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A B S T R A C T   

Strain induced crystallization (SIC) of peroxide vulcanized natural rubber (NR)/ground tire rubber (GTR) 
composites is studied by combining mechanical and microstructural characterization techniques. It is found that 
the incorporation of GTR into the NR matrix leads to more effective reinforcement at large strains at room 
temperature in the NR/GTR composites as compared to the neat NR. It is attributed to (i) the presence of the GTR 
particles acting as reinforcing fillers owing their high carbon black content, and (ii) the nucleating effect of the 
GTR for SIC in the NR matrix inducing further reinforcement through the generation of an increasing number of 
oriented crystallites that behave as supplementary reinforcing fillers.   

1. Introduction 

Recycling of waste rubber has received considerable attention in 
response to increasing demand for sustainable solutions for worldwide 
disposal problem of waste plastic/rubber [1,2]. Waste rubber can be 
recycled/reused as a high-added value additive in composite materials. 
This approach often leads to a significant enhancement in toughness of 
the matrix material in which waste rubber particles are incorporated 
[3–6]. However, it is a challenge to reintroduce waste rubber into the 
production cycle in the rubber industry as – in comparison to the fresh 
rubber – the added value it shows is limited, especially for to high waste 
contents (above 50 wt%). 

Wastes rubber mostly originate from tires [7]. They typically contain 
vulcanized carbon black filled natural rubber (NR)/styrene butadiene 
rubber (SBR) compounds. For recycling purposes, end-life tires are first 
subjected to grinding (downsizing). The obtained ground tire rubber 
(GTR) is then devulcanized. The devulcanized GTR can then be incor-
porated into fresh rubber to design fresh/waste rubber composites. 
Mechanical properties of such materials depend on (i) the interfacial 
adhesion between the waste rubber particles and the fresh rubber matrix 
[8], (ii) the reduced size of waste rubber particles to improve the contact 

surface area with the fresh rubber matrix [9], and (iii) the extent of 
sulphur migration from the fresh matrix to the waste particles whose 
diffusion increases with decreasing particle size due to higher contact 
surface area [10]. 

Mechanical performance of the rubbery components in pneumatic 
tires, as well as in other natural rubber (NR) based composites, is related 
to their ability to undergo strain-induced crystallization (SIC) as re-
ported by numerous reviews and book chapters [11–14]. In this regard, 
the effect of the vulcanizing system [15] and the network chain density 
[16] are two parameters of prime importance. Strain induced crystalli-
zation ability is not an exclusive property of natural rubber, and can be 
found in synthetic elastomers such as isoprene rubber (IR) [17], chlo-
roprene rubber (CR) [18] or thermoplastic polyurethanes (TPU’s) [19, 
20]. Nonetheless, SIC in NR is known to be more effective as compared 
to other synthetic elastomers [21]. This is mainly due to the high pro-
portion of NR chains with cis 1,4 configuration (>98%) that facilitates 
their alignment upon deformation. SIC has also been studied in 
NR-based rubber composites such as natural rubber/isoprene (NR/IR) 
[22], NR/SBR [23], natural rubber/chloroprene (NR/CP) [24] and 
epoxidized NR/NR [25]. In addition, reinforcing fillers commonly 
incorporated into NR, such as carbon black fillers [26], silica [27], 
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graphene oxides [28] or clay [29], are known to act as nucleating agents 
for promoting SIC in NR based composites. 

Mechanical properties of NR based materials containing waste rub-
ber have also been extensively investigated and tentatively ascribed to 
their ability to crystallize under strain. However, to the best of our 
knowledge, there is no direct evidence (e.g., observations by in-situ X- 
rays) for this phenomenon. On one hand, it has been shown that the 
incorporation of crystallizable wastes, such as waste Chloroprene rubber 
(CR) [30] or waste Latex [31], into NR enhances mechanical rein-
forcement of the resulting composites, attributed to their improved 
ability to crystallize under strain. On the other hand, it has been 
demonstrated that the addition of non-crystallizable waste rubber, such 
as nitrile butadiene rubber (NBR) [32], or ethylene propylene diene 
monomer (EPDM) [33], into NR generally shows a deterioration of the 
tensile strength, considered to be due to the decreased crystallizability of 
the materials. 

