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Abstract: Several studies have highlighted the impact of environmental factors such as 9 

food type or larval density on the development of blowfly larvae. We investigated how 10 

changes in development speed (due to larval density and group composition) are divided 11 

among feeding and post-feeding stages. Even if these parameters impinge only on 12 

feeding larvae, they may ultimately also affect their subsequent development, and 13 

especially metamorphosis duration. Therefore, this study analysed the effect of larval 14 

density and group composition on the rhythm of necrophagous blowfly development. 15 

Based on laboratory studies, we highlighted that Calliphora vicina individuals with a fast 16 

development during their feeding phase developed slower in the later post-feeding 17 

phase (i.e., they had a compensatory effect). Lucilia sericata, a calliphorid species also 18 

frequently found on carrion at the same time as C. vicina, showed a different 19 

developmental strategy by not making its post-larval development speed dependent on 20 

the larval development speed. Finally, while a compensatory effect may exist, variations 21 

in the development rate more often accumulate through life-stages and resulted in a 22 

larger variability for later development instars. In this respect, the inclusion of detailed 23 

development duration covering all life stages, including post-feeding, is recommended in 24 

future studies, especially those dedicated to forensic entomology.  25 

Keywords: Calliphoridae, maggots, wandering larvae, eclosion, development rate  26 

 27 



1. Introduction 28 

Necrophagous larvae of blowflies (i.e., maggots) live and feed on vertebrate carrion. 29 

However, they generally leave this food source in the subsequent development stages to 30 

hide and pupate (Gomes et al., 2006). How developmental conditions encountered during 31 

feeding stages affect these later post-feeding stages is the topic of this study. Below, the 32 

life cycle of maggots as well as the influence of biotic and abiotic factors on their 33 

development is explained in detail. 34 

 35 

1.1. Life cycle of necrophagous maggots 36 

The life cycle of a blowfly is defined by four morphologically distinct life-stages: egg, larva, 37 

pupa and imago. Eggs and pupae constitute immobile development stages, whereas 38 

larvae and adults are mobile (i.e., moving) stages. However, while flies can fly up to 9 39 

km/h and cover a flying distance of several kilometres to find carrion, feeding larvae barely 40 

move from the place they were laid. Only post-feeding larvae disperse around carrion 41 

(Bomphrey et al., 2009; Braack, 1981; Charabidze et al., 2008; Green, 1951). In other 42 

words, flies select carrion for their eggs, larvae their feeding site at the carrion and 43 

post-feeding the pupariation site around carrion.  44 

Between each larval instar, a maggot sheds its cuticle, until finally the last outer cuticle 45 

shrinks and hardens to a puparium (Castner, 2001; Gunn, 2009). To enter the next 46 

development stage, a threshold size and weight must be met. Consequently, sufficient 47 

food intake during the larval feeding stages is mandatory (Hightower et al., 1972; Shaaya 48 

and Levenbook, 1982). Once peak feeding is reached, calliphorid maggots usually 49 

wander away from their food source and burrow in soil for pupariation (Gomes et al., 50 

2006). This transition represents a behavioural stage called the post-feeding stage.  51 

Inside the puparium, the insect completes metamorphosis, until finally the adult fly 52 

ecloses. Responsible for initiating metamorphosis is a pulse of the moulting hormone 53 

ecdysone at the end of larval life (Nijhout et al., 2006). Whether this profound 54 

transformation will be completed successfully largely depends on the initial developmental 55 

efficiency of the larva (Denlinger, 1994; Mohr, 2012).  56 

 57 

1.2. Influence of biotic and abiotic factors 58 



Necromass can be regarded as a harsh environment to develop on (Brown and Gaugler, 59 

1997; Cornwallis et al., 2017; Lewis and Shapiro-Ilan, 2002; Trumbo, 1997). In addition to 60 

natural decomposition processes and spoiling by bacteria (Benbow et al., 2015b), 61 

competition with scavengers can result in a sudden food depletion and the death of larvae 62 

