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Due to the high risk of an outbreak of pandemic influenza, the development of a broadly

protective universal influenza vaccine is highly warranted. The design of such a vaccine

has attracted attention and much focus has been given to nanoparticle-based influenza

vaccines which can be administered intranasally. This is particularly interesting since,

contrary to injectable vaccines, mucosal vaccines elicit local IgA and lung resident T cell

immunity, which have been found to correlate with stronger protection in experimental

models of influenza virus infections. Also, studies in human volunteers have indicated

that pre-existing CD4+ T cells correlate well to increased resistance against infection.

We have previously developed a fusion protein with 3 copies of the ectodomain of

matrix protein 2 (M2e), which is one of the most explored conserved influenza A virus

antigens for a broadly protective vaccine known today. To improve the protective ability

of the self-adjuvanting fusion protein, CTA1-3M2e-DD, we incorporated it into porous

maltodextrin nanoparticles (NPLs). This proof-of-principle study demonstrates that the

combined vaccine vector given intranasally enhanced immune protection against a

live challenge infection and reduced the risk of virus transmission between immunized

and unimmunized individuals. Most importantly, immune responses to NPLs that also

contained recombinant hemagglutinin (HA) were strongly enhanced in a CTA1-enzyme

dependent manner andwe achieved broadly protective immunity against a lethal infection

with heterosubtypic influenza virus. Immune protection was mediated by enhanced levels

of lung resident CD4+ T cells as well as anti-HA and -M2e serum IgG and local IgA

antibodies.

Keywords: mucosal vaccination, influenza A virus, CTA1-DD, maltodextrin nanoparticles, targeted adjuvant, nasal

immunization, Universal vaccine
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INTRODUCTION

The quest for a broadly protective influenza vaccine is ongoing.
Whereas many different strategies have been employed to
design a novel vaccine, a common denominator for these has
been to identify conserved viral epitopes that could serve as
effective vaccine components (1). Attention has been given to
epitopes from the hemagglutinin (HA) stem region in order to
raise neutralizing antibodies against conserved structures of the
protein (2–6). The prevailing idea is that protective antibodies are
largely neutralizing antibodies, but also antibodies acting through
antibody-dependent cell-mediated cytotoxicity (ADCC) could
prevent disease, as shown in experimental models (7–9). To the
latter category of ADCC-acting antibodies we count antibodies
against the ectodomain of the influenza Amatrix protein 2 (M2e),
an ion channel protein which, in fact, is one of the most explored
vaccine subcomponents for a universal influenza vaccine today
(10–13) M2e as part of a virus-like particle or a fusion protein has
been shown to stimulate strong protection against homologous as
well as heterologous influenza virus infections in different animal
models (14–16). Furthermore, clinical studies have indicated that
cell-mediated immune responses, more than antibodies, may be
critical for a broadly protective influenza vaccine and, hence,
not only M2e, but also several internal structural proteins have
been considered for a universal flu vaccine (10, 13). While both
memory CD4+ and CD8+ T cells have been found to correlate
with protection against heterosubtypic influenza virus strains,
experimental evidence in this regard points to a particularly
critical function of lung resident memory T cells for protection
(17–20). Most influenza vaccines are injectable vaccines, but
these are poor inducers of lung resident memory T cells (13, 21).
Therefore, many researchers have focused efforts on mucosal
vaccines, which have been found superior to injectable vaccines
at stimulating lung resident memory T cells, concomitant with
strong secretory IgA (sIgA) and significant systemic IgG immune
responses (22).

We have previously developed a universal influenza vaccine
candidate by incorporating the M2e-peptide into the non-toxic
CTA1-DD adjuvant molecule (16). The CTA1-DD molecule
exploits the full immunomodulating ability of CTA1, which is
the ADP-ribosylating enzyme from cholera toxin (CT), linked
in a fusion protein (FPM2e) that employs the D-fragment
from Staphylococcus aureus protein A as a cell targeting unit

(23–25) CTA1-3M2e-DD was found to strongly protect against a

challenge infection with a heterosubtypic influenza A virus strain
(H1N1/PR8) (26). Our vaccine adjuvant molecule is lacking the
CTB pentamer of CT and cannot bind to the GM1-ganglioside
receptors present on most nucleated cells, including nerve cells
(27, 28). This way, CTA1-3M2e-DD is completely safe and non-
toxic even when given intranasally (i.n) contrary to CT or
other GM1-binding toxin adjuvants that can cause facial nerve
paralysis, also described as Bell’s palsy (29). Interestingly, the
CTA1-3M2e-DD not only stimulated strong M2e-specific serum
IgG and mucosal IgA antibody responses, but we also identified a
critical induction of lung resident M2e-specific memory CD4+

T cells (16, 26). We observed that M2e-specific CD4+T cells
were dominated by Th17 cells, which conveyed protection

against influenza that was independent of anti-M2e-antibodies.
Accordingly, we believe the CTA1-3M2e-DD, generating both
lung resident memory CD4+T cells and M2e-specific antibodies,
is a good candidate for a broadly protective influenza vaccine.

However, to improve vaccine stability and mucosal delivery
of the fusion protein, we sought to explore the combination
of the FPM2e with a nanoparticle (30). We used our well
established technology to incorporate CTA1-3M2e-DD into
porous maltodextrin nanoparticles (NPLs) to further improve
the immunogenicity and disease protective functions of the
vaccine candidate (31). Apart from shielding the protein against
degradation, we speculated that the combined FPM2e:NPL
vaccine formulation would facilitate breaching of the mucosal
membrane barrier and, in this way, augment antigen uptake
in migrating dendritic cells (DC) (32, 33). The positively
charged NPLs used in this work have three main components:
the reticulated maltodextrin, the anionic lipid (DPPG) and
the protein, which are all linked together by non-covalent
interactions (Van derWaals forces and electrostatic interactions).
Hence, the NPL hosts a negative hydrophobic core surrounded
by a positively charged polysaccharide shell (34). We have
reported previously that nasal immunizations with similar
NPL preparations could stimulate significant protection against
Toxoplasma gondii in mice (35, 36). An additional advantage
of the NPL technology is that it allows for loading of multiple
proteins in the same particle. This gave us the opportunity to
explore whether anti-influenza protection could be improved
with NPLs that carry both the CTA1-3M2e-DD and recombinant
HA. Thus, the present study was undertaken to investigate
whether the combined HA:FPM2e:NPL vaccine vector, hosting
the CTA1-3M2e-DD and recombinant HA, stimulated enhanced
protective immunity against influenza virus infections. A special
focus was given to the uptake and antigen-processing of the
combined vector by DCs, which are the essential primers of
CD4+ T cell immunity (37).

