper left 

corner of the screen (coordinates in pixels were [-225, 170], with [0, 0] being the location of 
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the fixation cross) while another stimulus (a green oval, radii was 90 x 78 pixels, target 

stimulus X) was shown during only some trials in the upper right corner (coordinates in 

pixels were [225, 196]; (b) then an 83-ms outcome epoch during which a red rectangle (181 x 

158 pixels, target outcome O1) would or would not be presented centered in the lower part of 

the screen, below the fixation cross (coordinates in pixels [0, -196]); (c) finally, there was an 

83-ms inter-trial interval (ITI) during which only the fixation cross was presented.  

At the end of the stream, a dialog box appeared at the center of the screen with the 

question: "Does the red square appear more often when the green circle has just been 

presented than if the green circle has not presented?". Instead of the words “green circle” and 

“red square”, participants saw small iconic representations of the stimuli as they appeared in 

the experiment. Participants used the mouse to answer by clicking on either a "Yes" or a "No" 

button displayed below the question. The mouse pointer initially appeared equidistant from 

each button. Once they clicked on one of the buttons, the dialog box disappeared and another 

one appeared with the question “How sure are you of your decision?” with three buttons 

reading “Not sure”, “Sure”, “Very sure” appearing below the question. Once participants 

answered this question, the dialog box disappeared, and the stream ended. This confidence 

rating was introduced because it would have allowed us, if needed, to use a more complex 

SDT model assuming that the standard deviation of the subjective contingency distribution 

varied across conditions (see, for instance, Jozefowiez, 2021, & Maia et al., 2018). This was 

introduced as an option that we could have used in case we needed it, that is to say, in case 

the simpler equal variance SDT model did not provide a clear account of the data. As that did 

not turn out to be the case, we decided not to exercise this option. Jozefowiez (2021) and 

Maia et al. (2018) have, in any case, showed that, for the range of ∆P values we explored, the 

assumption that the standard deviation of the subjective contingency distribution is 

reasonable.  
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Overall, streams were composed of the following types of trials: (a) AX-O1 trials: A 

and X followed by O1; (b) AX- trials: A and X followed by no outcome; (c) A-O1 trials: 

Only A is shown followed by O1; (d) A- trials: Only A is shown followed by no outcome. 

The ∆P contingency between X and O1 was manipulated by varying the proportion of these 

four types of trials within a stream.  

The trial composition for the stream shown during the positive warm-up is shown in 

Table 1. It implements a strong positive contingency (∆P = 1) between the cue and the 

outcome. The order of presentation of the trials within the stream was determined randomly. 

Once the stream was over, participants were presented with a debriefing screen explaining 

that, as O1 was always presented following X while it was never presented when X was not 

presented, they should have answered YES to the contingency question. They were then 

prompted to press a button to move to the next part of the warm-up phase. 

Negative warm-up. During the negative warm-up, participants were presented with a 

stream identical to the one used during the positive warm-up except for the composition of 

trials which is shown in Table 1. It implements a strong negative contingency (∆P = -1) 

between the cue and the outcome. At end of the stream, participants were presented with a 

debriefing screen explaining that, as O1 was never presented following X while it was always 

presented when X was not presented, they should have answer NO to the contingency 

question. They were then prompted to press a button to move to the next part of the warm-up 

phase. 

Mixed warm-up: Participants were given instructions explaining that they would now 

be presented with positive contingency and negative contingency streams and that they 

should try to identify them as accurately as possible. They were then presented with a block 

of two streams. The block was composed of a ∆P = 1 stream similar to the one shown during 

the positive warm-up and a ∆P = -1 stream similar to the one shown during the negative 
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warm-up. The order of presentation of the streams within this block was determined 

randomly. In order to move to the experimental phase, participant had to answer correctly to 

two blocks in a row. A correct answer was defined as answering YES to the contingency 

question after a ∆P = 1 stream and NO after a ∆P = -1 stream. If participants did not meet the 

learning criterion after 10 block presentations, they were rejected from the study; a debriefing 

screen appeared thanking them for their participation and explained the overall goal of the 

experiment. In practice, this did not occur for any participants. 

Experimental phase. At the beginning of the experimental phase, participants were 

shown instructions telling them that they were about to enter the experimental phase and that 

they would be presented with streams for which it would more difficult than before to decide 

whether they should answer YES or NO to the contingency question. They were also 

reminded that they should try not to count the stimuli.  

During the experimental phase, participants were presented with streams identical to 

the one shown during the warm-up phase except that (a) they were composed of 40 trials 

instead of 20 and (b) two new stimuli were presented during the streams: a yellow trapezoid 

(95 x 105 pixels, distractor cue W) appearing at the same location as the target cue X and a 

blue rhombus (95 x 105 pixel, interfering outcome O2) appearing at the same location as the 

target outcome O1. This led to the introduction of two new kinds of trials: AW-O2 trials (A 

and W were shown during the cue epoch while O2 was shown during the outcome epoch 

phase) and AX-O2 trials (A an X were shown during the cue epoch while O2 was shown 

during the outcome epoch). As during the warm-up, at the end of each stream participants 

completed a contingency question followed by a confidence rating. 

