



CNrs





e centrale**lille** 



E2P2L - 24th Oct 2023 - Shanghai, China

# High-throughput experiments for heterogeneous catalysts development

Prof. Sébastien PAUL sebastien.paul@centralelille.fr



### Riddle: What is the common point between these items?

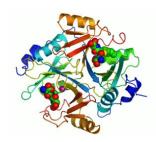




## An invisible common point !

### CHEMISTRY but even more precisely CATALYSIS

- Catalysis is almost invisible but very important in our every day life for:
  - Health (drugs)
  - Food (fertilisers, cattle feeding, packing...)
  - Textile (synthetic fibers)
  - Transport (fuels, tyres, polymers...)
  - Building (tubes, organic glasses, materials, insulation...)
  - Environnement (air depollution, water treatment...)
  - Etc...



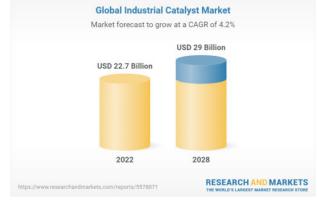

## Not one but several types of catalysts

- Chemocatalysts
  - Solid
  - Dissolved in a liquid phase



- Biocatalysts
  - Enzymes,...





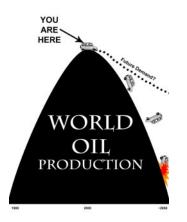

## Context: development of new catalysts

- Catalysis is of upmost interest in crucial domains at the inner core of current societal demands
  - Energy, Environment, Food, Health,...
- Industrial catalysts market is growing quickly (4-5%/y)
  - 22.7 billions USD in 2022








Source: <u>www.researchandmarkets.com</u>, visited 21/10/2023



Why do we need to develop new catalysts ?

### 1 – Because we are running out of fossil resources

- Today **more than 90%** of the products issued from the chemical industries are made from fossil resources (mainly from oil).
- This resource is **not renewable** and the stock is running out progressively.
- We do not have this resource localy (geopolitical dependency).





Why do we need to develop new catalysts ?

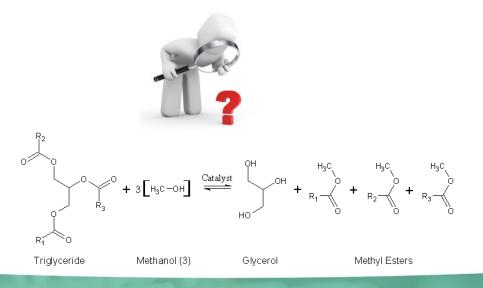
### 2 – To protect the environment

- At the end of their life, chemicals containing carbon generally release CO<sub>2</sub> into the atmosphere participating to the **global warming effect**
- We must therefore **limit the use of fossil resources** and, in the midterm, totally stop their use.
  - The almost unique solution is to use **biomass** as raw material.





## A NEW CATALYSIS "GOLD AGE"


- Transition from fossil to renewables and the development of biorefineries urges researchers to rethink all the industrial catalysis
- Necessity to adapt the catalysts to the specificity of renewable resources:
  - Water resistant
  - Oxygenated and functionalized reactants





How do we proceed to develop a new catalyst?

- No predictive method to design a priori a catalyst for a given reaction. The trial and error experimental approach is still necessary.
- For each reaction a specific catalyst must be developped.





## **INNOVATION IN CATALYSIS**

### <u>A - Forefront fundamental research</u>

- Commercial catalyst already available or development of a new one
- *"A priori"* theoretical prediction not yet fully possible
- <u>B Experimental phase</u>

(synthesis, characterization and testing)

"Trial and error" method still needed



Time- and money-consuming

- <u>C Interpretation</u>
  - Correlation between physico-chemical/biological properties and catalytic performances
- <u>**D**</u> **Upscaling**: tests at the pilot scale
- <u>E Commercialization</u>



## What is REALCAT ?

- Advanced High-Throughput Technologies Platform dedicated to Biorefineries (but also other!) Catalysts Design
  - Synthesis
  - Characterization
  - Testing of the catalytic performances
  - Homogeneous catalysts
  - Heterogeneous catalysts
  - Biological catalysts

### New concept: Hybrid catalysts

- Our goal is to accelerate:
  - The discovery of new catalytic processes
  - The optimization of existing catalytic processes



# REALCAT.















## What is REALCAT ?

Unique high-throughput chemistry and biotechnology academic platform:

Located in Lille (North of France) Collaborating worldwide !