MATERIALS AND METHODS

Mice and Immunizations
Age- and sex-matched BALB/c, C57BL/6 or DBA/2 mice were
obtained from Harlan (The Netherlands) or Janvier Laboratories
(France). The Eα-specific T cell receptor transgenic B6.Cg-
Tg(Tcrα,Tcrβ)3Ayr/J mice were obtained from The Jackson
Laboratories (USA). Mice were maintained under specific
pathogen-free conditions at the Laboratory for Experimental
Biomedicine (EBM) (University of Gothenburg, Sweden) or at
the Laboratory of Virology (University of Freiburg, Germany).
Experiments were ethically approved by local committees
regulating animal ethics at the universities of Gothenburg and
Freiburg, respectively. A single or three immunizations with 10
days between immunizations were given intranasally (i.n) to 4–6
weeks old mice. As indicated, an i.n antigen dose of 1 or 5 µg of
protein was given in a volume of 20 µl i.n to each mouse. Mice
were sacrificed after 1–2 weeks following the final immunization
or virus challenge infection and spleens, mediastinal lymph
nodes (mLN), serum, and broncheoalveolar lavage (BAL) were
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collected. Serum and BAL were taken at times indicated and
stored at−20◦C until further analyzed.

Fusion Protein Construction
CTA1(C189A)-3M2e-DD, with enzymatic activity, CTA1(R9K)-
3M2e-DD, the enzymatically inactive mutant, CTA1-DD
and CTA1(C189A)-3Eα-DD were produced in E. coli
by MIVAC Development AB, Sweden, as previously
described (16). The first two constructs carry three copies
of the extracellular domain of the influenza virus M2
protein (SLLTEVETPIRNEWGSRSNDSSD) derived from
the A/Victoria/3/75 (H3N2) virus strain. CTA1(C189A)-
3Eα-DD carries 3 copies of the Eα 52-68 peptide
(ASFEAQGALANIAVDKA). The fusion proteins were routinely
tested for the presence of endotoxin, using the limulus amebocyte
lysate assay (LAL Endochrome TM Charles River Endosafe,
USA) and found to be <100 endotoxin units/mg protein
(EU/mg). The enzymatic ADP-ribosyltransferase activity was
determined by the NAD:agmatine assay (38). Protein analysis
was performed with SDS-PAGE, and concentrations were
determined using the Bio-Rad DC protein assay (Bio-Rad, USA),
according to the manufacturer’s instructions.

Nanoparticle Preparation
Nanoparticles (NPLs) were produced as described by Paillard et
al. (34). Briefly, maltodextrin (Roquette, France) was dissolved in
2N sodium hydroxide by magnetic stirring at room temperature.
A mixture of epichlorohydrin and glycidyltrimethylammonium
chloride (GTMA, a cationic ligand; both from Sigma-Aldrich,
France) was added to the polysaccharide leading to the
formation of a gel. After neutralization by means of acetic
acid, the gel was crushed with a high pressure homogenizer
(Emulsiflex C3, Avestin, Germany). The newly obtained NPLs
were purified by tangential flow ultra-filtration (Centramate
Minim II PALL, France) using a 300 kDa membrane (PALL,
France) to remove oligosaccharides, low-molecular weight
reagents and salts. Purified NPLs were freeze dried. Lyophilized
NPLs were dissolved in water and a 1,2-dipalmitoyl-sn-glycero-
3-phosphatidylglycerol (DPPG) lipid (Lipoid, Germany) was
loaded into NPLs at a temperature above the liquid phase
transition temperature of the lipid.

CTA1-3M2e-DD and HA Loading Into
Nanoparticles
The fusion proteins or trimeric HA were loaded into premade
NPL at a mass ratio 1:5 (protein:NPL), by mixing the
proteins with NPLs followed by incubation for 30min at room
temperature. The recombinant extracellular domain (Met 1-
Gln 528) of the hemagglutinin (HA1+HA2) was derived from
Influenza A Virus H1N1 (A/Puerto Rico/8/34 virus strain) fused
with a C-terminal polyhistidine tag (Sino Biological Inc., China)
was resuspended in 1.98% Empigen R© BB (N,N- Dimethyl-
N-dodecylglycine betaine, Sigma-Aldrich, France) obtaining a
protein concentration of 1 mg/ml. Then HA was incubated
with either NPL or CTA1-3M2e-DD:NPL at r.t. to obtain a
formulation with a mass ratio 1:5 (protein:NPL).

Size, Zeta Potential, and Long Term
Stability
We determined the efficiency of protein incorporation into NPLs
by native polyacrylamide gel electrophoresis (PAGE). Proteins
and NPLs were dissolved in electrophoresis buffer (Tris-HCl
125Mm (pH 6.8), 10% glycerol, 0.06% bromophenol blue) and
run on a 10% acrylamide-bisacrylamide gel. The gel was stained
by silver nitrate to detect unbound proteins. The size and the
zeta potential of the proteins and NPLs were assessed by dynamic
light scattering and electrophoretic mobility with a Zetasizer
nanoZS (Malvern Instruments, France). Proteins or NPLs were
kept in low volume quartz batch cuvettes (ZEN2112, Malvern
Instrument, France) for particle size purposes. For assessments
of zeta potential samples were diluted in water to a final volume
of 750 µl and loaded into a disposable folded capillary cell
(DTS1070, Malvern Instrument, France). The molecular stability
of CTA1-3M2e-DD (FPM2e) or the different NPLs, was assessed
after 3 months, under accelerated (40◦C) or standard (4◦C)
conditions, or after >12 months in 4◦C, “sterile setting.” The
molecular stability was determined by change in size or zeta
potential as measured by dynamic light scattering and laser
doppler velocimetry. The stability of the protein incorporated
into NPLs was evaluated by native PAGE analysis, as described
above. Antigen degradation was assessed by SDS-PAGE, using
a denaturing buffer (Tris–HCL 125mm (pH 6.8), 20% glycerol,
10% SDS, 2.5% β-mercaptoethanol and 0.06% bromophenol
blue). The gels were stained by silver nitrate.