The compositions of the four types of streams participants were exposed to during the 

experimental phase is shown in Table 2. Each stream was composed of a set of ’core’ trials 

which established a baseline contingency between X and O1 (either negative or positive) and 
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the ’interfering treatment’ aimed at impeding the learning or expression of the X-O1 

association established by the core trials. Although in Table 2 the core trials are listed 

separately for clarity, the trials composing the core trials and the interfering trials were 

randomly mixed during the presentation of a stream. The interfering trials consisted of 20 

AW-O2 trials in the Control condition, and of 20 AX-O2 trials in the Interference condition.  

Each stream was presented 40 times to each participant. The order of presentation of the 

streams was randomly determined. 

Data analysis 

 In addition to the percentage of each type of trial for which participants identified a 

positive contingency, we computed 𝑑′(𝑖) for the streams in the Control and Interference 

condition which represented each participant’s sensitivity to contingency in condition i (𝑖 ∈

[𝐶𝑜𝑛𝑡𝑟𝑜𝑙, 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒]), that is, the participant’s ability to discriminate between a positive 

and a negative contingencies in condition i. This relies on the following assumptions. When 

presented with a negative stream in condition i, the subjective contingency is drawn from a 

Gaussian distribution with mean 𝜇5(𝑖) and standard deviation 𝜎, whereas, for a positive 

contingency, it is drawn from a Gaussian distribution with mean 𝜇7(𝑖) and standard deviation 

𝜎 (see General Discussion for elaboration) When the subjective contingency is above a 

threshold value C(i), the participant believes that there is a positive contingency between the 

cue and the outcome. 

Under these assumptions, 𝑑′(𝑖) is the difference 𝜇7(𝑖) − 𝜇5(𝑖). Let 𝑃;(+|𝑁𝑒𝑔) be the 

probability of detecting a positive contingency after a negative stream in condition 𝑖 and 

𝑃;(+|𝑃𝑜𝑠) be the probability of detecting a positive contingency after a positive stream in 

condition 𝑖. Then,  

𝑑A(𝑖) = 𝑍[𝑃;(+|𝑃𝑜𝑠)] − 𝑍[𝑃;(+|𝑁𝑒𝑔)]									(1) 



Contingency assessment and SDT 

	

13	

where 𝑍(𝑥) is the inverse of the cumulative standard distribution (Wickens, 2002). Note that 

d’(i) cannot be computed if either 𝑃;(+|𝑁𝑒𝑔) or 𝑃;(+|𝑃𝑜𝑠) is equal to 0 or 1. This happened 

for just one participant in the Control condition: whenever a comparison involved the Control 

condition, the data from this participant were excluded from the analysis. 

 𝑃;(+|𝑁𝑒𝑔) is what is usually called the probability of false alarms for condition i 

whereas 𝑃;(+|𝑃𝑜𝑠) is the hit rate for condition i. This entails that the subjective contingency 

distribution following a negative stream is the noise distribution for condition i, whereas the 

subjective contingency distribution following a positive stream is the signal distribution for 

condition i. Those terms imply that all the SDT parameters are expressed relative to 𝜇5(𝑖).  

Inferential analysis was carried out based on within-subject 95% confidence intervals 

(CI) computed using Student’s t-distribution. Cohen’s d was used as a measure of effect size 

between two conditions. Following Cummings’ (2012) recommendation for the computation 

of Cohen’s d in a within-subject design, we used the following formula (also called Hedge’s 

g) 

𝑑 = G1 −
3

8(𝑛 − 1) − 1
J
∑ (𝑥𝑘1 −M
NOP 𝑥𝑘Q)

𝑛R𝑠P
Q + 𝑠QQ
2

 

where 𝑥TN is the score of participant k in condition j, and n is the number of participants. 95% 

CI for Cohen’s d were computed using ESCI (https://thenewstatistics.com/itns/esci/) which 

implements the method described by Algina and Kesselman (2003). It provides an 

approximation of the 95% CI for Cohen’s d in a paired design if (a) the number of 

participants is larger than 10, (b) Cohen’s d in the population is between -1.8 and +1.8, and 

(c) the correlation in the population between the two conditions is between 0 and 0.8. The 

linear correlation between 𝑥TP and 𝑥TQ is also provided because it can be used to inform 

future power analysis. 

Results and discussion 
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 As shown in the top panel of Figure 1, participants discriminated between the positive 

and the negative streams in both the Control and the Interference condition (Control: Cohen’s 

d = 1.89, no CI could be computed because the convergence properties of the Algina-

Kasselman method were not met, correlation = 0.61; Interference: Cohen’s d = 0.80, 95% CI 

[0.54, 1.09], correlation = 0.73). This is confirmed by the bottom panel of Figure 1 which 

shows participants’ sensitivity to the contingencies as measured by d’. It is clearly positive in 

both conditions. Moreover, as one would expect as a result of associative interference, the 

sensitivity to the contingency is lower in the Interference condition than in the Control one 

(Cohen’s d = 0.93, 95% CI [0.58, 1.30], correlation = 0.49). 