Offering R&D in Collaboration or as Services

For both Academics and Companies



## How does REALCAT work?

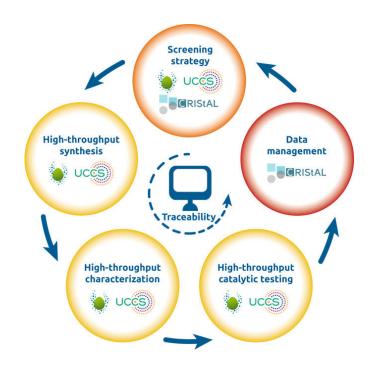
A complete ensemble of automatized robots:

Allows to work with a high number of samples at a time to accelerate the:

Finding of the perfect catalyst or process

Screening of all samples / conditions of your assays

By enabling complex and tailored workflows comprising ...


Synthesis of catalysts

Testing of the catalytic performances Characterisation of products and catalysts





## **REALCAT:** a multidisciplinary approach



## Who makes REALCAT live ?

A complementary team composed of:

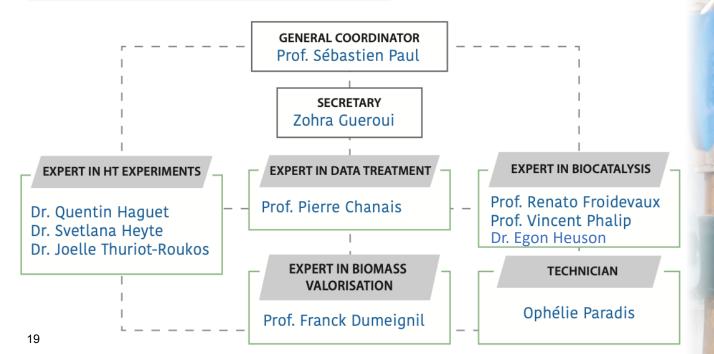
GENERAL COORDINATOR Prof. Sébastien Paul

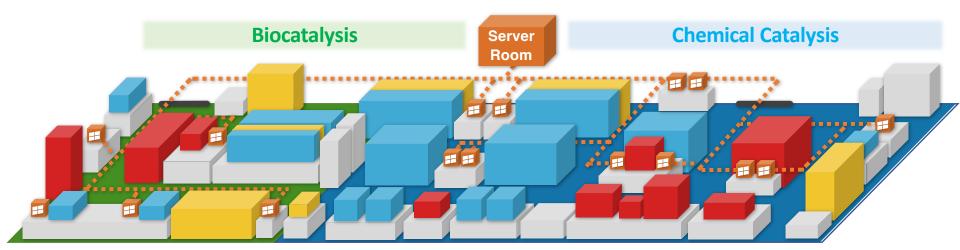
> SECRETARY Zohra Gueroui

**EXPERT IN HT EXPERIMENTS** 

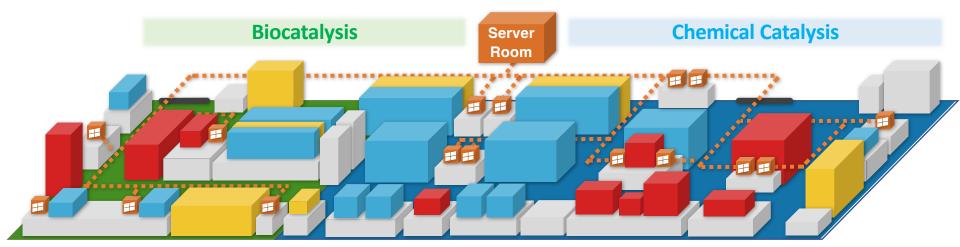
Dr. Quentin Haguet Dr. Svetlana Heyte Dr. Joelle Thuriot-Roukos