In vitro Antigen Presentation Assays
The D1 cell line, a long-term growth factor-dependent immature
myeloid (CD11b+, CD8α-) DC line of splenic origin derived
from a female C57BL/6 mouse, was generously provided by
prof. P. Ricciardi-Castagnoli (University of Milan-Bicocca, Italy)
(39). The D1 cells were cultured in 24-well plates (Nunc,
A/S Roskilde, Denmark) in Iscove’s medium (Biochrom KG,
Germany), supplemented with 10% heat-inactivated fetal calf
serum (Biochrom KG, Germany), 50µM 2-mercaptoethanol
(Sigma Aldrich, Sweden), 1mM L-glutamine (Biochrom KG,
Germany) and 50µg/ml Gentamycin (Sigma Aldrich, Sweden)
and stimulated for different times with 0. 2µM of CTA1-3Eα-
DD soluble protein or when incorporated into NPLs. To assess
the processing efficiency of fusion protein we determined the cell
surface expression of peptide plusMHC II complex by incubating
D1 cells with anti-Eα(52-68):I-Ab complex-specific Y-Ae biotin-
labeled antibody (eBiosciences, USA). Flow cytometric analysis
was performed after incubation with streptavidin-APC and anti-
CD11c-PE, 7AAD,MHCII-FITC at 4◦C for 30min (eBiosciences,
USA). We analyzed 100,000 events using a BD-FACS LSR II
instrument (BD Bioscience, USA) and the data were analyzed
with FlowJo (TreeStar, USA) software.

Antigen Processing by Migratory DCs and
CD4+ T Cell Priming in vivo
Four to 6 weeks old, age, and sex-matched TCR transgenic B6.Cg-
Tg(Tcrα,Tcrβ)3Ayr/J mice were immunized i.n. with 50 µg of
protein using the fusion proteins alone or incorporated into
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NPLs. At 24 h after a single i.n administration of fusion protein
or NPLs, mice were sacrificed and the mediastinal lymph nodes
(mLN) were extracted and single cell suspensions were prepared.
To assess the level of Eα loaded MHCII molecules on isolated
migratory DCs we incubated the cells with biotin-labeled Y-Ae
anti-mouse Eα(52-68):I-Ab Mab. In the second step we used
streptavidin-APC, anti-Ly6c-BV605, anti-CD11c-BV421, anti-
MHCII (I-Ab)-FITC, anti-CD11b-APC, anti-CD103-PE, 7AAD
for 30min. at 4◦C (antibodies from eBiosciences, USA). We also
performed adoptive transfer experiments with 2 × 106 TCR
transgenic CD4+ T cells injected i.v into recipient C57BL/6
mice after isolation using a CD4+ T Cell Isolation Kit (Miltenyi
Biotec, Sweden). Prior to transfer the cells were stained with
5µM CFSE and the mice were immunized i.n. with 5 µg
of fusion protein alone or incorporated into NPLs. On days
2,4,6 and 8 after immunizations the mLNs were isolated and
single cell suspensions were prepared followed by labeling
with anti-CD3-efluor 780, anti-CD4-BV711, anti-TCR Vα2-PE,
anti-TCR Vβ6-APC, and 7AAD for 30min at 4◦C (all Mabs
from eBiosciences, USA). Proliferating CD4+TCR Vα2+ Vβ6+

cells were identified by reduced CFSE-staining. Flow cytometry
analysis was performed on 500,000 events using a BD-FACS LSR
II instrument (BD Bioscience, USA) and the FlowJo (TreeStar,
USA) software program.

Virus Transmission and Challenge
Experiments
Female BALB/c mice (index animals) in groups of 10 individuals
were either unimmunized or immunized i.n as described above
and 8 weeks later all mice were infected i.n with 3 × 104

PFU H3N2 Udorn virus (A/Udorn/307/1972 (H3N2)). After
24 h these infected mice were co-housed with unimmunized
uninfected DBA/2 mice (contact animals) and the level of virus
transmission was determined. After 4 days the snouts and lungs
of both index and contact animals were collected and viral loads
were determined by the plaque assay. Briefly, tissue samples
were homogenized in cold PBS using FastPrep R© spheres (MP
Biomedicals, Germany), and centrifuged for 10min at 9,000 rpm
at 4◦C. Sample dilutions were done with OptiMEM (Thermo
Fisher Scientific, USA) supplemented with 0.3% bovine serum
albumin (BSA) and inoculated in 12 well plates with confluent
MDCK cells and incubated for 1–2 h at room temperature. The
number of plaques in the confluent cell layer was counted in the
respective dilution to calculate the virus titer and then given as
plaque-forming units (pfu) per ml.

Influenza virus challenge experiments were performed in
groups of 10 mice at 2 weeks after the last immunization. We
used a lethal i.n dose of 4 × LD50, corresponding to 2.5 ×

103 TCID50, of PR8 A/Puerto Rico/8/34 (H1N1) virus or the
mouse adapted X47 virus (a reassortant between A/Victoria/3/75
(H3N2) and A/Puerto Rico/8/34 (H1N1)). Morbidity (body
weight) and mortality were monitored daily for 2 weeks. Mice
were sacrificed when reaching a weight loss >25–30%.

CD4+ T Cell Immune Responses
We assessed the CD4+ T cell response after immunizations by
two different analyses. The first analysis used flow cytometry and