 But, contrary to expectations, participants were also more likely to detect a positive 

contingency in the Interference condition than in the Control condition (Cohen’s d = 0.90, 

95% CI [0.44, 1.38], correlation = -0.10). This is true for both the negative streams (Cohen’s 

d = 1.20, 95% CI [0.74, 1.70], correlation = 0.04) and the positive ones (Cohen’s d = 0.44, 

95% CI [0.01, 0.88], correlation = -0.09). At first glance, there are two potential explanations 

for this puzzling result. As X was presented 20 more times in the Interference condition than 

the Control condition, this could be the result of a cue density effect. Another possibility is 

that participants did not discriminate between O1 and O2, perhaps because the stimuli were 

so short.  Indeed, if we assume that O1 and O2 are processed as the same outcome and we 

then compute ∆P for each stream, the various conditions are ranked as follows from the 

higher ∆P to the lowest: Interference-Positive, Control-Positive, Interference-Negative, 

Control-Positive. If we rank the conditions according to the empirical probability of detecting 

a positive contingency, we obtain exactly the same order. 

Experiment 2 

 Experiment 2 was designed to differentiate between these two possibilities (i.e., cue 

density effect vs. outcome discrimination failure). It basically replicates Experiment 1 but 
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adds a Nonreinforcement control in which the AX-O2 interference trials are replaced by AX- 

nonreinforced trials. If the cue density explanation is correct, the same pattern observed in the 

Interference condition should also be observed in the Nonreinforcement condition because 

the cue density is the same in both conditions. The sensitivity to the contingencies would 

likely be lower because of the presentation of AX- nonreinforced trials, but participants 

should be biased toward detecting a positive contingency. Conversely, if the outcome 

discrimination failure hypothesis is correct, the overall probability of detecting a positive 

contingency should be lower, or at most identical, in the Nonreinforcement condition than in 

the Control condition. 

Method 

Participants and apparatus 

 The target sample size was 64. As the effect size observed in Experiment 1 was large, 

a lower number of participants in theory should have sufficed. But, as the number of 

interference AX-O2 trials was decreased from 20 in Experiment 1 to 10 in Experiment 2 for 

methodological reasons that are explained in the next section, and because we did not know 

how this would affect the effect size, we aimed at 80% power for a t-test under the 

assumption that interference would correspond to a Cohen’s d of 0.5 and that performance in 

the various conditions would not be correlated within subjects.  

 We ended up recruiting overall 69 participants from the University of Lille subject 

pool, but 5 of them failed the warm-up phase. The remaining 64 participants were composed 

of 55 females and 9 males (age: 21.06 +/- 2.73, ranging from 18 years old to 33 years old). 

The apparatus was identical to the one used in Experiment 1. 

Procedure 

 The procedure was the same as that used in Experiment 1 except for the composition 

of the streams during the experimental phase which is depicted in Table 3. Note that the 20 
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interfering trials in the Control condition in Experiment 2 consisted of 10 AW-O2 trials and 

10 AW- trials (in AW- trials, A and W were shown during the cue epoch whereas no stimulus 

was shown during the outcome epoch). The 10 AW-O2 trials were replaced by 10 

interference AX-O2 trials in the Interference condition and by 10 AX- trials in the 

Nonreinforcement condition. This design has the advantage to keep the O2 density constant 

across conditions. This would not have been the case if, as in Experiment 1, we had 20 AW-

O2 trials in the Control condition and 20 AX-O2 trials in the Interference conditions. That is, 

replacing the 20 AX-O2 and AW-O2 trials by 20 AX- trials in the Nonreinforcement 

condition would have created a potential confound because O2 would never have been shown 

in the Nonreinforcement streams.  

Note that, in Table 3, the 10 AX- nonreinforced trials are shown separately in the 

Nonreinforcement condition for convenience, but they were not different from the AX- trials 

which were part of the ‘core’ trials that determined the baseline contingency between X and 

O1. Data analysis proceeded as in Experiment 1. 𝑑′(𝑖) ( 𝑖 ∈

[𝐶𝑜𝑛𝑡𝑟𝑜𝑙, 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡])	was computed for each participant across 

condition. 

Results and discussion 

 As in Experiment 1, participants had no difficulty discriminating between the positive 

and negative streams in all conditions, as evidenced both by the probability of detecting a 

positive contingency (Figure 2, upper panel. Control: Cohen’s d = 2.05, no CI could be 

computed, correlation = 0.03; Interference: Cohen’s d = 1.50, 95% CI [1.15, 1.87], 

correlation = 0.51; Nonreinforcement: Cohen’s d = 1.10, 95% CI [0.82, 1.40], correlation = 

0.62), and the sensitivity to the contingencies (Figure 2, lower panel). Moreover, again as in 

Experiment 1, the sensitivity to the contingencies was lower in the Interference condition than 

in the Control condition (Cohen’s d = 0.35, 95% CI [0.07, 0.62], correlation = 0.41). This was 
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also the case for the Nonreinforcement condition (Cohen’s d = 0.42, 95% CI [0.15, 0.70], 

correlation = 0.41). The effect size for the effect of the interference trials on the sensitivity to 

the contingencies was weaker than in Experiment 1, which probably reflects the number of 

interfering trials having been reduced from 20 to 10. The experiment overall shows that 

performance is remarkably resistant to interference. Notably, one might have thought that 10 

additional AX- trials would have had a larger impact on the sensitivity to the contingencies. 