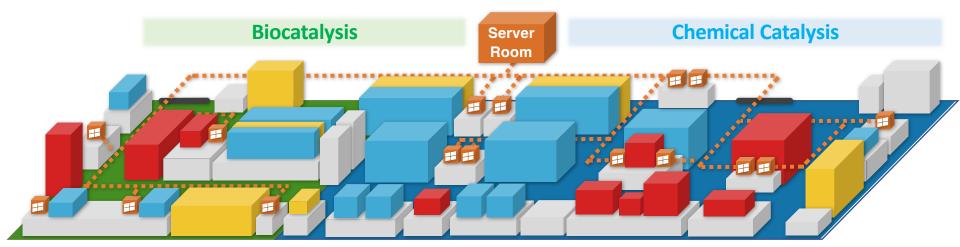

## Who makes REALCAT live ?

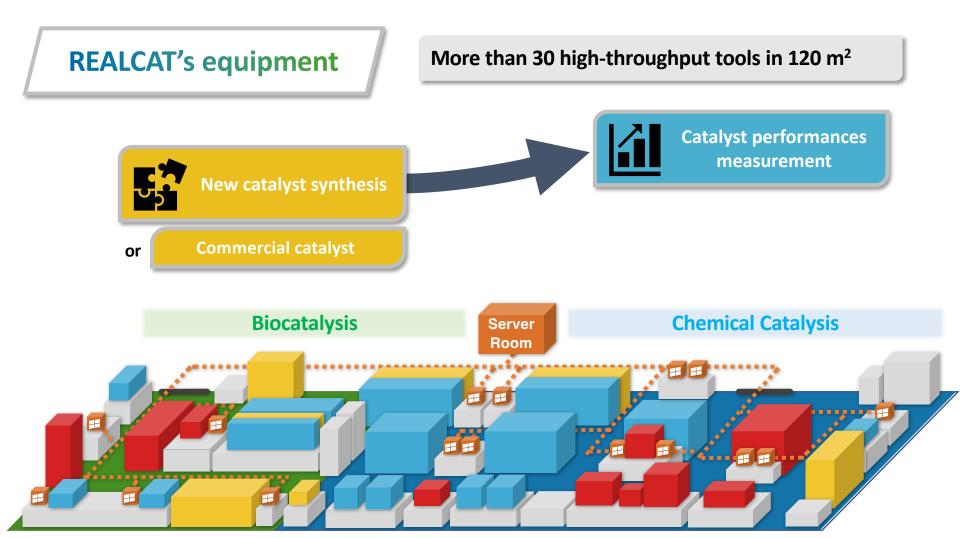

CH POINT

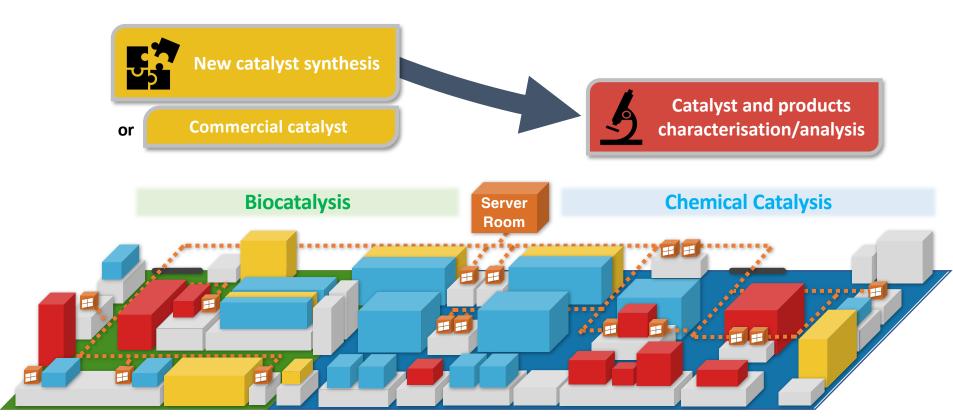
LEUEDBURGE

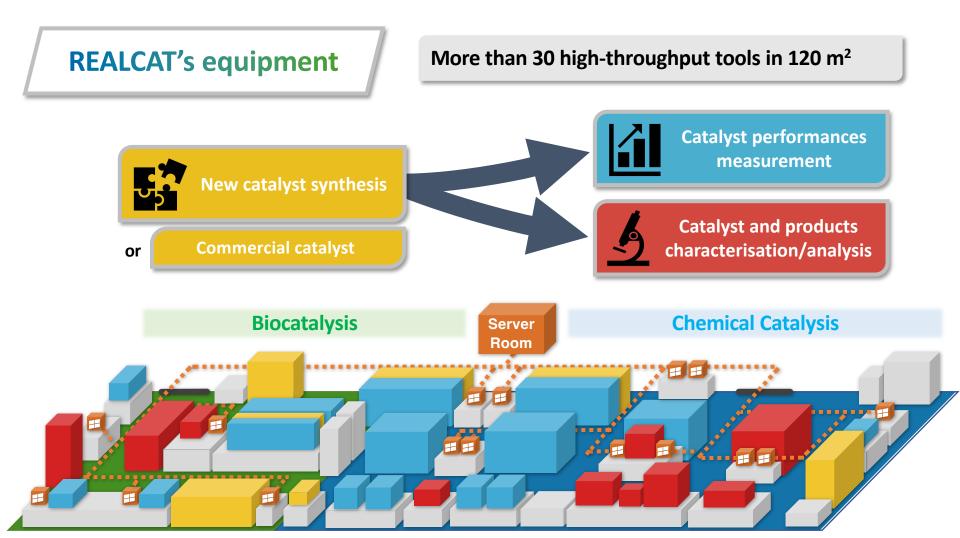

## Who makes REALCAT live ?

A complementary team composed of:
















Catalyst synthesis

Catalyst performances measurement





### Automated preparation and testing platforms

Catimpreg (Chemspeed)

- → Coprecipitation, impregnation in 12 or 24 reactors.
- → Liquid phase batch testing at atm. pressure in 12 or 24 reactors at 20-130°C , photocatalysts testing

*Screw caping, feeding, liquid/powder dispense, agitation, heating, filtration, sampling, photocatalysts testing 400 nm...* 

### Automated preparation and testing platforms Autoplant (Chemspeed)

Coprecipitation, impregnation & hydrothermal synthesis in 8 reactors (autoclaves) with individual control of parameters.

 → Liquid/gas phase batch or semi-batch testing at high-pressure (80 bars) in 8 reactors (autoclaves) at 20-230°C.

Feeding, liquid/powder dispense, agitations, heating, sampling at high pressure, PEEK equipment, under  $N_2$  or  $H_2$  atmosphere ...



Catalyst performances measurement



### **Glove-box**

(Mbraun)

→ Catalysis preparation and its storage at controlled atmosphere...

### → Loading of SPR or Autoplants reactors.

*High capacity, filter for the solvent, controlled atmosphere, storage at +20 to -40°C...* 





## Elemental analysis: Inductively Coupled Plasma spectrometer

ICP-OES 720 (Agilent)

