Catalytic Chain Transfer (co-)Polymerization: Unprecedented Polyisoprene CCG and a New Concept to Tune the Composition of a Statistical Copolymer
Résumé
Borohydrido-halflanthanidocene/dialkylmagnesium combinations are found to be powerful catalytic systems for the chain transfer polymerization of isoprene and its copolymerization with styrene. A behavior close to a lanthanide catalyzed polyisoprene chain growth on magnesium is reported. Transmetalation is further shown to occur in the course of the statistical copolymerization of isoprene and styrene. For the same monomer feed, the amount of styrene inserted in the copolymer can be increased by a factor 3 using 10 equiv. dialkylmagnesium versus 1 in the range of our experimental conditions. Chain transfer in the course of a metal catalyzed statistical copolymerization may thus be viewed as a new and original way for the control of the composition of a copolymer.
Origine | Fichiers produits par l'(les) auteur(s) |
---|