This could indicate that, as already established by previous studies (i.e., Murphy et al., in 

press; Perales et al., 2005), AX-O1 trials weight more in contingency judgements than do 

AX- trials. We have evidence from unpublished studies that performance in this version of 

the streaming procedure is under the control of ∆P and not merely of P(O1|AX).  

There was no appreciable difference between Nonreinforcement and Interference in 

sensitivity to the contingency as measured by d’ (Cohen’s d = 0.09, 95% CI [-0.17, 0.35], 

correlation = 0.43). This could indicate that either the AX-O2 interference and the AX- 

nonreinforced trials were processed the same way or that the experiment lacked the statistical 

power necessary to detect a difference between the two interfering treatments. If the latter is 

correct, the differences between the two treatments were small, which is line with the 

conclusions reached by Jozefowiez et al. (2020) in which they compared extinction and 

counterconditioning with a neutral nontarget outcome. 

 The critical question is whether participants were more likely to detect a positive 

contingency in the Nonreinforcement condition than the Control condition regardless of the 

objective cue-outcome contingency because this is the distinction between the cue density 

effect hypothesis and the outcome discrimination failure hypothesis. Compared to 

participants in the Control condition, those in the Nonreinforcement condition were more 

likely to report that the outcome was more likely to appear if the cue had been presented than 

if it had not (Cohen’s d = 1.11, 95% CI [0.80, 1.45], correlation = 0.46, see top panel of 
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Figure 2), a conclusion which holds not only for the positive streams (Cohen’s d = 0.66, 95% 

CI [0.39, 0.93], correlation = 0.52) but the negative ones (Cohen’s d = 1.18, 95% CI [0.84, 

1.53], correlation = 0.37). This refutes the outcome discrimination failure hypothesis and 

points toward a cue density effect. 

 The problem with a cue density account is that a cue density effect was not observed 

in the Interference condition despite the fact that the Interference and Nonreinforcement 

conditions had the same cue density. As far as the overall probability of detecting a positive 

contingency is concerned, there was no appreciable difference between the Control and the 

Interference conditions (Cohen’s d = 0.12, 95% CI [-0.15, 0.39], correlation = 0.41). This is 

also the case for the probability to detect a positive contingency after a positive stream 

(Cohen’s d = -0.12, 95% CI [-0.39, 0.15], correlation = 0.40). It is only after a negative 

stream that participants were more likely to detect a positive contingency in the Interference 

condition than in the Control condition. However, this effect is much weaker than the similar 

effect observed in Experiment 1 or in the Nonreinforcement condition of the present 

experiment (Cohen’s d = 0.33, 95% CI [0.05, 0.61], correlation = 0.39). 

 A possible explanation for the lack of a cue density effect in the Interference condition 

is that the cue density effect interacts with other experimental parameters. For example, the 

cue density effect might occur only when cue density is above a certain threshold value and 

that value might be lower in the Nonreinforcement condition (where 10 AX- trials seemed to 

be enough to trigger a cue density effect) than in the Interference condition (where 10 AX-O2 

trial were not enough, but 20 were). [Note that threshold value should not be confused with 

the threshold C in the SDT model: The former is not part of the SDT framework and 

determines whether a cue density is triggered; the latter is part of the SDT framework and 

determines whether the participant perceives a positive cue-outcome contingency.] If this 

explanation is correct, then a cue density effect should be observed in both the Interference 
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and the Nonreinforcement conditions if Experiment 2 were replicated using the interference 

parameters from Experiment 1 (20 AX-O2 trials in the Interference condition and 20 AX- 

trials in the Nonreinforcement condition). The goal of Experiment 3 was to test this 

prediction. 

Experiment 3 

Method 

Participants and apparatus 

 Due to the COVID19 pandemics, Experiment 3 was conducted online using the 

Gorilla experiment builder (www.gorilla.sc) to create and host the experiment (Anwyl-Irvine, 

Massonié, Flitton, Kirkham, & Evershed, 2020). Because we hypothesized that moving data 

collection online might negatively impact effect sizes, we aimed for a sample size of 100. We 

ended up recruiting 122 participants from the SUNY-Binghamton subject pool. Fifteen 

participants failed the warm-up, and 8 participants indicated in debriefing that they were 

distracted during the task (see the procedure below). This left us with 99 participants (57 

females, 41 males, and 1 participant declined to provide gender information). Their mean age 

was 18.98 +/- 1.02 with age ranging from 18 years old to 24 years old). 

Procedure 

 The following changes from Experiment 2 were made to the procedure due to data 

collection taking place online: (a) as a health precaution, participants with a prior history of 

epilepsy could not participate in the study;  (b) besides being reminded to turn off their cell 

phone, participants were asked to make sure that they would not be disturbed in the next 

hour; (c) the duration of the stimuli and the ITI were both changed from 83 ms to 100 ms; (d) 

we eliminated the confidence ratings because we were not using them; (e) during a 

contingency question, a timer counting down from 20 s appeared in the lower part of the 

screen. If participants failed to provide a response within 20 s, no data was recorded on that 
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trial (this only occurred very occasionally and rarely twice for the same participant); (f) when 

participants answered the contingency question or if the counter reached 0, a new screen was 

presented to participants with a button reading “Click here to continue” at its center: clicking 

on it moved the procedure forward (ordinarily starting the next stream). This allowed us to 

control the position of the mouse at the beginning of the stream because Gorilla does not 

allow experiments to directly control the location of a user’s mouse.  