the PE-labeled M2e-tetramer, specifically designed for the study
by the NIH Tetramer Core Facility (Bethesda, USA) to identify
the CD4+ T cells that specifically recognize and react to M2e in
the context ofMHC class II I-Ab. Briefly, 2 weeks after a challenge
infection lung tissue was treated with a Lung Dissociation Kit
(Miltenyi Biotec Norden AB, Sweden) and single cell suspensions
were prepared. Lung cells were incubated with the specific M2e-
tetramer-PE and labeled with anti-CD4-Alexa700, anti-CD19-
FITC, anti-F4/80-FITC, anti-CD8-APC/Cy7 Mabs and 7AAD
at 4◦C for 30min (all Mabs from eBiosciences, USA). We
collected 100,000 events on the BD-FACS LSR II instrument
(BD Bioscience, USA) and analyzed the data using the FlowJo
(TreeStar, USA) software. The second analysis used in vitro
M2e-peptide recall responses in single cell suspensions from
spleen and mLN from immunized and control mice. Briefly,
2 × 106 cells/ml were cultured in plain medium or together
with 1µM of M2e peptide (Pepscan, The Netherlands) in
triplicates in 96-well microtiter plates (Nunc, Denmark) in
Iscove’s medium (Biochrom KG, Germany), supplemented with
10% heat-inactivated fetal calf serum (Biochrom KG, Germany),
50µM 2-mercaptoethanol (Sigma Aldrich, Sweden), 1mM L-
glutamine (Biochrom KG, Germany) and 50µg/ml Gentamycin
(Sigma Aldrich, Sweden) for 72 h at 37◦C in 5% CO2. After 72 h
we added [3H]-thymidine (PerkinElmer, USA) to the cultures
for the last 6 h and [3H]-thymidine uptake was determined
using a scintillation counter (Beckman, Sweden). Prior to the
addition of [3H]-thymidine we collected supernatants that were
stored at −80◦C for further analysis of cytokine contents. We
assessed IFNy and IL-17 concentrations by ELISA using 96-well
plates (Dynatech Laboratories, Inc., USA) coated with 5µg/ml of
rat anti-mouse IFN-γ or IL-17 (JES5–2A5, PharMingen, USA).
After washing polyclonal rabbit anti-mouse IFN-γ or anti-IL-17
antibodies (PharMingen, Denmark) at 1µg/ml in 0.1% BSA/PBS
were added to each well and the p-nitrophenyl phosphatase
(Sigma Aldrich, Sweden) reaction was visualized using a Titertek
Multiscan spectrophotometer (Labsystems, Sweden) at 450 nm.
The concentrations of cytokines in the supernatants were
expressed in pg/ml, as calculated from plotted standard curves
of serial dilutions of recombinant cytokines.

Antibody Responses
Serum and BAL were collected from individual mice at indicated
time points. M2e- and HA-specific IgG and IgA antibody
determinations were performed by ELISA. Briefly, we used
96-well microtiter plates (MaxiSorp, Nunc, Denmark) coated
with 5µg/ml of M2e or 1µg/ml of recombinant HA (same
as described above) in 50mM sodium bicarbonate buffer pH
9,7 and incubated overnight at 4◦C. Serum or BAL were
diluted 1:25 and 1:2, respectively, in 0.1% BSA/PBS and serial
dilutions 1:3 in corresponding sub-wells were performed. Wells
were then incubated with alkaline phosphatase-conjugated rabbit
anti-mouse IgA or IgG antibodies (Southern Biotechnology,
USA) at 1:1000 dilution overnight. Nitro phenyl (NPP)
phosphatase substrate (1 mg/ml, Sigma Aldrich, Sweden) in
ethanolamine buffer, pH 9.8, was added to each well and
the reaction was read at 405 nm using a Titertek Multiscan
spectrophotometer (Labsystems, Sweden). Log10 titers were
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defined as the interpolated OD-reading giving rise to an
absorbance 0.4 above background, which consistently gave values
on the linear part of the curve.

Statistical Analysis
Analyses of significance were done in Prism (GraphPad Software)
using unpaired t-test. All reported P-values are two-sided and
values of less than 0.05 were considered to indicate statistical
significance. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.005.

RESULTS

Dendritic Cells Effectively Take Up and
Process the Combined Fusion
Protein/Nanoparticle Vector
The fusion protein CTA1-3M2e-DD (FPM2e) has previously
been demonstrated to stimulate strong protective immunity
against challenge with different influenza A virus subtype strains
when administered intranasally (i.n) (26). However, it appeared
that formulating this very effective influenza virus vaccine
candidate in a suitable nanoparticle would increase its efficiency
and stability as a vaccine vector even further (40). Therefore,
we combined the FPM2e with porous NPLs that previously have
been found effective for i.n immunizations (30, 34). Since little is
known about DC uptake and presentation of antigens delivered
with these nanoparticles, we initially focused on the DCs (41).
A panel of formulations with different ratios between loaded
protein and the NPLs was produced and their physico-chemical
properties were characterized. Of this panel, we selected NPLs
with a 1:5 protein:NPL mass ratio (FPM2e:NPL) as the optimal
construct to be used for the continued studies. The FPM2e:NPL
vector consisted of three main components: the maltodextrin
scaffold (NP+), the lipid (DPPG) and the FPM2e, which were
linked together by non-covalent interactions (Figure 1A). The
FPM2e:NPL vector had an average size of 160 nm with a zeta
potential of +45.63 ± 1.65mV, i.e., highly positively charged,
while the FPM2e itself was negatively charged (-19.47± 0.85mV)
(Figure 1B, left and middle panel). We found that most of the
FPM2e had been bound to the NPLs, as shown by the absence of
free FPM2e in the native PAGE analysis (Figure 1B, right panel).
The combination vector was stable at different temperatures for
up to 1 year with no detectable loss of FPM2e and both size and
zeta-potential were kept intact (Supplementary Figures 1, 2).

To analyze antigen uptake and processing, we established an
in vitro screening system based onNPLs carrying a fusion protein
with incorporated Eα-peptide, i.e., CTA1-3Eα-DD, termed FPEα.
The Eα peptide can be detected when bound to MHC class II
surface molecules on DCs by using a labeled Y-Ae antibody
that detects the complex (42). Therefore, the FPEα:NPL vectors
were used to follow uptake and presentation of the Eα-peptide
on the surface of DCs. This way, we could monitor the whole
process from uptake to peptide presentation kinetically and,
hence, determine what the T cell receptor would recognize on
the DC surface. The initial experiments were undertaken using
an immature DC cell line, D1 cells (of C57BL/6 origin), to assess
the ability to present peptides to CD4+ T cells (39). The mean

fluorescence intensity (MFI) of the bound Y-Ae antibody was
assessed by FACS at different time points and from 1 h onwards
we consistently observed a 2–3-fold higher MFI and also MHC
class II-expression on DCs exposed to the combined vector as
opposed to when the FPEα was used alone (Figure 1C, left and
middle panels). Noteworthy, the CTA1-3Eα-DD given alone had
a 2-fold enhancing effect on MHC class II-expression, attesting
to its immunomodulating ability (Figure 1C, right panel). Thus,
the combined FPEα:NPL vector was superior to soluble CTA1-
3Eα-DD alone for MHC class II peptide presentation by DCs in
vitro.