→ Quantitative and semi-quantitative or qualitative determination of elements, automated digester

### Elemental analysis: CHNOS analyser

Flash Smart (Thermo Fischer Scientific)

→ Automated elemental analyzer for carbon (C), hydrogen (H), nitrogen (N), sulfur (S) and oxygen (O) present in solid, liquid and viscous samples ...







### Structural analysis: X-Ray Diffractometer

D8 Discovery (Bruker)

## → Identification and quantification of the crystalline phases, crystallite size

Transmission and reflection mode, motorized X-Y-Z stage for automatic move of sample position during a multiwell analysis

### Elemental analysis: Micro X-ray spectrometer

M4 Tornado (Bruker)

Non-destructive quantitative and qualitative determination of elements, elemental distribution and mapping

Analysis from sodium Na to uranium U, analysis under vacuum, two X-ray tubes: Rh and W





### Structural analysis : Infrared Spectroscopy

Tensor 37-HTS (Bruker)

### Identification of the nature of chemical bonds present in a solid or liquid sample

*MIR Source spectral range from 8000 to 550 cm-1, 2 detectors working in reflection and transmission mode* 

### Structural analysis : Raman spectroscopy

XploRa (Horiba Jobin Yvon)

→ Chemical structure, molecules configuration and the crystallinity

→ intra- and intermolecular force (hydrogen bond) and molecular orientation (polarization) of a solid or liquid sample Spatial resolution 1-2µm, single point and mapping, multiple laser wavelegths (532 nm, 638 nm and 785 nm)...