The positive and negative warm-up phases proceeded as in Experiments 1 and 2. The 

mixed warm-up differed slightly. Participants were presented with a block of 4 randomly 

presented streams: two of those streams implemented of positive ∆P = 1 contingency whereas 

the other two implemented a negative ∆P = -1 contingency. Participants moved to the 

experimental phase if they answered correctly on all 4 streams composing a block. Otherwise, 

the block was presented again; if it was presented 10 times without the participant advancing 

to the experimental phase, the participant failed the warm-up phase and was eliminated. 

During the experimental phase, participants were presented with 30 blocks. A block 

was composed of 6 streams, one for each of the conditions shown in Table 4, presented in a 

random order. Hence, overall, participants were exposed 30 times to each of the conditions 

described in Table 4 (in contrast to the 40 blocks of Experiments 1 and 2). Every time 

participants completed 10 blocks, they were invited to take a break lasting no more than 10 

minutes.  

Once the experimental phase was complete, participants were presented with a screen 

at the bottom of which were 5 stimuli (a blob, a circle, a crescent, a square, and a hexagon). 

They were filled black and appeared over a white background. Participants were asked to 

click on the square. They were then asked whether they devoted their full attention to the 

task. Participants were eliminated from the study if they failed to identify the square or said 

that they had been distracted during the task. As previously mentioned, while no participant 
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failed to identify the square, 8 participants indicated that they did not devote their full 

attention to the task. All participants were then shown the same debriefing screen shown to 

participants who failed the warm-up. Data analysis proceeded as in Experiments 1 and 2. It 

was not possible to compute a d’ for 1 participant in the Control condition, 3 participants in 

the Interference condition, and 4 participants in the Nonreinforcement condition. 

Results and discussion 

 First, participants once again were able to discriminate between the positive and 

negative contingencies in all the conditions as indicated both by the probabilities of detecting 

a positive contingency (Figure 3, top panel. Control: Cohen’s d = 0.94, 95% CI [0.73, 1.15], 

correlation = 0.64; Interference: Cohen’s d = 0.41, 95% CI [0.26, 0.56], correlation = 0.75; 

Nonreinforcement: Cohen’s d = 0.51, 95% CI [0.35, 0.65], correlation = 0.78) and the 

sensitivity to the contingencies as measured by d’ (Figure 3, bottom panel). Note that the 

effect sizes are much lower than in Experiments 1 and 2, which is to be expected from the 

fact that online data collection does not allow the same experimental control as in situ data 

collection: this increases the variability in the data, which negatively impacts effect sizes. 

This precludes meaningful quantitative comparisons between Experiment 3 and Experiments 

1 and 2. Otherwise, the data from Experiment 3 are entirely consistent with those of 

Experiments 1 and 2. First, as in Experiments 1 and 2, compared to the Control condition, the 

sensitivity to the contingencies was lower in both the Interference condition (Cohen’s d = 

0.55, 95% CI [0.33, 0.78], correlation = 0.47) and the Nonreinforcement condition (Cohen’s d 

= 0.39, 95% CI [0.15, 0.64], correlation = 0.32). Moreover, as in Experiment 2, there was no 

appreciable difference between the Interference and Nonreinforcement conditions (Cohen’s d 

= 0.16, 95% CI [-0.76, 0.40], correlation = 0.33). 

Second and more importantly, as we predicted, a cue density effect was observed for 

both the Interference and the Nonreinforcement conditions. Compared to the Control 
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condition, participants were more likely to detect a positive contingency in both the 

Interference condition (Cohen’s d = 1.41, 95% CI [1.06, 1.78], correlation = -0.15) and the 

Nonreinforcement condition (Cohen’s d = 1.38, 95% CI [1.01, 1.77], correlation = -0.38). 

This effect was observed for both the positive streams (Control vs. Interference: Cohen’s d = 

1.07, 95% CI [0.76, 1,39], correlation = 0.01; Control vs. Nonreinforcement: Cohen’s d = 

1.13, 95% CI [0.78, 1.47], correlation = -0.23) and for the negative streams (Control vs. 

Interference: Cohen’s d = 1.55, 95% CI [1.18, 1.92], correlation = -0.14; Control vs. 

Nonreinforcement: Cohen’s d = 1.41, 95% CI [1.04, 1.79], correlation = -0.29).  

Hence, it appears that the cue density effect interacts with the interfering treatment. As 

the critical cue density necessary to trigger a cue density effect appears to be lower in the 

Nonreinforcement condition than in the Interference condition, we might have expected that, 

in Experiment 3, the cue density effect would have been larger in the Nonreinforcement 

condition than in the Interference one. This was not the case: there was no appreciable 

difference between Interference and Nonreinforcement (Overall probability of detecting a 

positive contingency: Cohen’s d = 0.04, 95% CI [-0.11, 0.19], correlation = 0.71; Positive 

streams: Cohen’s d = 0.08, 95% CI [-0.07, 0.22], correlation = 0.72; Negative streams: 

Cohen’s d = -0.03, 95% CI [-0.20, 0.14], correlation = 0.65). 