The next experiment evaluated the priming ability of DCs
stimulated by FPEα:NPLs for Eα peptide-specific recognition by
TCR transgenic CD4+ T cells (I-Ab) in vivo. We used the B6.Cg-
Tg(TCRα,TCRβ)3Ayr/J mice, which host TCR transgenic CD4+

T cells that recognize the Eα peptide bound to MHC class II.
First, we determined whether the combined formulation was
taken up by DCs in vivo. Following i.n. administration of 50
µg of the vector or soluble FPEα, we isolated the mediastinal
lymph node (mLN) 24 h later and assessed the presence of
DCs labeled with Y-Ae antibody (Figure 1D, left panel). We
observed strong labeling with antibody in 20% of the migratory
DCs (MHC IIhigh, CD11c+) while resident DCs (MHC IIlow,
CD11c+) did not carry the Eα-peptide and, thus, had not taken
up the vaccine vector that was given i.n (Figure 1D, middle
panel). Migratory DCs were found to carry the Eα peptide also
when the FPEα was given i.n alone and the surface expression
of the peptide/MHC II-complex was similar to that found in
mice receiving the combined FPEα:NPL vector (Figure 1D,
right panel). In an adoptive transfer experiment where B6.Cg-
Tg(TCRα,TCRβ)3Ayr/J CD4+ T cells were injected into wild
type C57BL/6 mice, we followed the expansion of TCR Tg CFSE-
labeled CD4+ T cells on days 2, 4, 6, 8, 10, and 12 after the i.n
immunization. We found that peptide-specific CD4+ T cells in
the mLN, were strongly proliferating in FPEα immunized mice at
the early time points, while mice given the combined FPEα:NPL
vector showed similar proliferation on day 8, which was sustained
until at least day 12 after immunization, when proliferation to
FPEα only was minimal (Figure 1E, upper panel). Hence, peak
CD4+ T cell proliferation to FPEα (80%) was observed on day
8 while FPEα:NPL (80%) immunized mice peaked on day 12
(Figure 1E, lower panel). Thus, the FPEα:NPL vector stimulated
slower but prolonged CD4+ T cell activation in the drainingmLN
after i.n immunizations compared to that stimulated by FPEa
alone.

Enhanced Immunogenicity and Protective
Function of the Combined Fusion
Protein/Nanoparticle Vector
Given that the combined vector effectively primed peptide-
specific CD4+ T cells in vivo, we addressed whether the
FPM2e:NPL vector was also effective at stimulating protective
immunity against infection. We produced FPM2e:NPL vectors
with CTA1-3M2e-DD and determined their immunogenicity
in BALB/c mice. Following i.n immunizations with 5 or 1 µg
of FPM2e or FPM2e:NPL, we assessed the protective efficacy
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FIGURE 1 | Efficient uptake and presentation of the combined NPL vaccine vector by DCs. (A) Schematic representation of the design of the FPM2e:NPL vaccine

vector. (B) FPM2e:NPLs were characterized with regard to particle size (left panel), zeta potential (middle panel) and native-PAGE electrophoresis analysis (right panel).

(C) The uptake, processing and surface presentation of Eα peptide and MHC class II complexes by D1 dendritic cells (DC) at different time points after stimulation with

0. 2µM of FPEa or FPEa:NPL. Surface expression of peptide/MHC II complexes were analyzed by flow cytometry using the mean fluorescent intensity (MFI) of labeled

Y-Ae Mab plotted as means ± SD of 3 experiments (left panel). Representative histograms of Y-Ae MFI after 30min and 24 h stimulation are shown (middle panel). MFI

values of anti-MHC II Mab labeling of the D1 cell surface after stimulation with FPEa or FPEa:NPL are given as means ± SD of 3 experiments (right panel). (D) Gating

strategy used for migratory and resident DCs in the mediastinal lymph node (mLN) (left panel). Representative FACS histograms of Y-Ae MFI in migratory (MHC IIhigh,

CD11c+) and resident (MHC IIlow, CD11c+) DCs 24 h after a single i.n immunization (middle panel). The percentage of Y-Ae+ cells in migratory and resident DC

populations was calculated in 3 independent experiments and given as means ± SD (right panel). (E) Gating strategy used to identify proliferation in Eα-specific

CFSE-labeled TCR Tg CD4+ T cells following i.n immunization (left panel). Representative FACS histograms of proliferating TCRVα2+TCRVβ6+CFSE+ T cells in the

mLN at 4, 6, 8, and 12 days after a single i.n immunization with 5 µg of FPEα or FPEα:NPL in C57Bl/6 mice adoptively transferred on day 0 with 2 × 106

TCRVα2+TCRVβ6+CFSE+ CD4+ T cells (right panel). The percentage of proliferating TCRVα2+TCRVβ6+CFSE+ CD4+ T cells was calculated and given as means

± SD (lower panel). These data are from at least 3 independent experiments giving similar results. Statistical significance was calculated by unpaired t-test and

p-values are given as *p < 0.05 and **p < 0.01.
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against a challenge with 4xLD50 of the X47 virus strain, a mouse
adapted reassortant A/Victoria/3/75 (H3N2) virus strain (43, 44).
Infected mice were monitored for weight loss and survival for
15 days post-infection. We found that mice immunized with the
5 µg/dose of FPM2e:NPL exhibited 100% protection, whereas
mice immunized with FPM2e alone were less well protected
(80%) (Figure 2A). Protection was clearly reduced (50%) in
mice immunized with 1 µg FPM2e or FPM2e:NPL (Figure 2B).
Furthermore, immunogenicity was assessed by M2e-peptide-
recall responses of splenic CD4+ T cells isolated from immunized
mice. Whereas a low dose of FPM2e:NPL (1µg/dose) was more
effective than a comparable dose of FPM2e alone, both the
5 µg and 1 µg doses of FPM2e:NPL gave similar CD4+ T
cell priming (Figure 2C). Importantly, the augmenting effect
of the FPM2e:NPL formulation was dependent on the ADP-
ribosylating ability of CTA1-3M2e-DD, because the combined
vector with the enzymatically inactive CTA1(R9K)-3M2e-DD
preparation was significantly less immunogenic (Figure 2C). The
protective effect of FPM2e:NPL was associated with a strong
CD4+ T cell priming effect for IFN-γ and IL-17 production,
as assessed in culture supernatants ex vivo (Figures 2D,E,
respectively). Finally, the presence of resident memory M2e-
tetramer-specific CD4+ T cells in the lung was similarly high
in mice immunized with the combined FPM2e:NPL vector
or FPM2e alone (Figures 2F, G). In addition, strong and
comparable M2e-specific antibody responses in serum were
found in both FPM2e alone and the combined FPM2e:NPL
vector immunized mice (Figure 2H). However, by contrast,
anti-M2e IgA titers in bronchoalveolar lavage (BAL) were
highest in FPM2e:NPL immunized mice, also with 1mcg doses,
clearly identifying a benefit of the NPL formulation (Figure 2I)
(45, 46).