Despite numerous investigations on the mechanical reinforcement in 
fresh/waste rubber composites, there is no direct demonstration of the 
occurrence of SIC in these materials. To address this issue, we focus in 
this paper on the mechanical reinforcement and strain induced crys-
tallization in natural rubber/ground tire rubber (NR/GTR) composites, 
studied by applying a thermodynamic approach combined with me-
chanical response and in-situ X-ray scattering. This has enabled us to 
demonstrate that the large strain mechanical reinforcement in NR/GTR 
is mainly related to (i) the reinforcing effect of the waste GTR particles 
owing their high carbon black content, and (ii) their nucleating effect for 
SIC in the NR matrix inducing additional reinforcement through the 
formation of oriented strain-induced crystallites acting as new rein-
forcing fillers. 

2. Materials and experiments 

2.1. Materials and processing 

The natural rubber (NR) is an SMR (Standard Malaysian Rubber) 
CV60 (Mooney Viscosity ML 1 + 4, 100 ◦C: 55–60), supplied by the 
company Akrochem (USA), with 0,15% of hydroxylamine added to the 
latex stage to prevent the raw rubber stiffening while storing. Ground 
tire rubber (GTR) was supplied by the company J. Allcock & Sons Ltd 
(United Kingdom) using the transformation of tire buffing into finer 
rubber crumbs via a controlled cryo-grinding. GTR is composed of 55 wt 
% of rubber (85 wt% of natural rubber, NR, and 15 wt% of Styrene 
Butadiene Rubber, SBR) and 45 wt% of carbon black (CB). The GTR 
crumbs are free of contaminants such as textile, metal and road dirt. The 
GTR particles were subsequently sieved using a vibratory sieve shaker 
(Analysette 3, Germany) with a mesh 120’s (size <125 μm). Before 
processing, the GTR particles were dried overnight in a vacuum oven 
(Vaciotem-TV, J.P. SELECTA®, Spain) to prevent humidity absorption, 
over silica gel at 70 ◦C to remove any moisture. The natural rubber was 
masticated inside the chamber of an internal mixer (Brabender Plastic- 
Corder W50EHT, Brabender GmbH & Co., Germany) at a temperature 
of 80 ◦C, for 5 min and a rotation speed of 40 rpm. After 5 min of 
mastication, the GTR was added. After 5 more minutes the dicumyl 
peroxide (DCP) was added (1.5 wt% of the NR) as vulcanizing agent and 
mixed for 5 min. The obtained masterbatch containing NR, GTR and 
DCP was vulcanized according to the estimated optimal time at 170 ◦C 
[34] under 4 MPa. 

2.2. Swelling 

GTR was immersed in cyclohexane for 72 h and the solvent was 
changed every 24 h. After 72 h the swollen mass of (ms) was measured. 
The GTR were then placed in an oven under vacuum at 70 ◦C during 6 h 
to remove the solvent. The mass of the dry samples (md) was then 
measured. The swelling ratio of the specimen Q and the network chain 
density were calculated from swelling and the Flory-Rehner equation 

[35]: 

υ= ln(1 − v2) + v2 + χ1v2
2

V1

(

− v2
1
3 + 2

f v2

) (1)  

with v2 = 1/QB, V1 = 108 cm3/mol− 1 is the molar volume of the solvent 
(cyclohexane), χ1=0.353 is the Flory-Huggins natural rubber/cyclo-
hexane dimensionless interaction term. One may note that χ1 may 
change in presence of SBR contained in the GTR particles. The interac-
tion parameters for vulcanized NR/SBR blends are indeed found to 
decrease linearly while increasing the SBR/NR content [36]. However, 
considering that SBR is only 15 wt% of the rubber included in the rubber 
phase of the GTR (see section 2.1), it gives a maximum SBR/NR ratio of 
0.033 obtained for our NR/GTR33 blends. Hence, in this study we will 
consider the Flory-Huggins polymer solvent interaction term of the 
natural rubber/cyclohexane system. 