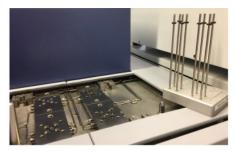




### Textural analysis: Gas adsorption analyser

3Flex 3500 and Tristar 3020 (Micromeritics)

→ Meso and micropore analysis


specific surface area, pore distribution, total pore volume











4 temperature blocks, 16 stainless steel or quartz reactors



Catalyst performances measurement

### Automated testing platforms

### 3 Flowrence units (Avantium)

### → Gas/Liquid phase fixed bed testing in 16 reactors in parallel

4 temperature blocks, stainless steel or quartz reactors, 10-500 mg of catalyst, on-line GC analysis of gas, liquid sampling robots ...

## $\Rightarrow$ Flowrence T1219 (Fischer-Tropsch ) , hydrocracking and VOC/toluene oxidation, CO2 hydrogenation )

Pressure 1-80 bars, temperature 50-550°C, on-line GC analysis of gas, liquid sampling at 40-80°C, stainless steel reactors ...

### $\Rightarrow$ Flowrence T1220 (Oxidation, Reforming, ODH, deNOx $igcap_{M}$ )

Pressure 1-10 bars, temperature 50-750°C, on-line GC analysis of gas, stainless steel or quartz reactors ...

## $\Rightarrow$ Flowrence T1221 (Oxidation, Ammoxidation, Dehydrogenation, Haber-Bosch process etc. $\square$ )

Pressure 1-50 bars, temperature 50-550°C, on-line GC analysis of gas, liquid sampling at 4-20°C, stainless steel or quartz reactors ...









### Automated testing platforms

Screening Pressure Reactors (SPR) (Unchained Labs) → Liquid/gas phase batch testing at high-pressure (1-50 bars) in 24 reactors at 30-400°C

Primary screening of the catalysts, agitation, heating, stainless steel or quartz reactors, under  $N_2 / H_2$  or other atmosphere ...





Off-line analysis of products of reaction

GC-FID-2010 Plus and GC-FID-MS-QP2010 Ultra EI (Shimadzu)

→ Gas chromatographs dedicated for identification and quantification of volatile compounds Autosampler with 150 positions, FID and MS detectors







### Off-line analysis of products of reaction

HPLC-UV-IR-CDD (Shimadzu)

→ High performance liquid chromatography dedicated to quantification of compounds in liquid sample

Refractive index detector, UV/visible detector with dual wavelength detection in the range 190-700nm, conductive detector for cation and anions analysis (CDD)

### Off-line analysis of products of reaction

HPLC-DAD (Shimadzu)

→ High performance liquid chromatography dedicated to quantification of compounds in liquid sample


DAD detector with dual wavelength detection in the range 190-800nm, autosampler with 384 positions

## REALCAT team's own development



### **Photocatalytic Multi-Reactor**

- $\rightarrow$  12 batch reactors equipped with 400 nm leds
- $\rightarrow$  Model reaction : Rhodamine B degradation



## REALCAT team's own development





Catalyst



Gas composition



Temperature



Gas flow rate

#### Multi-C: Multi-Calcination System

- $\rightarrow$  8 channels
- ightarrow Calcination under stream
- → Maximum temperature: 550 °C





# Keyword: Safety & Confidentiality

- 3 levels of gas detection
- Venting system
- HP gas distribution network



- Closed network
- Crypted data

. . .

. . .

Limited access





## Modalities of use of REALCAT

- The REALCAT equipment is open to worldwide external users (academic and industrial) in the frame of:
  - internal projects
  - academic collaborative projects
  - industrial collaborative projects
  - pure provisions of services

Brings catalysis over lightspeed

REALCAT

#### We are here to answer your questions !

Website

https://www.realcat.fr

Productions

3D visit













Centrale Initiatives

Photos credits: Cyril FRESILLON ; Quentin HAGUET



# Fatty Acids Catalytic Selective Hydrogenation To Hydrocarbons

Zaher Raad<sup>1,2</sup>, Svetlana Heyte<sup>3</sup>, Sébastien Paul<sup>3,\*</sup> Marcelo E. Domine<sup>1,\*</sup>