Protection Against Virus Transmission Is
Effectively Achieved With the Combined
Fusion Protein/Nanoparticle Vector
An effective vaccine against influenza infection should
preferentially also stop virus transmission between individuals.
To this end, we tested the ability of the combined FPM2e:NPL
vector to impair virus transmission between animals. We used a
recently established mouse transmission model (47) with highly
susceptible DBA/2 mice (48) as contact animals. Following
a challenge infection with Udorn virus (H3N2) immunized
and unimmunized Balb/c mice (index mice) were co-housed
with the DBA/2 contact mice for 4 days (Figure 3A). Virus
transmission was assessed by monitoring the influenza virus
titres in the snouts and lungs of both Balb/c index and DBA/2
contact mice. We found lower virus titres in the snouts of
the contact mice co-housed with index mice immunized with
FPM2e:NPL (Figure 3B). However, protection against infection
in the index mice was comparable between FPM2e alone and
FPM2e:NPL (Figure 3B). Of note, unimmunized (PBS) mice or
index mice immunized with CTA1-DD without the M2e-peptide
failed to influence transmission of virus to the contact mice.
The results from the analysis of the virus titers in the lungs
of index or contact mice were less compelling, but also in

the lung we found the least transmission from FPM2e:NPL
immunized mice (Figure 3C). Anti-M2e serum antibody titers
were comparable between index mice immunized with FPM2e
or FPM2e:NPL (Figure 3D). Taken together the combined
FPM2e:NPL vector gave the strongest protection against virus
transmission, although the Balb/c index mice immunized with
FPM2e:NPL or FPM2e alone exhibited comparable virus titers,
suggesting that virus from FPM2e:NPL immunized mice was less
infective, maybe due to local anti-M2e IgA antibodies (49).

Co-incorporated Recombinant HA
Improves the Protective Capacity of the
Combined Fusion Protein/Nanoparticle
Vector
The combined FPM2e:NLP vector was found to be highly
immunogenic and induced strong protection against virus
transmission. However, we asked whether we could improve
the protective ability of the combined vector even further by
incorporating recombinant hemagglutinin (HA) from Influenza
A Virus H1N1 (A/Puerto Rico/8/34) into the vector (Figure 4A).
We formulated NPLs with equal amounts of CTA1-M2e-DD
and HA. The HA:FPM2e:NPL vector had a size of 130 nm
and a zeta potential of +27mV (Figure 4B, left and middle
panels). Noteworthy, the soluble HA protein had a particle size of
around 50 nm and was negatively charged (−10mV) (Figure 4B,
left and middle panels). We found that most of the HA was
incorporated into the FPM2e:NPLs (Figure 4B, right panel).
Mice immunized i.n with the combined HA:FPM2e:NPL vector
were fully protected against a challenge infection with the highly
virulent PR8 virus (A/Puerto Rico/8/34 (H1N1), whereas none
of the HA:NPL, FPM2e:NPL, or FPM2e alone immunized mice
were protected (Figure 4C). Interestingly, i.n. administration of
the NPL formulated CTA1-3M2e-DD (FPM2e:NPL) together
with HA:NPLs still resulted in 100% protection against PR8
challenge, showing that the adjuvant CTA1 component was
effective even if not physically linked to the HA:NPL (Figure 4C).
By contrast, a challenge infection with the H3N2 X47 virus
strain resulted in partial protection in mice immunized i.n with
HA:NPL, and only to achieve 100% protection the adjuvant active
FPM2e was needed (Figure 4D). As seen previously, FPM2e:NPL
and FPM2e alone gave excellent protection against X47 virus
infection (Figures 2A,B, 4D). Noteworthy, the frequency and
absolute numbers of lung resident M2e-tetramer+ CD4+ T
cells were lower in mice immunized with HA:M2e:NPL than
in FPM2e:NPL or FPM2e alone immunized mice (Figure 4E).
Again, we observed that the FPM2e:NPLs with an enzymatically
inactive fusion protein (CTA1(R9K)-3M2e-DD) were poorly
immunogenic, indicating that the performance of the NPL vector
was critically dependent on the ADP-ribosylating ability of the
FPM2e (Figure 4F). In fact, it was clear that the immunogenicity
of the incorporated HA greatly benefitted from the adjuvant
enhancing effects of the HA:FPM2e:NPL vector as anti-HA
serum IgG titers were almost 10-fold higher than in HA:NLPs
without the FPM2e (Figure 4G). Interestingly, though, this effect
was seen only when the FPM2e was in the same particle as
the HA and not when the FPM2e was co-administered in
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FIGURE 2 | Enhanced immunogenicity of the combined NPL vaccine vector. (A,B) Survival and weight loss were monitored in influenza virus challenged Balb/c mice

following three i.n immunizations with 5 µg (A) or 1 µg (B) of FPM2e or FPM2e:NPL. The percent of surviving mice (left panel) and body weight loss (right panel)

following a challenge infection with 4 × LD50 of the mouse adapted X47 virus strain are plotted. (C) Recall responses to M2e-peptide in primed CD4+ T cells

following i.n immunizations with 5 or 1 µg of enzymatically active or inactive mutant FPM2e or FPM2e:NPL or empty NPL w/o FPM2e, as indicated. Mean proliferation

in isolated splenocytes to M2e peptide is given as mean c.p.m ± S.E.M. (D,E) The production of IFN-γ (D) or IL-17A (E) to recall stimulation with M2e-peptide of the

primed CD4+ T cells (as in C) is given in pg/ml ± SD. (F,G) Representative FACS plots of M2e-tetramer+ CD4+ T cells in the lungs of i.n immunized and challenged

mice as indicated (F). The percentage (left panel) and absolute number (right panel) of antigen primed M2e+ tetramer CD4+ T cells (G). (H,I) M2e specific IgG

antibodies in serum (H) or IgA antibodies in BAL (I) were measured by ELISA in Balb/c mice immunized i.n. with FPM2e, FPM2e:NPL or PBS (naïve), as indicated, and

given as mean log10-titers ± SD of 3 independent experiments giving similar results. Statistical significance was calculated by unpaired t-test and p-values are given

as *p < 0.05 and **p < 0.01.