The expression of the Flory-Rehner equation (Equation (1)) assumes 
the affine deformation which states that the deformation applied to 
cross-link positions is the same than the macroscopic deformation. The 
crosslink functionality, f, was chosen equal to 4, as initially proposed by 
Flory and Rehner [35]. The Kraus correction [37] was used to account 
for the contribution of filler in swelling ratio calculation, assuming that 
they do not contribute to swelling. Qc is the swelling ratio of the rubber 
matrix defined as follows: 

Qc =
Q − ϕ
1 − ϕ

(2)  

with ϕ is the volume fraction of fillers. Krauss correction in Equation (2) 
assumes non-adhesion of the fillers to the rubbery matrix in the swollen 
state. More detailed explanations on the procedure can be found in Refs. 
[38,39]. 

2.3. Scanning electron microscopy (SEM) 

The fracture surfaces of the specimens were observed with a field 
emission scanning electron microscope (JSL-7001F, JEOL, Japan). A few 
nanometers thick conductive layer of a Pt80/Pd20 alloy was sputtered 
on the fracture surface using a high-resolution sputter coater (Cres-
sington 208HR) in order to avoid electron charging. The surface 
topography was observed with a voltage of 1 kV. Chemical analysis was 
performed by EDX with a voltage of 20 kV. 

2.4. Uniaxial tensile stretching (UTS) 

Dogbone shaped specimens of type 1BA were extracted from hot 
moulded sheets by die-cutting with a specimen preparation punching 
machine (CEAST). The specimens have the following dimensions: 1 mm 
thickness, 5 mm width and 40 mm length. Uniaxial tensile tests ac-
cording to the ISO 527 standard were performed on a universal testing 
machine (SUN 2500, GALDABINI) at room temperature and a constant 
crosshead speed of 100 mm/min. The machine is equipped with a video 
extensometer (OS-65D CCD, Minstron). 

2.5. Micro-computed X-ray tomography (μCT) 

3D morphological information of GTR was obtained by micro- 
computed X-ray tomography (μCT) carried out by a RX Solutions 
EasyTom 160 scanner using a tungsten filament. An acceleration voltage 
of 40 kV at a current of 80 μA were employed with a frame rate of 1.5 
while averaging 5 frames per projection. A full rotation (360◦) was used 
with projections taken every 0.25◦. The source-to-object-distance (SOD) 
and source-to-detector-distance (SDD) were set for obtaining a voxel size 
of 2 μm. The 3D volume reconstruction of the projections was generated 
by the software Xact64. Image treatment and analysis were performed 
with the commercial software Avizo (Thermo Fisher Scientific). Inherent 
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noise of the acquired images was reduced by means of a median filter. 
Then, images were binarized by thresholding the grayscale histogram. A 
watershed algorithm was used for separating close objects. Next, ele-
ments represented by less than 3 voxels were removed for decreasing 
uncertainties due to their limited geometrical representation. This pro-
cedure enabled a spatial resolution of 7 μm, corresponding to the 
smallest object detected with accuracy. Finally, the binarized objects 
were characterized by their equivalent diameter (Deq) defined as [40]: 

Deq =

̅̅̅̅̅̅
6V
π

3

√

(3)  

2.6. Wide angle X-rays (WAXS) 

A miniature tensile test machine was used to record 2D-WAXS pat-
terns from specimens subjected to tensile strains. Tensile test-bars with a 
0.5 × 4 mm2 rectangular cross-section and 5 mm gauge length were 
prepared. The experiments were carried out owing to a Xeuss 2.0 
apparatus (Xenocs) and the two-dimensional X-Rays scattering patterns 
are recorded by a Pilatus 200k hybrid pixel detector (Dectris) with a 
specimen-detector distance of 140 mm. The experiments are performed 
in transmission mode with a beam size of 500 μm × 500 μm. The 
exposure time is equal to 30 s. The intensity Id due to air scattering and 
direct beam were measured in absence of any sample. They were 
removed from the total measured intensity scattered in the presence of 
the material Imeas. The corrected scattering intensity Icorr is written: 
Icorr = Imeas − TId with T the transmission factor is equal to e− μe , μ is the 
coefficient of transmission and e the thickness of the specimen is equal to 
e0
λ with λ the stretching ratio. Each scattering pattern was integrated 
azimuthally. The deconvolution of the curve I = f(2θ) enabled the 
extraction of the intensity at the peak top and the width at half height of 
each crystalline peak and the intensity at the peak top of the amorphous 
phase. The crystallinity index CI was then determined as follows: 