General Discussion 

Framing the conclusions through the lens of SDT 

 Considered as a whole, Experiments 1-3 provide a convincing case that interfering 

trials (either X-O2 interference trials or X- nonreinforced trials) affect performance in at least 

two different ways: First, probably through associative interference, they decreased the ability 

of participants to discriminate between contingencies, as indicated by a lower d’ in the 

Interference and Nonreinforcement conditions in all three experiments; Second, by increasing 

the cue density, interfering trials made participants more likely to report a positive 
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contingency between the cue and the outcome. One way to make sense of these conclusions is 

to analyze them through the lens of SDT.  

 Let’s focus on the Control and Nonreinforcement conditions in Experiments 2 and 3. 

The simplest SDT model compatible with the data is depicted in the left panel of Figure 4. In 

the Control condition, the subjective contingency is drawn after a positive, relative to a 

Negative, stream from a Gaussian distribution with mean 𝜇7(𝐶𝑡𝑟), with respective to 

𝜇5(𝐶𝑡𝑟), and standard deviation 𝜎. The participant perceives a positive X-O1 contingency 

when the subjective contingency falls above a threshold 𝐶(𝐶𝑡𝑟). Likewise, in the 

Nonreinforcement condition, the subjective contingency is drawn after a positive, relative to a 

negative stream, from a Gaussian distribution with mean 𝜇7(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓), relative to 

𝜇5(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓), and standard deviation 𝜎. The participant perceives a positive X-O1 

contingency when the subjective contingency falls above a threshold 𝐶(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓). Finally, 

and crucially, 𝐶(𝐶𝑡𝑟) = 𝐶(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓). 

According to this model,  𝜇5(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓) > 𝜇5(𝐶𝑡𝑟) and 𝜇7(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓) > 𝜇7(𝐶𝑡𝑟).  

As we assumed that the subjective contingency reflects the strength of the cue-outcome 

association, this means that, following a negative stream, the cue-outcome association was 

stronger in the Nonreinforcement condition than in the Control condition, and likewise 

following a positive stream. This assumption is simply not plausible in light of what we know 

about nonreinforcement and extinction. The only way to save this model would be to assume 

that the additional X-Null trials in the Nonreinforcement condition (where the Null outcome 

is the absence of an outcome) resulted in additional backward O1-X pairings that would have 

been incorrectly processed by the participant as forward X-O1 pairings because of the fast 

stimulus presentation rate, hence boosting the strength of the X-O1 association1. This could 

                                                
1 We thank Andrew Delamater for this suggestion. 
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explain the pattern of results described in the present series, but we do not believe this 

account is correct based on the results of another series which used the streaming procedure 

to compare proactive, interspersed, and retroactive interference (Jozefowiez et al., 2022). The 

interspersed condition in that series used the same parameters (∆P values, number of 

interspersed interference X-O2 trials, stimulus and ITI duration); yet, this did not lead to a 

cue density effect. We will comment below on the reasons that we think explain the 

discrepancy between that result and the one observed in the present series. For now, let us just 

say that the lack of a cue density effect in Jozefowiez et al. (2022) appears to refute the 

backward pairing hypothesis: the present series and the one by Jozefowiez et al. (2022) are 

identical with respect to the opportunity for interspersed interference to induce backward O1-

X pairings that would have been mistakenly processed by the participants as forward X-O1 

pairings. Hence, if the backward pairing hypothesis was true, a cue density effect should have 

also observed in Jozefowiez et al.’s (2022) interspersed interference condition. 

Hence, as intriguing as the backward pairing hypothesis is, we do not think it provides 

a satisfactory account of the cue density effect observed in Experiments 1 to 3. It seems more 

plausible to assume that the model in the left panel of Figure 4 is incorrect and to assume 

instead that 𝜇5(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓) < 𝜇5(𝐶𝑡𝑟) and 𝜇7(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓) < 𝜇7(𝐶𝑡𝑟).		 This implies that 

𝐶(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓) < 𝐶(𝐶𝑡𝑟). To understand why, consider the right panel of Figure 4. This is 

almost the same SDT model as the one we considered previously, except that we no longer 

assume that 𝐶(𝐶𝑡𝑟) = 𝐶(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓). Imagine the subjective distributions for the 

Nonreinforcement conditions sliding left and right on the x-axis. The value of 𝑑′(𝐶𝑡𝑟) and the 

location of 𝐶(𝐶𝑡𝑟) relative to 𝜇5(𝐶𝑡𝑟) cannot change because they are determined by the 
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data2. The same is true for 𝑑A(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓)	and the location of 𝐶(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓) relative to 

𝜇5(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓).	Finally, remember we assumed that 𝜇5(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓) must always be below 

𝜇5(𝐶𝑡𝑟). Given these constraints, no matter the value of 𝜇5(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓)	is, 𝐶(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓) 

will always be below 𝐶(𝐶𝑡𝑟). Hence, we can conclude that the nonreinforced trials have 

affected both the subjective contingency distribution [because 𝑑A(𝑁𝑜𝑛𝑟𝑒𝑖𝑛𝑓)	is lower than 

𝑑′(𝐶𝑡𝑟)] and the threshold value. The same reasoning, reaching the same conclusion, could 

be carried out substituting the Interference condition in Experiments 1 and 3 for the 

Nonreinforcement condition.  