a separate NPL (Figure 4G). The M2e-specific IgG responses
in serum and IgA-responses in BAL were reduced in HA-
containing NPLs as compared to FPM2e:NPLs without the
HA (Figure 4H). Thus, the FPM2e:NPL vector can be further
improved by incorporating additional proteins into the vector
and the HA:FPM2e:NPLs vaccine vector was found to exhibit

superior protective capacity against a virulent PR8 influenza
virus infection, where neither NPLs with HA nor CTA1-3M2e-
DD gave any protection. Importantly, the immunogenicity and
protective capacity of the combined HA:FPM2e:NPL vector was
critically dependent on the enzymatic activity of CTA1 in the
FPM2e.
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FIGURE 3 | Reduction of viral transmission following intranasal immunizations with the combined NPL vaccine vector. (A) A schematic representation of the

experimental protocol used for virus transmission experiments. BALB/c mice (index mice) were immunized three times with 10 days apart with split Udorn virus, 5 µg

per dose of FPM2e alone, FPM2e:NPL, or FP:NPL w/o M2e. Index mice were infected 2–4 weeks after the final immunization with A/Udorn/307/1972 (H3N2) and

co-housed with DBA/2 mice (contact mice). (B,C) The viral titers in snouts (B) or lungs (C) of index (left panel) and contact (middle panel) mice and the mean

percentages of contact mice protected from virus transmissions (right panel) are shown. (D) M2e-specific IgG antibodies in serum were measured by ELISA in index

mice and the results are given as mean log10 titers ± SD. These are representative results from 3 experiments giving similar results and the statistical significance was

calculated using unpaired t-test and p-values are *p < 0.05 and **p < 0.01.

DISCUSSION

The present proof-of-principle study demonstrates that an

effective broadly protective anti-influenza mucosal vaccine
vector can be developed when HA and the enzyme-active

CTA1-3M2e-DD adjuvant are incorporated into NPLs. We
found that the novel combined HA:FPM2e:NPL vector
stimulated strong protective immune responses against
homologous and heterologous infections with significantly
better survival compared to mice immunized i.n with HA:NPL,
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FIGURE 4 | Enhanced immunogenicity and protection by co-incorporation of recombinant HA and FPM2e in the combined NPL vaccine vector. (A) A schematic

representation of the HA:FPM2e:NPL vaccine vector. (B) The combined HA:FPM2e:NPL vector was characterized with regard to particle size (left panel), zeta

potential (middle panel) and native-PAGE electrophoresis analysis (right panel). (C,D) Survival and weight loss was monitored in influenza virus challenged Balb/c mice

following three i.n immunizations with 5 µg of vaccine formulations as indicated. The percent of surviving mice (left panel) and body weight loss (right panel) following a

challenge infection with 4×LD50 of the mouse adapted X47 (C) or PR8 (D) virus strains. (E) Representative FACS plots of M2e-tetramer+ CD4+ T cells in the lungs of

i.n immunized and challenged mice are shown. The percentage and absolute numbers (right panels) of antigen primed M2e+ tetramer CD4+ T cells in the lung. (F)

Recall responses of primed M2e-specific CD4+ T cells in the spleens of immunized mice are given as mean cpm± SD of 3 independent experiments. (G,H) HA- (G)

or M2e-specific (H) IgG antibodies in serum (left panel) and IgA antibodies in BAL (right panel) were determined by ELISA in immunized mice as indicated and the

mean log10-titers± SD are given. These are representative results from three experiments giving similar results and the statistical significance was calculated using

unpaired t-test and p-values are *p < 0.05, **p < 0.01 and ***p < 0.005.
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FPM2e:NPL, or FPM2e alone. The vector hosted some critical
features brought together in a single physical unit, namely the
powerful CTA1 adjuvant, the M2e and recombinant HA for
broad cross-protection and the particle formulation, facilitating
mucosal delivery, stability, and uptake by DCs. These elements
combined contributed to the strong protective immune response
following i.n immunizations that we observed. Whereas many
previous studies have reported on promising mucosal vaccine
candidates against influenza, this is the first to describe the
combination of an enzyme-active adjuvant system incorporated
into nanoparticles (50–52). The NPL incorporation technique
used did not damage the ADP-ribosylating ability of the
CTA1-enzyme.

Several of the mucosal vaccine candidates against influenza
that have been, or are being, tested have explored various
other forms of nanoparticle formulations (53–58). Among the
more successful ones are chitosan nanoparticles, that have been
developed for immunizations of pigs, and which were reported to
stimulate mucosal IgA as well as effector CD4+ T cell immunity
(49, 59). Contrary to our combined vector, these nanoparticles
carried multiple killed swine H1N1 antigens while we explored
only the M2e-peptide and recombinant HA. However, this and
several other studies support the concept of multiple influenza
antigens encapsulated into nanoparticles as a promising way
forward for a broadly protective influenza vaccine (60, 61). In
this context, it is noteworthy that nanoparticles with killed whole-
inactivated virus antigens have consistently been found to be
poor inducers of T cell mediated responses and, hence, have
provided only weak protection against heterologous influenza
strains (62). Our study demonstrates that strong CD4+ T cell
responses can be achieved with the present combined NPL. An
explanation for the weak protection could be that injectable
vaccines give poor lung resident T cell immunity, which is
thought to be critical for a broadly protective influenza vaccine
(4).

The porous NPL technology has been successfully used for
several i.n vaccine formulations in the past, including a vaccine
candidate against toxoplasma infection (31). It has repeatedly
been found that the use of particulate antigens can be more
effective than soluble proteins at stimulating strong immune
responses and affording long-term protection (34, 35, 63–66).
However, previous work with porous NPLs has not explored
adding an independent adjuvant active vaccine component, such
as the CTA1-3M2e-DD molecule. Here, we report that this
greatly augmented the immunogenicity of the NPL vector. We
observed that HA:FPM2e:NPLs achieved a 10-fold stronger anti-
HA IgG serum titer when the HA was co-incorporated into
NPLs with CTA1-3M2e-DD. This enhancing effect is what we
regularly have observed with the CTA1-DD adjuvant in other
systems (23, 24, 28). The augmenting effect required an active
ADP-ribosylating enzyme, because the inactive CTA1(R9K)-
3M2e-DD mutant failed to augment immunogenicity, which
agrees well with results from our previous studies (67). The
latter finding also identified that nanoparticles can achieve much
improved immunogenicity if complemented with adjuvant active
molecules, such as chitosan, flagellin or CTA1-DD (68–70).
Interestingly, this augmenting effect on anti-HA IgG serum
antibodies was not seen when the FPM2e and HA were provided