CI =
Ic

Ia+Ic
(4)  

where Ic and Ia are the intensity of the crystalline and amorphous peaks 
respectively. The average crystallite sizes Lhkl in the direction normal to 
the (hkl) planes were estimated from the Scherrer equation: 

Lhkl =
Kλw

β1/2cosθ
(5)  

where λw = 1.542 Å is the X-ray wavelength and θ is the radial angle. In 
this study, each crystalline peak was fitted with a Lorentzian function for 
which the width at half-height is β1/2. According to the parameters 
chosen for the fit of the experimental peak, K = 0.64. 

3. Results and discussion 

3.1. GTR particle distribution in the NR/GTR composites 

Sieved GTR particles (Fig. 1a), containing traces of micron sized talc 
(Mg SEM-EDX signal) used for GTR grinding, were blended with natural 
rubber (NR) and peroxide vulcanized. The 2D representative tomogra-
phy images of the resulting NR/GTR composites (Fig. 1b) show particles 
of different intensity in grey, which is directly related to the density of 
the phase. The white zones are the heavy particles of talc but also likely 
some traces of zinc oxide originating from the sulphur vulcanization of 
the tire. The grey particles correspond to the GTR. Their 3D rendering is 
depicted in representative volumes (Fig. 1c). Quantitative observations 
reveal the distribution of the GTR to be homogeneous in the analyzed 
volume (Fig. 1d). The homogeneous distribution of the GTR particles 
renders a shorter inter particle distance between them with increasing 
GTR content (Fig. 1d). The distance between the GTR particles will 
certainly impact the strain field during uniaxial deformation of the 
specimens and by inference influence their large strain mechanical 
reinforcement as will be discussed in the following. 

3.2. Mechanical reinforcement in NR/GTR composites 

Vulcanized NR and NR/GTR show a typical hyper-elasticity with a 
notable reinforcement at large strain at room temperature (Fig. 2a–d). In 
the frame of the gaussian approximation, the decreased in entropy upon 
stretching results in an elastic force written as follows [41]: 

σg = νRT
〈r2〉

〈r2
0〉

(

λc −
1

λc
2

)

(6)  

where ν is the network chains density (in mol.cm− 3), R = 8.314 J K− 1 

mol− 1, is the gas constant, T the temperature (in K), and λc = 1 + ε the 
strain in the composite. r is the end-to-end distance of the network 
chains (chain sequences extending from one cross-link to another), 

〈
r2
0
〉

and 
〈
r2〉 represent the dimensions of the free chains in the unstretched 

and stretched states respectively. A simplified form of equation (6) [42] 

Fig. 1. (a) SEM (top) and SEM-EDX of GTR particles with elemental analysis (sulphur, center) and (Magnesium, bottom). (b) 2D and (c) 3D representative to-
mography images of the NR/GTR composites (from top to bottom: NR/GTR10, NR/GTR20, NR/GTR33). (d) Equivalent diameter distribution and (e) inter particles 
distances in the same NR/GTR. 
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assumes 
〈
r2〉 to be identical to 

〈
r2
0
〉
, which means that the cross-links do 

not significantly change the chain dimensions from their unperturbed 
values, and hence the expression of the stress from gaussian approxi-
mation can be written: 

σg =
Ec

3

(

λc −
1

λc
2

)

(7)  

with Ec = 3νRT which provides the relation between the crosslink 
density of the rubber chains and the elastic modulus of the composite. 