(Erincçlioğlu, 1996). DeVault et al. (2004) observed a mean time of rodent carrion removal 63 

by scavengers of 2.6 days: larvae with a longer feeding time risk being eaten. High larval 64 

densities can also lead to intense conspecific and heterospecific competition for 65 

resources (Denno and Cothran, 1976; Rivers et al., 2011). Furthermore, predatory larvae 66 

such as those of Chrysomya (Diptera: Calliphoridae) can significantly deplete blowfly 67 

larvae populations (Flores et al., 2017). Last, parasitoids wasps can induce high mortality 68 

rates in blowflies, reaching 90% under certain conditions (Frederickx et al., 2013). Given 69 

all these biotic pressures on survival, the feeding speed and development rate of larvae 70 

determine their probability of survival (Levot et al., 1979).  71 

The development rate of necrophagous larvae is determined by abiotic (notably 72 

temperature) but also biotic factors (Benbow et al., 2015a). As an example, food moisture 73 

and pupation substrate were shown to have significant influence on the growth of L. 74 

sericata, producing a developmental difference of up to 7.4 days (Tarone and Foran, 75 

2006). Other scientists have also observed repeatedly that different soft and protein-rich 76 

nutrition affects larval development duration (Clark et al., 2006; El-Moaty and Kheirallah, 77 

2013; Ireland and Turner, 2006). Previous studies also demonstrated that blowfly larvae 78 

reared under certain heterospecific conditions had faster and better development than 79 

conspecific groups, with higher survival (Komo et al., 2019, 2020a, 2020b). However, 80 

larval development that is too rapid can result in nutrient deficiency, with profound and 81 

permanent effects on later stages (e.g., reduced immunity and lower adult longevity) 82 

(Cotter et al., 2004; Sevenster and van Alphen, 1993). Chippindale et al. (1997), who 83 

performed an experimental study on development speed in Drosophila, concluded that 84 

developmental trade-offs are not confined to single stages of a lifecycle. 85 

Accordingly, the hypothesis raised in the present study is that the variability in 86 

development duration during larval feeding stages has an impact on the duration of the 87 

postfeeding stages. To test this hypothesis, the effects of species composition and larval 88 



density on pre- and post-feeding durations of Calliphora vicina Robineau-Desvoidy, 1830 89 

and Lucilia sericata (Meigen, 1826) have been analysed.  90 

 91 

2. Materials and Methods  92 

2.1. Insect rearing 93 

Larvae of L. sericata and C. vicina (Diptera: Calliphoridae) were obtained from flies bred in 94 

Lille (Nord, France). These colonies, which were replenished with new flies every month, 95 

were kept in separate cages (50×50×50 cm) at room temperature (20±2°C) and daylight 96 

at their natural times. Caster sugar and water ad libitum were available throughout the 97 

flies’ lifetime. Pieces of pork heart were used as the protein supply and oviposition media. 98 

For the latter purpose, they were placed in the cages for 2 h, guaranteeing an oviposition 99 

time with a maximum deviation of ±1 h. Blowfly eggs as well as larvae and pupae were 100 

kept in a climatic chamber (ST4, POL-EKO Aparatura®, Poland) at 25°C.  101 

 102 

2.2. Preparation and start of experiments 103 

The setup used to monitor larval development within mono- and heterospecific groupings 104 

was adapted from Scanvion et al. (2018). The previously frozen meat (50 g of fresh 105 

minced beef steak: 100% muscle with 15% fat content, Cora®) was thawed overnight and 106 

mixed with 15 ml of a 0.9% NaCl solution in order to offer larvae in the first stage a very 107 

soft (slightly liquefied) medium. This prepared nutrient medium was used to fill a small 108 

plastic box (100×75×63 mm), which was placed in a large breeding container 109 

(180×135×195 mm), the bottom of which was covered with sand. First instar larvae were 110 

homogeneously distributed on the food 22 h (L. sericata) or 24 h (C. vicina) after 111 

oviposition.  112 

 113 

2.3. Experimental procedures 114 

The number of migrating larvae in the sand was counted three times a day (10 a.m., 4 115 

p.m. and 10 p.m.) and used as a measure of the development speed. At each 116 

measurement time, the migrating larvae from each box were transferred to a new 117 

sand-filled box with a sheltered place to pupate and were raised to adulthood (also at 118 



25°C). Finally, the number of eclosed flies was counted at the same measurement times 119 

(i.e., three times a day). Each development event (post-feeding and eclosion) was 120 

considered to have been reached when it was achieved by the first 10% of individuals. 121 