<sup>1</sup>Instituto de Tecnología Química ITQ (UPV-CSIC), Valencia, Spain



<sup>2</sup>(MCEMA-CHAMSI), ESDT Beyrouth, Liban



<sup>3</sup>Université de Lille, CNRS, Centrale Lille, UCCS, Lille, France

### **Main Objective**



Transformation and valorization of Fatty Acids into valuable products (Hydrocarbons)

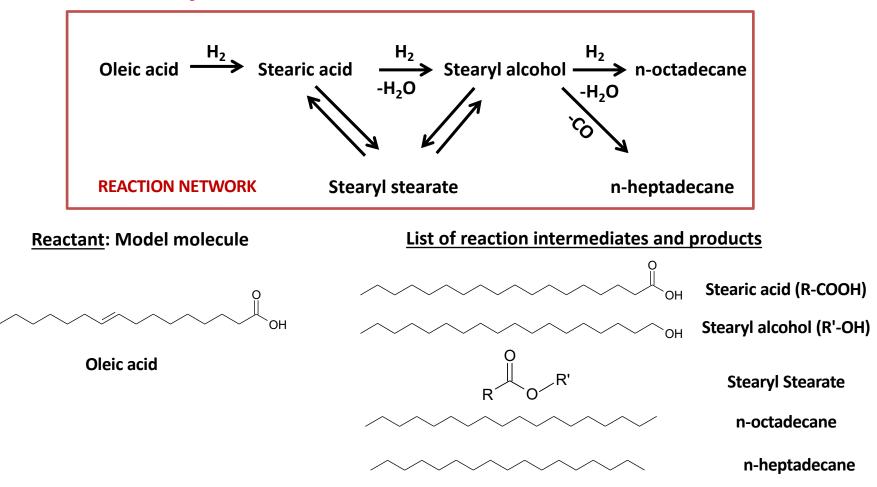
Catalytic Hydrogenation: Hydrodeoxygenation HDO/ Decarbonylation DCO/Decarboxylation DCO<sub>2</sub>

New Solid Catalytic Materials (Metal supported catalysts)



Mild Reaction conditions: 30 bar of H<sub>2</sub> ; <300 °C

Efficient, cheap and easy to prepare




## **Catalyst Development**

| Metal sup                                                                                                                                                                                       | oported catalyst                                                                                                    | S                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                     |                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Pt Catalysts<br>Pt/TiO <sub>2</sub><br>Pt/Al <sub>2</sub> O <sub>3</sub><br>Pt/ZrO <sub>2</sub><br>Pt/TiO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub><br>Pt/TiO <sub>2</sub> /ZrO <sub>2</sub> | Pt-Ni Catalysts<br>PtNi/TiO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub><br>PtNi/TiO <sub>2</sub> /ZrO <sub>2</sub> | Ni Catalysts<br>Ni/TiO <sub>2</sub><br>Ni/Al <sub>2</sub> O <sub>3</sub><br>Ni/ZrO <sub>2</sub><br>Ni/TiO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub><br>Ni/TiO <sub>2</sub> -Al <sub>2</sub> O <sub>3</sub><br>Ni/TiO <sub>2</sub> -ZrO <sub>2</sub><br>Ni/TiO <sub>2</sub> -ZrO <sub>2</sub><br>Ni/Al <sub>2</sub> O <sub>3</sub> -ZrO <sub>2</sub> | Pd-Ni Catalysts<br>PdNi/TiO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub><br>PdNi/TiO <sub>2</sub> /ZrO <sub>2</sub> | $\begin{array}{c} \underline{Pd\ Catalysts}\\ Pd/TiO_2\\ Pd/Al_2O_3\\ Pd/ZrO_2\\ Pd/TiO_2/Al_2O_3\\ Pd/TiO_2/ZrO_2 \end{array}$ |