The gaussian approximation is found to fit the experimental stress- 
strain curves up to a strain around 200%. One may note that the 
gaussian distribution of the end-to-end distance r is generally not a good 
approximation for filled rubbers. Indeed, the adsorption of polymer 
chains onto filler particles changes the mean value and the distribution 
of end-to-end vectors of the chains [43]. Nonetheless, low filler content 
is expected to result in moderate modification of both the mean value 
and distribution of r. In our materials, the quantity of carbon black is 
assumed sufficiently low (2.1, 4.3 and 7.5 vol% for NR/GTR10, 
NR/GTR20 and NR/GTR33 respectively) so that the deviation from the 
gaussian approximation used for unfilled rubber is expected to not be 
meaningful. 

At higher strains (>200%), stress strain curves diverge. Interestingly, 
the divergence is even more pronounced in the NR/GTR composites, 
providing a clear-cut evidence for a non-gaussian reinforcement in the 
specimen at room temperature. It is known that such reinforcement 
results from the strain-induced crystallization in vulcanized NR [14]. 
However, to the best of our knowledge, it has not yet been demonstrated 
in the case of NR/wastes rubber blends. In contrast, at 80 ◦C, the ma-
terials do not show reinforcement anymore. The assumption of a purely 
entropic elasticity for these high temperature tests, as predicted by 
equation (6), suggests the stress to be directly proportional to the ab-
solute temperature. One can refer for instance to the dedicated study by 
Mark [44]. Hence, we corrected from the temperature dependence of the 

entropic elasticity (correction factor on the stress of (21 + 273)/(80 +
273)), and the stress strain curves were found to follow the room tem-
perature gaussian behaviour, suggesting that the non-gaussian rein-
forcement, likely due to SIC, is suppressed at this temperature in the 
strain range studied. It should be noted that, in spite of the suppression 
of SIC at high temperature, a slight reinforcement is observed by 
increasing GTR, suggesting that the GTR act as reinforcing filler 
(without influencing the SIC) due to their high carbon black content 
(∼ 45 wt%). This is consistent with other studies showing that the GTR 
particles can cause a mechanical reinforcement, even in 
non-crystallizable rubber composites such as SBR/GTR [45]. To 
corroborate the occurrence of SIC in NR/GTR, we performed incre-
mental cyclic tests under tension (Fig. 2e–h). The observed dissipated 
energy in NR and NR/GTR composites is likely caused by the “super-
straining” effect due to the difference in strain at crystallization and 
strain at melting [46]. 

One may note that cavitation is known to compete with strain 
induced crystallization in filled natural rubber [27,47]. However, this 
phenomenon is expected to be less predominant in our NR/GTR blends 
as compared to industrial filled elastomers [48,49] due to the reasonable 
amount of carbon black, i.e. 2.1; 4.3, 7.5 vol% in the case of NR/GTR10, 
NR/GTR20 and NR/GTR33 respectively. This is consistent with the 
rather low permanent strain observed during the incremental tests as 
compared to industrial filled elastomers. Nonetheless, decohesion/ca-
vitation at NR/GTR interface may possibly occur, that could be solved 
by further in-situ SAXS and μCT studies. 

To highlight the deviation from the gaussian behaviour, we calcu-
lated the difference in mechanical energy (energy gap) required for the 
deformation of gaussian chains and the experimental deformation en-
ergy. This energy difference is written as follows: 

Wgap(λ)=
∫λ

1

(
σexp − σg

)
dλ (8) 

Fig. 2. (a-d) room temperature (solid lines), 80 ◦C (corrected from entropic effect) stress-strain curves of NR and NR/GTR composites. The dotted lines are fits from 
Gaussian behaviour (see equation (7)). (e-h) Tensile tests with incremental strain in the same materials. 
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The deformation energy was obtained from the integral of the stress- 
strain curves (area under the experimental stress-strain curve) and the 
deformation energy associated with gaussian approximation: 

Wgap(λ)= −
Ec

6

(

λc
2 +

2
λc
− 3

)

+

∫λ

1

σexpdλ (9) 

The plot of the difference in mechanical energy between the gaussian 
approximation and the experimental tensile curve evidences a decreased 
strain at the onset of non-gaussian reinforcement while increasing the 
GTR content (Fig. 3a). In addition, the energy dissipation obtained from 
incremental tests plotted as a function of the strain (Fig. 3b) confirms an 
early occurrence of SIC with strain while increasing the GTR content. 