This threshold is often used in forensic studies and considers the first larval wave without 122 

considering rapid outliers (Clarkson et al., 2004). The relative development rate was 123 

calculated by the following formula: time of specific individual to reach a given instar 124 

divided by mean time in the population to reach this instar.  125 

This procedure was carried out for five different conditions: 100 and 250 individuals of L. 126 

sericata or C. vicina in conspecific groups, along with 125 individuals of both species (250 127 

individuals in total) in the heterospecific group. Six repetitions, which never ran 128 

simultaneously, were performed for each condition (i.e., 5 boxes with 5 different 129 

conditions were used per test run). Of these, another Lille study by Scanvion et al. (2018) 130 

provided the developmental data of L. sericata in conspecific conditions.  131 

Experimental developmental data were analysed separately for the two studied species 132 

and at two different scales. First, development rate during feeding and post-feeding 133 

stages were compared at an individual scale. This allowed a qualitative approach on the 134 

developmental rhythm for each individual larva and direct comparison across all the 135 

larvae studied. Second, average trends were quantitatively analysed (i.e., at the scale of 136 

the whole experimental population) to test our hypothesis of a compensatory effect 137 

between feeding and post-feeding stages. For the statistical analysis paired Wilcoxon 138 

test and ANOVA followed by Tukey's range test if necessary were performed. 139 

 140 

3. Results 141 

3.1. Calliphora vicina at individual level 142 

The development rate of each larva before and after migration was compared at the 143 

individual level (see Tables S1 and S2 in the supplementary material for the proportions 144 

of eclosed flies). The observation of C. vicina individual development rates before and 145 

after larval migration revealed that individuals with a slow development during the feeding 146 

phase had a fast development in the post-feeding phases (Wilcoxon rank sum test: V = 147 

137738, p < 2.2e-16; Figure 1 lower right quarter). However, such a slow (i.e., a rate > 148 



1.05, right side on Figure 1) development during the feeding phase was only rarely 149 

observed, and only in conspecific condition. In contrast, if the development during the 150 

feeding phase was faster than the median (Figure 1, left side), many individuals had a 151 

comparatively slower development in the post-feeding phases (upper left quarter). This 152 

was especially true in heterospecific groups: no individual developed much slower than 153 

the median during the feeding phase, but many had a slow post-feeding development 154 

(Figure 1, upper left white quarter). Thus, many C. vicina larvae compensated for an 155 

initially very fast development with a slower development later. Larval development rates 156 

of 0.8 (i.e., fast) could not be maintained after leaving the food. At the most, these 157 

individuals showed a development rate of 0.9, though they mostly only developed on 158 

average or even slower than the median. A few exceptions to this compensatory effect 159 

were shown by individuals with an average larval development rate (i.e., 1.0) but a slow 160 

development in the post-feeding phases (i.e., between 1.05 and 1.2). However, 161 

individuals with a slow feeding and post-feeding development were almost never 162 

observed (cf. empty upper right light orange quarter on Figure 1). 163 

  164 



 165 

Figure 1. Development rates of Calliphora vicina 166 

Individual development rates of C. vicina during the feeding and post-feeding phases in 167 

heterospecific (turquoise circles) and conspecific groups (blue rhombuses). Values below 168 

1.0 indicate a faster development than the median, and above 1.0 a slower development. 169 

Those individuals that show a value of 1.0 on the x-axis grew had a median value during 170 

the feeding phase, which were most of the individuals (highlighted on the height of the 171 

columns of the histogram). The arrows point to individuals with a very fast larval 172 

development rate during the feeding phase (0,8) and a slower rate during the post-feeding 173 

phase (1,1). The middle of the graph captures those individuals that grow at median 174 

values during both development phases.  175 

 176 

3.2. Calliphora vicina at group level 177 

The average development rates during the first developmental phase (i.e., feeding) and 178 

the second (i.e., post-feeding) were then compared at the group level between the 179 

different conditions (i.e., high- and low-density as well as conspecific and heterospecific 180 



groups). In doing so, the heterospecific group of C. vicina displayed a 12-h faster 181 

development in the feeding phase and a 12-h slower development in the post-feeding 182 

phase, resulting in the same total development time as the control group. In contrast, the 183 

low-density group developed 6-h slower during the feeding phase but 18-h faster in the 184 

post-feeding phase, representing a huge compensatory that resulted in a shorter total 185 

development time (Figure 2, Table 1 as well as Tables S1 - 8 in supplementary). Although 186 

these trends are clearly visible in Figure 2, the high variability observed between 187 

repetitions does not show a significant difference between the groups (ANOVA for 188 

migration: F = 0.21, p = 0.65; eclosion: F = 0.49, p = 0.49). 189 

 190 

Table 1. Proportion of 250 C. vicina, 125 C. vicina (+125 L. sericata) and 100 C. 191 

vicina reaching postfeeding stage (migration) and ending pupal stage (eclosing) at 192 