#### **Reaction Pathways**







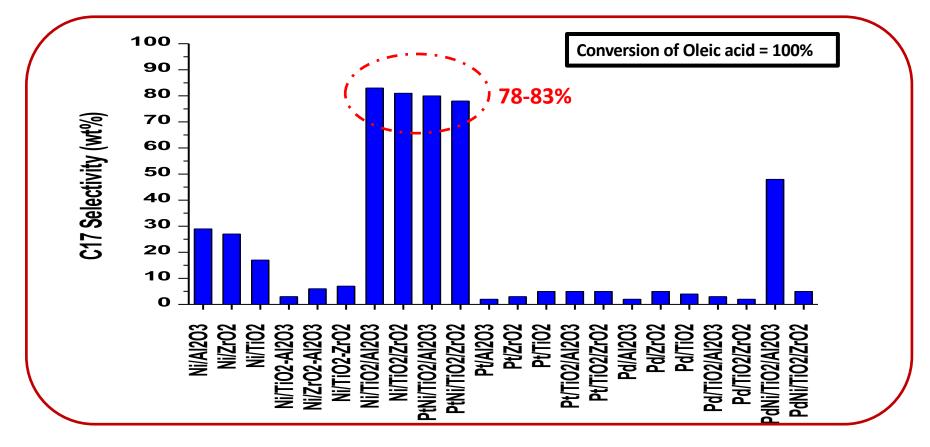

# **Description of SPR equipment**

Screening Pressure Reactor (SPR), from Unchained Labs, an automated high-throughput reactors system used for the reactivity tests.





24 stainless steel 6 mL vials/reactors allow performing up to 24 experiments per run with operational temperature up to 400 °C and pressure up to 50 bar.


#### Experimental Protocol



# **Catalytic test**

| Set Open Reactor Lines to ""; Plate (A1:D6)<br>Set Gas2 Flow to 200 sccm; Plate (A1:D6)<br>Set Delay to 5 min; Plate (A1:D6)<br>Set Gas2 Flow to 0 sccm; Plate (A1:D6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Purge of reactors with $N_2$                                           |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| <ul> <li>Set Gas3 Flow to 200 sccm; Plate (A1:D6)</li> <li>Set Delay to 5 min; Plate (A1:D6)</li> <li>Set Gas3 Flow to 1000 sccm; Plate (A1:D6)</li> <li>Set Pressurize to 440 psi; Plate (A1:D6)</li> <li>Set Delay to 5 min; Plate (A1:D6)</li> <li>Set StopFlow to ""; Plate (A1:D6)</li> <li>Set Seal Pressure Vessel to ""; Plate (A1:D6)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Purge of reactors with<br>H <sub>2</sub> and set pressure to<br>30 bar |  |  |
| Set Shaking to 800 rpm; Plate (A1:D6) Set Set Temperature Fast to 275 degC; Plate (A1:D6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | te (A1:D6) Heating and start<br>reaction                               |  |  |
| <ul> <li>Set Shaking to 0 rpm; Plate (A1:D6)</li> <li>Set Set Temperature Fast to 40 degC; Plate</li> <li>Set Open Reactor Lines to ""; Plate (A1:D6)</li> <li>Set Delay to 1 min; Plate (A1:D6)</li> <li>Set Gas2 Flow to 200 sccm; Plate (A1:D6)</li> <li>Set Gas2 Flow to 0 sccm; Plate (A1:D6)</li> <li>Set Gas2 Flow to 0 sccm; Plate (A1:D6)</li> </ul> |                                                                        |  |  |

### **Results of Catalytic Primary Screening**



TECNOLOGÍA Q U Í M I C A

# Preliminary conclusions after the primary screening

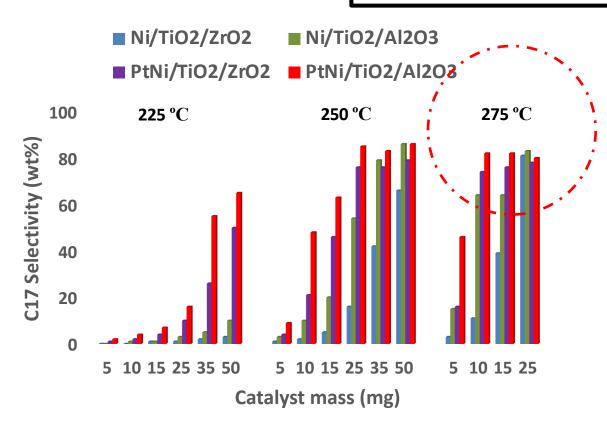
- Ni/TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> and Ni/TiO<sub>2</sub>/ZrO<sub>2</sub> are the most active Ni based catalysts for C17 production.
- Pt and Pd based catalysts are not active for C17 production.
- Ni and PtNi supported on TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub>/ZrO<sub>2</sub> have similar activity for C17 production.
- PdNi supported on TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub>/ZrO<sub>2</sub> are less active than Ni catalysts for C17 production.