3.3. Local entropy changes at the origin of the reinforcement 

As previously mentioned from the observation of μCT images, GTR 
particles may increase the local strain field in the NR matrix that can be 
estimated by applying a simple thermodynamic approach (Fig. 4, 
equations (10) and (11)). A strain amplification in NR/GTR composites 
is assumed to arise from the weak deformability of the GTR particles as 
compared to the NR matrix due to the non-negligible content of non- 
deformable CB particles (∼ 45 wt%). A strain amplification factor, A, 
deduced from the Guth and Gold equation [50] is used to describe the 
local strain in the rubber chains of the NR matrix that accounts for the 
presence of the undeformable CB particles in the GTR particles: 

A=
λr,i − 1
λc,i − 1

= 1 + 2.5ϕ + 14ϕ2 (10)  

with λc,i the strain at reinforcement onset of the composite, as measured 
experimentally from the deviation of the stress-strain curve from the 
room temperature gaussian behaviour (see Fig. 3a), λr,i is the local strain 
of the NR matrix at reinforcement onset that, expectedly, is found to 
increase with GTR content (Fig. 4a). The configurational entropy of the 
rubber chains is a driven factor for SIC [51]. The decrease in local chain 
entropy at the strain onset of reinforcement is given by the integration of 
equation (7) to give: 

ΔSr,i = −
νr,gR

2

(

λr,i
2 +

2
λr,i

− 3
)

(11) 

The network chain density of rubber chains, νrs, estimated from 
swelling (equations (1) and (2)) is found to be around 1.1 × 10− 4 mol 
cm− 3 for the blends with GTR contents up to 20 wt% and then decreases 

(Fig. 4b). One may note that νrs in the neat NR is found to be very close to 
the one of the individual GTR particles (1.0 × 10− 4 mol cm− 3) as 
determined in Ref. [6], suggesting the network chain density in the 
NR/GTR composite to be representative of the one in the NR matrix. 
Interestingly, νrs estimated from swelling, shifted to a value of 0.5 ×
10− 4 mol cm− 3 (the shift may account for entanglement contribution) 
coincides relatively well with the one estimated from gaussian approx-
imation. The resulting entropy changes in the NR matrix at the strain 
onset of mechanical reinforcement (equation (11)) is found to slightly 
increase with increasing GTR content (Fig. 4c). Possible uncertainties in 
entropy changes may arise from rubber chains network heterogeneities 
[15], not taken into account in the present approach. Moreover, the 
increase of neighbor GTR particles in the composites (Fig. 1e) may result 
in additional stress concentration favorable to SIC, like in the case of 
carbon black filled vulcanized NR [52]. Nonetheless, it should be noted 
that the variations in local entropy change with the GTR content are 
weak, in contrast to the trend observed in sulphur cured NR [53], sug-
gesting this thermodynamic parameter to satisfactorily predict the 
initiation of mechanical reinforcement in both NR and NR/GTR 
composites. 

3.4. X-rays observation of strain-induced crystallization in NR/GTR 
composites 

In the previous sections, we have demonstrated that room temper-
ature mechanical reinforcement in NR/GTR composites is a priori related 
to the occurrence of strain induced crystallization in the NR matrix and 
governed by the decreased entropy of the natural rubber chains. Here, 
we aim to investigate SIC in these materials by in situ WAXS to obtain 
quantitative data on the crystal structure, such as the evolution with 
strain of the crystalline volume fraction, the volume, number and 
orientation of the crystallites. (Figs. 5–8). The 2D scattering patterns 
obtained at different specimen deformation (Fig. 5) clearly show the 
transformation from an initially isotropic amorphous state to an aniso-
tropic semi-crystalline state as evidenced by the appearance of the 
crystalline plane reflections (002), (200), (120) and (210) typical from 
monoclinic crystal structure [54] with the c axis parallel to chains axis 
and oriented in the tensile direction. 