25 °C. Both development events were considered to have been reached when it was 193 

achieved by the first 10% of individuals. Hours are recorded from egg deposition for each 194 

repetition. 195 

 196 

repetition condition migration  eclosion 

1 250 16 % after 96 h ± 12 % after 378 h  
2 250 16 % after 102 h 11 % after 384 h 
3 250 13 % after 108 h 21 % after 390 h 
4 250 10 % after 102 h 18 % after 390 h 
5 250 18 % after 96 h 11 % after 384 h 
6 250 ± 15 % after 114 h 11 % after 384 h 

1 125 + 125 ± 15 % after 90 h 10 % after 384 h 
2 125 + 125 ± 15 % after 90 h 36 % after 390 h 
3 125 + 125 ± 15 % after 90 h 44 % after 390 h 
4 125 + 125 ± 15 % after 90 h 45 % after 390 h 
5 125 + 125 ± 15 % after 90 h 17 % after 390 h 
6 125 + 125 ± 15 % after 90 h 13 % after 408 h 
1 100 ± 15 % after 114 h 16 % after 372 h 
2 100 ± 15 % after 114 h 16 % after 372 h 
3 100 13 % after 108 h 19 % after 384 h 
4 100 25 % after 108 h 13 % after 372 h 
5 100 17 % after 96 h ± 15 % after 378 h 
6 100 10 % after 102 h ± 15 % after 378 h 

 197 



 198 

Figure 2. Effects of group size and composition on the development duration of C. 199 

vicina. Using the conspecific high-density group as the control group, the heterospecific 200 

group displayed a 12-h faster larval development until migration and the low-density 201 

group a 6-h slower larval development. During the post-feeding (including pupal) phase, 202 

this ratio was reversed, i.e., the heterospecific group developed 12 h slower and the 203 

low-density group 18 h faster than the high-density group. Error bars represent standard 204 

deviations of group means. 205 

 206 

3.3. Lucilia sericata at individual level 207 

At the individual level, many L. sericata larvae experienced a slow development time in 208 

both pre- and post-feeding phases in heterospecific conditions (Figure 3, upper right 209 

quarter). However, some larvae also showed a compensatory effect, with both slow-fast 210 

and fast-slow individuals.  211 

 212 



 213 

Figure 3. Development rates of Lucilia sericata 214 

Development rates of L. sericata in heterospecific groups during the feeding and 215 

post-feeding phases. Each individual of the more than 1400 tested is represented by one 216 

triangle. Those individuals that show a value of 1.0 on the x-axis grew at median values 217 

during the feeding phase (which were most of the individuals highlighted on the height of 218 

the columns of the histogram). All triangles in the upper right square represent individuals 219 

that developed slower than the median in both development phases, that is, the feeding 220 

and the post-feeding phases (pupal phase included). The line displays a theoretical 221 

compensatory effect, i.e., the development speed during post-feeding that is inversely 222 

proportional to the feeding phase. 223 

 224 

3.4. Lucilia sericata at group level 225 

Comparing the average development rates during the feeding and post-feeding 226 

development phases at group level, we observed that L. sericata larvae reached the 227 

post-feeding phase in the heterospecific and low-density group on average 12 h later 228 



than in the control group (Figure 4¸ ANOVA: F = 19.56, p = 6.62e-05; TukeyHSD: p250-125 229 

= 0.002). In contrast to C. vicina, no accelerated development followed in post-feeding 230 

phases, but the time lag either remained constant (heterospecific) or increased further to 231 

18 h (low-density group; ANOVA: F = 5.735; p = 0.0141; TukeyHSD: p250-125 = 0.079, 232 

p250-100 = 0.013, p125-100 = 0.625).  233 

 234 

 235 

Figure 4. Effects of group size and composition on the development of L. sericata 236 

Using the conspecific high-density group as a control group, both the heterospecific and 237 

the low-density group showed a 12-h slower larval development until migration. During 238 

the post-feeding (including pupal) phase, this time lag was maintained until eclosion in 239 

the heterospecific group and increased to 18 h in the low-density group [data for 240 

conspecific groups from Scanvion et al. (2018), 25°C]. 241 

 242 

 243 

4. Discussion 244 

We hypothesized that the variability in development duration during larval feeding phase 245 

may also have an impact on the duration of the postfeeding phases. Our results confirm 246 

this hypothesis and demonstrate that events impacting larval development of calliphorids 247 

have consequences through stages, both accelerating and slowing-down post-feeding 248 

development. Thus, even if key developmental parameters (e.g., competition) impinged 249 

on individuals only during the feeding stages, they ultimately also affected the 250 

metamorphosis duration. Most likely, blow fly larvae compensate for an initially too fast or 251 

too slow development in the later development stages to avoid long-term consequences 252 