Overall, the current study provides support for the proposal that the various 

parameters of an SDT model are not equally sensitive to various experimental manipulations. 

At least if one assumes that the strength of the cue-outcome association constitutes the main 

component of the subjective contingency, the data indicate that associative interference and 

nonreinforcement affect the subjective contingency distributions whereas cue density affects 

the threshold value. Stated another way, the SDT analysis revealed that associative 

interference and nonreinforcement impacted the strength of the cue-outcome association 

whereas cue density did not. 

Why does cue density affect the threshold value? 

  Let 𝑎(𝑂1) be the activation of the representation of outcome O1 when a participant is 

asked to assess the X-O1 contingency. Participant reports that the X-O1 contingency is 

positive when 

𝑎(𝑂1) > 𝜆				(2)   

otherwise, they do not. In classic associative fashion,  

                                                
2 The value of 𝑑′(𝐶𝑡𝑟) is given by Equation (1). -Z[𝑃]^_(+|𝑁𝑒𝑔)] = 𝐶(𝐶𝑡𝑟) − 𝜇5(𝐶𝑡𝑟) 

(Wickens, 2002). 
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𝑎(𝑂1) = 𝑉aP(𝑋)𝑎(𝑋)										(3) 

where 𝑉aP(𝑋) is the strength of the X-O1 association and 𝑎(𝑋) is the activation level of the 

representation of X. From Equations (2) and (3), we can deduce a participant reports the X-

O1 contingency to be positive whenever  

𝑉aP(𝑋) >
𝜆

𝑎(𝑋)								(4) 

As 𝑎(𝑋) is bound to be affected by cue density, this explains why the cue density effect 

impacts the threshold.  

 Equation (4) suggests that the rapid and repetitive presentation of X during a stream 

drove 𝑎(𝑋) to a high value, thereby explaining the unusually large cue density effect in the 

present series. For comparison purposes, the cue density effect observed by Vadillo et al. 

(2010) corresponds to a Cohen’s d of 0.34, which is quite typical. In contrast, the cue density 

effect observed in the present series ranged from 0.90 to 1.41).  If the cues had been longer so 

that 𝑎(𝑋) reached a lower asymptotic value, or if a delay had occurred between the end of a 

stream and the contingency question, thereby allowing 𝑎(𝑋) to decay, the cue density effect 

might not have been as large or might have even disappeared. Indeed, this would explain why 

Jozefowiez et al. (2022) failed to find a cue density effect in their interspersed interference 

condition. Their streams were composed of three phases, each one identical to the one used in 

the present series, except for the stimuli which were presented in each phase. In the 

interspersed interference condition, X, O1, and the X-O2 interference trials occurred only in 

the Phase 2 stream (Phase 1 and Phase 3 streams used different stimuli, see Jozefowiez et al., 

2022, for details). As the X-O1 contingency rating occurred at the end of the Phase 3 stream, 

this effectively created a delay between the X-O1 and X-O2 pairings in Phase 2 and the 

request for a contingency rating. As X was not shown during Phase 3, this would have left 

enough time for 𝑎(𝑋) to decrease, thereby explaining the lack of a cue density effect in 

Jozefowiez et al. (2022).   



Contingency assessment and SDT 

	

27	

Limitation and further comments 

Equation (2) highlights an important limitation of our conclusions. Equations (2) and 

(4) are mathematically equivalent, but they correspond to two different SDT models: In 

Equation (2), the subjective contingency is the outcome activation while, in Equation (4), it is 

the associative strength. Our conclusion that the cue density impacts the threshold while 

associative interference and nonreinforcement impacts the subjective contingency holds if 

one looks at the data from the point of view of Equation (3). It does not if one looks at them 

from the point of view of Equation (2): in this case, both associative 

interference/nonreinforcement and the cue density affect the subjective contingency. As 

Equations (2) and (4) are mathematically equivalent, the choice between each decision 

variable (associative strength vs. outcome activation) cannot be decided on an empirical basis 

and is, in some way, a matter of convenience. Choosing the associative strength as the 

decision variable identifies everything that does not affect the associative strength as a source 

of bias (that is to say, variables affecting the threshold, not the decision variable). Indeed, no 

matter the choice of the decision variable, the conclusion stands that associative interference 

This might be a more appropriate choice if one is trying to determine whether a given 

variable impacts the associative strength or not. and nonreinforcement impact the strength of 

the cue-outcome association whereas cue density does not. Using the associative strength as 

the decision variable makes this conclusion more compelling. This perspective also helps put 

the emphasis on the contribution of nonassociative processes to contingency learning. 