The WAXS crystallinity index (equation (4)), reveals that SIC appears 
at a deformation around 300% for the vulcanized NR (Fig. 6a), and the 
maximum crystallinity index measured at a deformation around 570% is 
around 8 vol%. Such behaviour is consistent with what is observed for 
peroxide cured NR with a similar network chains density [53]. 

Fig. 3. (a) Difference of strain energy (energy gap) between the experimental stress-strain curve and the gaussian approximation obtained from equation (9), and (b) 
energy dissipation obtained from tensile cycles with incremental strain obtained from Fig. 2e–h. 
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Interestingly, SIC is found to appear at a lower strain in the NR/GTR 
composites, consistent with above observations based on mechanical 
approaches using the deviation from gaussian approximation (Fig. 3a) 
and the dissipated energy (Fig. 3b). This demonstrates a nucleation 
ability of the GTR particles on SIC in NR, associated with a faster in-
crease of crystalline phase in the NR/GTR10 and NR/GTR20 with strain. 
It results, in the final stages of the tensile test, in an optimum crystal-
linity index for these two materials. As evidenced by a more limited 
ability of the NR/GTR33 to crystallize at highest strain, an exceedingly 
high amount of GTR may tend to limit the NR crystallizability. While the 
decreasing GTR inter particle distance (Fig. 1e) may initially contribute 
to a strain localization and by inference favors the occurrence of SIC, a 
further development of SIC at larger strain is slowed down, that can arise 
from a decreasing nucleation and/or crystal growth rates. 

An analysis of the size, number, and orientation of the SIC crystals 
(Figs. 7–8) is aimed to provide further information on the nucleation/ 
growth process of SIC in NR/GTR composites. The crystallite size in the 
direction normal to the planes (120), (002) and (200), namely the 
lengths L120, L002 and L200, respectively, show a regular decrease and 
then stabilization with applied deformation. Such trend is observed for 
both the NR and the NR/GTR composites. Slight decrease of the 
dimension of the crystallites with increasing GTR content is observed as 
compared to the neat NR, similar to what has been reported for CB filled 
NR [26,55]. In the case of NR/GTR blends, the initially microscopic GTR 
inter particle distance (Fig. 1e) may sufficiently decrease with strain to 
induce a confinement of the crystallizable NR domains in the inter 
particle regions that may result in a limitation of the lateral crystallites 
growth. 

Fig. 4. (a) Strain onset of mechanical rein-
forcement estimated from deviation from 
gaussian behaviour (see Fig. 3a) assuming a 
rise of 0.01 MJ m− 3 to be characteristic of 
the deviation onset (unfilled ring symbols), 
and local strain onset of mechanical rein-
forcement estimated from equation (10) 
(filled ring symbols). (b) Network chain 
density in the NR matrix estimated from the 
gaussian approximation, νr,g, from swelling, 
νr,s, and from swelling shifted to + 0.5 ×
10− 4 mol cm− 3, νr. (c) Entropy variation at 
strain onset of reinforcement versus the GTR 
content. The value of network chains density 
may be expressed in mol.m− 3 by multiplying 
the value in Fig. 4b by a factor 100.   

Fig. 5. 2D WAXS patterns of the NR and NR-GTR blends at different deformations from 0% to 500% (from top to bottom) for (a) NR, (b) NR/GTR10, (c) NR/GTR20 
and (d) NR/GTR33. The patterns are shown after subtraction of the direct beam. 
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The measures of three principal planes of the crystals has enabled us 
to estimate the average volume of the crystallites, that is given by 
Ref. [46]: 

Vc = 0.94L200L120L002 (12) 

From equation (12), the average number of the crystallites per unit 
volume N is written: 

N =CI/Vc (13) 