#### 2<sup>nd</sup> phase of the project: Parameter study for 4 selected catalysts

| Parameters |                                | Level 1 | Level 2 | Level 3 |
|------------|--------------------------------|---------|---------|---------|
| A          | Temperature, °C                | 225     | 250     | 275     |
| В          | H <sub>2</sub> loading, mol. % | 20      | 60      | 100     |
| С          | Catalyst mass, mg              | 5       | 15      | 25      |

Selected Catalysts: Ni/TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ; Ni/TiO<sub>2</sub>/ZrO<sub>2</sub> ; PtNi/TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ; PtNi/TiO<sub>2</sub>/ZrO<sub>2</sub>

#### Main objective:

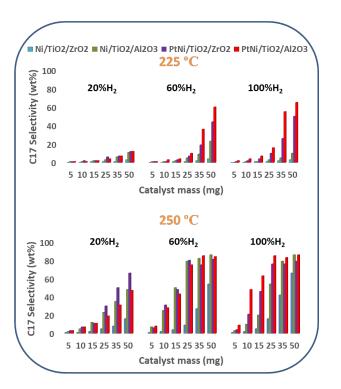

Determination of the influence of the parameters on the performances

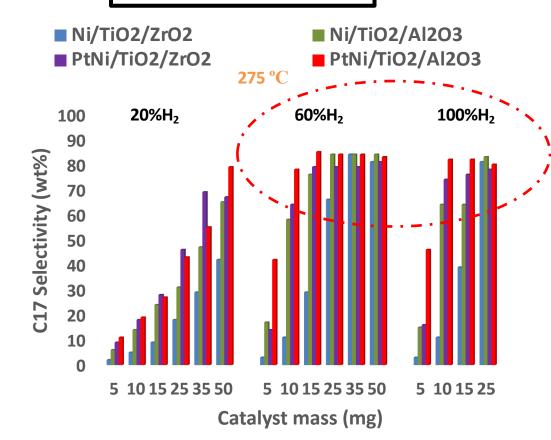
INSTITUTO DE TECNOLOGÍA O U Í M I C A

#### **Most Relevant Results**



Conversion of Oleic acid = 100%





**<u>Reaction conditions</u>**: 30 bar 100%H<sub>2</sub>, 3 hours, 15 wt% oleic acid in decalin

#### **Most Relevant Results**



#### Conversion of Oleic acid = 100%





Reaction conditions: 30 bar, 3 hours, 15 wt% oleic acid in decalin

### **Conclusions**



- 240 catalytic tests done in less than 3 months.
- PtNi/TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> and PtNi/TiO<sub>2</sub>/ZrO<sub>2</sub> are more active than Ni/TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> and Ni/TiO<sub>2</sub>/ZrO<sub>2</sub> for n-heptadecane C17 production.
- For bimetallic systems, higher C17 selectivity is obtained at higher temperatures and H<sub>2</sub> concentrations, even at lower catalyst loadings.
- The maximum C17 selectivity/yield (≈85%) is achieved with only 10 mg of PtNi/TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst working at 275 °C and 30 bar of 60-100% H<sub>2</sub>.

### **Aknowledgments**











Lebanese University







<u>Financial Support</u>: Fellowship 1 Fellowship 2 Spanish Government (CATBIOREF proj. PGC2018-097277-B-100)



#### ACKNOWLEDGEMENTS

#### For financial and administrative support



The REALCAT platform is benefiting from a state subsidy administrated by the **French National Research Agency (ANR)** within the frame of the 'Future Investments' program (PIA), with the contractual reference 'ANR-11-EQPX-0037'. **The European Union**, through the **ERDF** funding administered by the **Hauts-de-France Region**, has co-financed the platform. **Centrale Lille**, the **CNRS**, and **Lille University** as well as the **Centrale Initiatives Foundation**, are thanked for their financial contributions to the acquisition and implementation of the equipment of the REALCAT platform.



# Thank you for your kind attention

sebastien.paul@centralelille.fr www.realcat?fr

https://www.vip-studio360.fr/galerie360/visites/vv-centrale-lille/vvrealcat-en-c.html