A final novel result of this series is that the cue density effect interacted with 

interspersed interference and nonreinforcement treatments. It was greater with interspersed 

nonreinforcement than with interspersed interference. There is a large literature (reviewed in 

Jozefowiez et al., 2020), evaluating whether extinction is more or less efficient than other 

treatments intended to decrease either US expectancy in presence of the CS or acquired 
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emotional reaction to the CS. The focus in those studies was usually to determine which 

treatment had the larger impact on one or the other of these dependent variables and, 

eventually, which was less susceptible to context effects (i.e., renewal). The present series 

suggests that there may be subtle differences of clinical relevance between extinction and 

nonreinforcement on one hand, and other interfering treatments on the other beyond the 

question of the relative efficiency of various interfering treatments and their context 

dependence. For example, if cue density effects similar to the one observed in the present 

study were observed in clinically relevant situations, knowing that interference is less 

susceptible than nonreinforcement to them would be useful information for a clinician when 

deciding which type of exposure therapy to implement.  
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Table 1 

Number and type of trials for the streams used during the warm-up in Experiments 1, 2, and 

3. 

Stream name  Composition      ∆P 

Positive warm-up 10 AX-O1/10 A-    1.00 

Negative warm-up 10 AX-/10 A-O1   -1.00 
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Table 2 

Number and type of trials for the streams used during the experimental phase of Experiment 

1. To compute ∆P, the AX-O2 trials were treated as AX- trials while the AW-O2 trials have 

been treated as A- trials. 

Name  Composition          ∆P 

Ctr-Positive 7 AX-O1/3 AX-/3 A-O1/7 A- (Core) + 20 AW-O2 (interference)              0.60 

Ctr-Negative 3 AX-O1/7 AX-/7 A-O1/3 A- (Core) + 20 AW-O2 (interference)              0.07 

Int-Positive 7 AX-O1/3 AX-/3 A-O1/7 A- (Core) + 20 AX-O2 (interference)            -0.07 

Int-Negative 3 AX-O1/7 AX-/7 A-O1/3 A- (Core) + 20 AX-O2 (interference)            -0.60 

 
Ctr = Control; Int = Interference  
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Table 3 

Number and type of trials for the streams used during the experimental phase of Experiment 

2. To compute ∆P, the AX-O2 trials were treated as AX- trials while the AW-O2 trials have 

been treated as A- trials. Nonreinf = Nonreinforcement. 

Name    Composition                ∆P 

Control-Positive  7 AX-O1/3 AX-/3 A-O1/7 A- +  10 AW-/10 AW-O2         0.60 

Control-Negative  3 AX-O1/7 AX-/7 A-O1/3 A- +  10 AW-/10 AW-O2         0.07 

Interference-Positive  7 AX-O1/3 AX-/3 A-O1/7 A-  +  10 AX-O2/10 AW-         0.20 

Interference-Negative  3 AX-O1/7 AX-/7 A-O1/3 A-  +  10 AX-O2/10 AW-        -0.20 

Nonreinf-Positive  7 AX-O1/3 AX-/3 A-O1/7 A-  +  10 AX-/10 AW-O2         0.20 

Nonreinf-Negative  3 AX-O1/7 AX-/7 A-O1/3 A-  +  10 AX-/10 AW-O2        -0.20 

 

 

  



Contingency assessment and SDT 

	

37	

Table 4 

Number and type of trials for the streams used during the experimental phase of Experiment 

3. To compute ∆P, the AX-O2 trials were treated as AX- trials while the AW-O2 trials have 

been treated as A- trials. Nonreinf = Nonreinforcement. 

Name    Composition       ∆P 

Control-Positive  7 AX-O1/3 AX-/3 A-O1/7 A- +  20 AW-O2                0.60 

Control-Negative  3 AX-O1/7 AX-/7 A-O1/3 A- +  20 AW-O2              0.07 

Interference-Positive  7 AX-O1/3 AX-/3 A-O1/7 A-  +  20 AX-O2            -0.07 

Interference-Negative  3 AX-O1/7 AX-/7 A-O1/3 A-  +  20 AX-O2            -0.60 

Nonreinf-Positive  7 AX-O1/3 AX-/3 A-O1/7 A-  +  20 AX-             -0.07 

Nonreinf-Negative  3 AX-O1/7 AX-/7 A-O1/3 A-  +  20 AX-             -0.60 
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Figure 1. Results from Experiment 1. Top: Probability of detecting a positive contingency as 

a function of condition. Bottom: Sensitivity to the X-O1 contingency as measured through d’ 

as a function of condition. Within-subject error bars are 95% CIs.  
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Figure 2. Results from Experiment 2. Top: Probability of detecting a positive X-O1 

contingency as a function of conditions. Bottom: Sensitivity to the X-O1 contingency as 

measured through d’ as a function of condition. Within-subject error bars are 95% CIs.  
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Figure 3. Results from Experiment 3. Top: Probability of detecting a positive contingency as 

a function of condition. Bottom: Sensitivity to the contingency as measured through d’ as a 

function of condition. Within-subject error bars are 95% CIs.  
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Figure 4. SDT models of Experiments 2 and 3. Left: The criterion is at the same location in 

both the Control and the Nonreinforcement conditions. Right: The criterion location in the 

Control conditions is different from the Nonreinforcement conditions. In both models, the 

value for d’ and the location of the criterion are set so as to correspond to Experiment 2.  

 
 