One may note that this average number, N, is only qualitative. 
Hence, it is estimated from the crystallinity index, CI, that does not 
necessarily reflect the absolute volume fraction of the crystalline phase. 
A recent work of Le Cam demonstrated that the WAXS crystallinity index 
and the crystalline fraction obtained from infrared measures fit well 
[56], however IR thermography also shows some limitation, such as the 
fact that a measure of the traces of heat at the specimen surface may not 
fully reflect the true heating due to strain induced crystallization in the 
specimen volume. A direct comparison of DSC crystalline fraction and 
WAXS crystallinity index is still missing in the literature and would be 
relevant to clearly discuss on the validity of each experimental method 
(WAXS, IR or DSC) to determine the true crystalline fraction. In this 
study, the WAXS crystallinity index, CI, and hence, the crystallites 
number deduced from it, N, is used as a relative value for sake of com-
parison between materials. 

The crystallites volume is found to widely decrease with the defor-
mation for both NR and NR/GTR composites and reach a minimum at 
highest strain (Fig. 8a). The final volume of crystallites in NR/GTR is 
found to be lower than that of the NR. From equation (10), the crys-
tallites number is found to almost linearly increase with the applied 
deformation, more rapidly in NR/GTR composites as compared to NR 
(Fig. 8b). This suggests that the presence of GTR particles in the NR 
matrix favors the multiplication of strain induced crystallites, confirm-
ing their nucleation ability not only at the incipient strain as previously 
discussed (Fig. 4b), but also at higher strains, with the highest nucle-
ation rate for the NR/GTR10 and NR/GTR20. Interestingly, the orien-
tation of crystals estimated from the azimuthal distribution of the 
normal to the planes (200) is found to not be limited by the presence of 
the GTR particles (Fig. 8c). This is in contrast with mechanisms observed 
in carbon black filled NR where crystals orientation is significantly 
restricted [26,53]. The ability of the NR matrix to maintain the anisot-
ropy of the SIC crystals in the NR/GTR composites may contribute to the 
mechanical reinforcement; these oriented SIC crystals acting as new 
reinforcing fillers. 

4. Conclusion 

We demonstrated the occurrence of strain induced crystallization 
(SIC) in peroxide vulcanized Natural Rubber (NR)/Ground Tire Rubber 

Fig. 6. (a) WAXS crystallinity index (equation (4)) versus the strain for the different NR/GTR composites and (b) the crystallinity index at the strain of 470% as a 
function of the GTR wt. fraction in the NR/GTR composites. 

Fig. 7. (a) Crystallite size L120, (b) crystallite size L002, and (c) crystallite size L200, of NR (black square symbols), NR/GTR10 (green ring symbols), NR/GTR20 (red 
triangle symbols) and NR/GTR33 (blue diamond symbols). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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(GTR) composites by using in situ X-Rays radiation during their uniaxial 
deformation. The strain at crystallization onset was found to regularly 
decrease by increasing the GTR content and the fraction of the crystal-
line phase in the NR matrix was found to increase with an optimum of 
10–20 wt% of GTR. This behaviour was ascribed to the role of GTR as 
nucleating agents for SIC through an increase of the local strain in the 
NR matrix. This has been supported by a simple thermodynamic 
approach accounting for the strain amplification arising from the pres-
ence of undeformable carbon black particles in the GTR. 

The improved SIC was accompanied by a more rapid orientation of 
the crystallites as well as a higher number of highly oriented crystallites 
with increasing strain. The latter act as new crystalline fillers which, in 
addition to the intrinsic reinforcing effect of the GTR particles, promotes 
the large strain reinforcement in the NR/GTR composites. 

The observation and in-depth characterization of SIC in wastes GTR 
filled NR based composites is considered to be of significance for in-
dustrial applications in which the main goal is to achieve not only the 
large strain mechanical reinforcement, but also the fatigue resistance 
and/or the giant elastocaloric effect with the reuse of wastes particles as 
high-added value additives, with the further ambition to participate in 
the development of sustainable solutions for worldwide wastes disposal 
problem. Moreover, the improvement of wastes treatment, such like the 
use of wastes rubber particles devulcanization, may be beneficial to 
improve the reinforcement and strain induced crystallization properties 
of the resulting NR/GTR blends by improving the strength at NR/GTR 
interface. 
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