in separate NPLs, suggesting that this effect required physical
contact between HA and the FPM2e. While excellent protection
was achieved also in vaccine regimens with NPLs where HA
and FPM2e formulations where separated and both protocols
induced comparable M2e-immunity, we can speculate that anti-
HA-specific cell-mediated immunity was responsible for the
improved protection against influenza virus challenge infection.
We did not determine HA-specific T cell immunity in the present
study, but the result is in agreement with a direct effect of
the CTA1-3M2e-DD on the follicular dendritic cells (FDC) in
the germinal center, which could only work if expanding HA-
specific B cells were recruited to CTA1-3M2e-DD exposed FDCs
(71, 72). We have recently found that this effect of the CTA1-DD
adjuvant on FDCs is mediated through an up-regulation of gene
transcription and, in particular, the CXCL13 gene, which encodes
the main chemokine to attract activated B cells to the GC (73).
However, the adjuvant effect on CD4+ T cell priming is likely to
be through enhancing DC functions, which is effectively achieved
with the FPM2e and would not necessarily require that HA and
FPM2e are physically co-formulated in the sameNPL. Additional
studies are required to dissect the detailed mechanisms behind
the strong adjuvanticity that we observed with the combinedNPL
vaccine vector.

A special focus was given to DCs for the binding and
uptake of the combined NPL vector. We observed in vitro
that Eα-peptide in the FPEα incorporated in NPLs was more
efficiently taken up and/or processed and presented by DCs than
when provided as soluble FPEα. The FPEα:NPL formulation
gave up-regulated MHC class II expression and Eα-peptide
presentation on the surface of the DCs. In vivo, we identified
that migratory DCs were the cell subset responsible for Eα

peptide priming of the specific CD4+ T cells in the draining
mLN. With a relatively larger dose (50 µg) of FPEα:NPL
than used for i.n immunizations (5 µg) we could detect Eα-
presenting DC in the draining mLN. Hence, this result provides
strong evidence that migratory DCs are the prime effectors
of the augmented FPEα:NPL response. However, while the
effect in vitro indicated a dramatic improvement of peptide
expression in exposed DCs, the in vivo expression in migratory
DC was comparable between FPEα alone and FPEα:NPL. The
protective ability was similar between FPM2e and M2e:NPL,
which was supported by comparable levels of resident M2e-
specific CD4+ T cells in the lung and IgG-specific M2e-
antibodies in serum. To reconcile these observations, it may
be postulated that NPL formulations are retained in the nasal
mucosa longer than the FPM2e alone and that this leads to a
slower and more prolonged priming of specific CD4+ T cells in
the mLN when FPEa:NPLs are given. Also earlier studies have
observed a depot-effect and retention of CD4+ T cell priming in
draining lymph nodes when NPL formulations were used (74).
Therefore, it may be possible to improve the performance of the
FPM2e:NPL vector further by altering the chemical composition
of the NPL or by adding chitosan or some known component
with an effect on the penetration of the mucosal barrier
(72, 75–77).

In vivo, we found that a higher M2e-specific CD4+ T cell
priming effect was achieved with the lower FPM2e:NPL dose
as compared to an equivalent FPM2e dose. This was evident
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from recall responses to M2e-peptide in isolated splenocytes
from immunized mice. Strong support for the requirement of
an active ADP-ribosylating activity of the CTA1 enzyme was
also found in these experiments. The enhanced response showed
augmented levels of IFN-γ and IL-17 production from the
M2e-specific CD4+ T cells, which are the cardinal features of
strong heterosubtypic protection in themousemodel of influenza
infection (78–82).We could identify the presence of lung resident
M2e tetramer-specific CD4+ T cells in these well protected mice,
which confirms the pattern that we previously identified with
the FPM2e and places emphasis on the very important role of
these tissue resident M2e-specific CD4T cells for heterosubtypic
protection (26). Also, M2e-specific IgA antibody titers in BAL
were higher in mice immunized with the FPM2e:NPL. However,
because both FPM2e alone and FPM2e:NPL induced protection
against virus transmission in immunized mice, albeit slightly
better in FPM2e:NPL mice, the protective role of IgA anti-
M2e antibodies is not clear. Other studies, such as that from
Hervé et al, have suggested that an enhanced anti-M2e IgA
antibody response after i.n immunizations could be protective
(49). Noteworthy, though, is the fact that IgA antibodies are
likely not mediating ADCC reactions and, hence, the role of
local respiratory tract anti-M2e IgA for protection is at present
poorly defined. Nonetheless, mucosal IgA anti-HA following
i.n immunizations with in HA:FPM2e:NPL may well play a
protective role, as suggested in several other studies (52, 83,
84). In addition, our recent study with M2e-specific lung
resident memory CD4+ T cells has clearly pointed to a critical
protective function of these cells, which are only generated after
i.n immunizations (26). Hence, the co-existence of local IgA
and influenza-specific resident memory CD4+ T cells makes
it difficult to identify the relative contribution each of these
elements for protection, but ongoing studies in our laboratory is
attempting to better dissect this question (85, 86).

In the present study we have convincingly shown that co-
incorporation of adjuvant active molecules and influenza specific
target antigens into porous NPLs is more broadly effective
against influenza virus infections than either component used
alone. Hence, we would like to continue developing the NPL
vector with additional components known to exert broad
protection against influenza. In particular, we will test the
addition of the nucleoprotein (NP), which can elicit strong
cytotoxic CD8+ T cells (4). In addition, instead of whole
recombinant HA, we propose to include a stabilized HA
stem region, as recently reported using ferritin nanoparticles,
which stimulated protection against a heterosubtypic challenge
infection in both mice and ferrets (5, 66). In addition, we noticed
that the presence of recombinant HA in the NPL formulation
significantly reduced the anti-M2e antibody and CD4+ T cell
responses, suggesting that we need to increase the FPM2e
component in future combined NPL vectors. This way we may
also achieve improved adjuvanticity for HA-immune responses.
Future studies will reveal if the favorable effects observed with
the combined HA:FPM2e:NPL i.n vaccine vector for broad
protection against influenza can be translated into a human
vaccine.
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