(Metcalfe and Monaghan, 2001; Faris et al., 2020).  253 

 254 



In many insects, final adult size depends on the development rate and is controlled by 255 

mechanisms that terminate growth when the individual reaches a species-specific size 256 

(Mirth and Riddiford, 2007, Nijhout et al., 2014). Both the development rate and critical 257 

weight can differ between environmental conditions (Nijhout & al., 2006). On carrion, 258 

selection pressures can act directly on larvae (e.g., parasitism, predation pressure, etc.) 259 

but also indirectly through feeding disturbances, food limitation or bacterial accumulation 260 

(Arendt, 1997; Gruszka, 2020; Munch and Conover, 2003; Prasad et al., 2001; Wertheim 261 

et al., 2002). Indeed, while blowfly larvae are specialized for feeding on carrion, they 262 

avoid decayed carcasses and prefer fresh ones (same principle as in other food webs; 263 

Burkepile et al., 2006). The increase in microbes caused by the decomposition process 264 

alters the quality of the food and disrupts larval development (Benbow et al., 2019; 265 

Pechal et al., 2014; Richards et al. 2013). In this context, the selection pressure mostly 266 

acts on the timing of larval migration, suggesting a benefit of a short feeding phase 267 

(Prasad et al., 2001; Rivers, 2011). According to this goal, necrophagous blow fly larvae 268 

aggregate on large interspecific groups gathering thousands of individuals, a social 269 

mechanism facilitating feeding and accelerating their development (Komo et al., 2019; 270 

Scanvion et al., 2018). This behavioural adaptation thus reduces the feeding phase 271 

duration and consequently the exposition of larvae to environmental selection pressure.  272 

 273 

However, fast development and larval competition can lead to undernourishment and a 274 

lack of reserves, resulting in smaller individuals and low survival rates (Arendt, 1997; 275 

Fox, 1997; Munch and Conover, 2003; Richner, 1992; Sinervo and Doughty, 1996). 276 

Indeed, the shorter the feeding period is, the less energy that can be stored, and fewer 277 

resources remain available for later phases (Khelifa et al., 2019). To limit mortality during 278 

post-feeding stages, physiological control involving Target Of Rapamycin (TOR, a core 279 

component of the nutrient-responsive pathway) can delay the moulting hormone 280 

ecdysone secretion, which otherwise terminates larval development (Layalle et al. 2008). 281 

This consequently extends the duration of larval growth, giving maggots an opportunity to 282 

attain a bigger body size. Recently, Dombrovski et al. (2021) observed that the 283 

developmental delay in clustered Drosophila larvae was accompanied by an increase in 284 

adults’ wing size, suggesting this developmental retardation finally resulted in fitness 285 



benefits. Thus, the consequences of larval aggregation, development speed and feeding 286 

can entail a wide range of costs and benefits throughout the individuals life-stages 287 

(Blanckenhorn, 1998).  288 

 289 

4.1 Different strategies between species 290 

The influence of the developmental conditions (i.e., group composition or group size) 291 

triggered different compensatory effects for the two different fly species of this study. It 292 

has already been argued that larval aggregation can be costly or beneficial: whether the 293 

advantages or disadvantages finally prevail depends on stages, initial densities (of each 294 

species population), amount of resources, temperature and species (Hans & 295 

VanLaerhoven 2021). It has also been suggested that costs of interspecific aggregation 296 

may be from decreased quantity of food resource and availability of nutrients as well as 297 

increased risk of pathogens and disease (Rivers et al. 2011). On the opposite, known 298 

benefits of interspecific aggregation include cooperative feeding, enzyme activity, 299 

reduced risk of predation and parasitism as well as protection from fluctuations in 300 

environmental factors (Hans and VanLaerhoven 2021; Rivers et al., 2011). 301 

 302 

In theory, there are several possibilities of development balance through developmental 303 

stages. Compared to a theoretical control group, individuals placed under favourable 304 

conditions (e.g., low competition) may take less time for both the feeding stage and 305 

nymphosis (Figure 5). However, a shorter feeding stage could also have no effect on 306 

metamorphosis duration or be "compensated for" by a longer metamorphosis 307 

(Chippindale et al., 1997; Holmes et al., 2020; Horváth and Kalinka, 2016; Krittika et al., 308 

2019). The same applies to a longer feeding stage, which can increase, decrease or not 309 

affect the following pupal development.  310 

 311 

 312 



 

 

Figure 5. Developmental duration of metamorphosis 313 

Possible effects on the developmental duration of metamorphosis (including post-feeding 314 

phase, orange bars) by either slower or faster larval development (during the feeding 315 

phase, yellow bars) compared to a hypothetical control group. 316 

   317 

During our experiments, larvae of the species C. vicina never suffered from a slow initial 318 

development (Figure 3). However, in the case of interspecific groups entailing an initially 319 

fast development, larvae showed a compensatory effect and took longer for the 320 

subsequent post-feeding development processes. Even though such a compensatory 321 

effect cannot be generalized without further investigation, it is clearly related to the given 322 

developmental conditions. As an example, Richards et al. (2013) reported a 323 

compensatory effect on C. vicina larvae reared under certain food substrate (Figure S1). 324 

Comparing minced to whole fresh liver, they observed feeding larvae had an initial 325 

developmental delay of 14 h that finally decreased to 11 h during post-feeding phases. 326 

However, on rotten food, the 42-h delay in reaching maximum length finally increased to 327 

58 h during post-feeding phases. In other words, decomposed liver not only extended the 328 

feeding time but also the metamorphosis duration. Thus, even if toxic decomposition 329 

waste impinged on individuals only during the feeding stages, it ultimately also increased 330 

the post-feeding phases duration. 331 

 332 

However, the influence of the underlying conditions (i.e., group composition and group 333 

size) triggered different compensatory effects for the two different fly species. While a 334 

clear compensatory effect was observed at C. vicina population scale, unfavourable 335 

developmental conditions (i.e., low conspecific population) during L. sericata larvae 336 

feeding phase increased both feeding and post-feeding phase duration. Furthermore, a 337 



greater inter-individual variability was observed, suggesting a high individual plasticity in 338 

this later species. This highly flexible responses of L. sericata actually suggest that these 339 

larvae can better adapt to environmental changes than the less versatile C. vicina, which 340 

is reflected in the (often) higher abundance of L. sericata in fresh-carrion ecosystems 341 

(Arnaldos et al., 2001; Tomberlin et al., 2015). These findings are in agreement with 342 

previous observations demonstrating that C. vicina is more sensitive to temperature 343 

changes and has a higher oxygen consumption (i.e., metabolic rate) during the feeding 344 

stage than L. sericata (Komo et al., 2020b; Meyer and Schaub, 1973). Thus, in contrast to 345 

the assumption of Smith and Wall (1997), our results suggest that C. vicina may be a 346 

weaker competitor against L. sericata as soon as the abiotic and biotic conditions do not 347 

meet their restricted needs.  348 

 349 

4.2. Outcomes in a forensic context 350 

Determining the age of maggots sampled on a corpse is one common method in forensic 351 

entomology to estimate the minimum post-mortem interval (mPMI) (Adams and Hall 2003; 352 

Amendt et al. 2007; Amendt et al. 2011). One applied approach to larval age estimation is 353 

determining the beginning of a new development event (e.g., larval migration or eclosion) 354 

and calculating back to the time of oviposition (Adams and Hall 2003; Amendt et al. 2007; 355 

Amendt et al. 2011). While the age of a larva can be estimated from any developmental 356 

stage, the migration of third instar larvae and the eclosion of flies are both points in time 357 

that are easy to observe, for example, using video-recording devices, and represent 358 

valuable events for development-time calculations (Byrd and Butler 1997; Wang JW. et al. 359 

1997; Gibson et al. 2014). In this context, the existence of various compensatory effect 360 

highlighted in the present study suggests that mPMI estimations based on fly eclosion 361 

time are less accurate and/or reliable than those based on the occurrence of wandering 362 

larvae. In view of this, the report of stage-by-stage developmental data in future forensic 363 

entomology studies is recommended. The more developmentally relevant factors are 364 

studied in forensically important blowfly species, the more confidence can be achieved in 365 

the interpretation of insect evidence in the legal system (Hans and VanLaerhoven 2021). 366 
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