

Hybrid catalysis: towards an optimal combination of catalysts Application to HMF valorization

Antoine Lancien, Aurélie Fossey, Robert Wojcieszak, Renato Froidevaux, Anne Zaparucha, Egon <u>Heuson</u>

Heuson & Dumeignil, Catal. Sc. & Tech. 2020

Hybrid Catalysis

Towards maximum catalyst integration

Valorization of HMF

5-hydroxymethylfurfural (HMF), a major bio-based building block

- Abundant by-product of lignocellulosic biomass
- > Building block for the synthesis of many compounds of interest
- > Direct source for the production of furan dicarboxylic acid (FDCA, among the DOE's 12)

Synthesis of Furfurylamines

Synthesis of Furfurylamines

Synthesis of Furfurylamines

Synthesis of Furfurylamines

Synthetic pathways

- Chemical reductive amination (requires numerous protections/deprotections)
 - Recent new methodology without protection (Lankenau *et al.* 2020)
- Biocatalytic (transamination)
 - Only two studies, no methodology for AMFC, AMFA, and FDMA (Dunbabin *et al.* 2017, Petri *et al.* 2018)

Synthesis of Furfurylamines

Synthetic pathways

- Chemical reductive amination (requires numerous protections/deprotections)
 - Recent new methodology without protection (Lankenau et al. 2020)
- Biocatalytic (transamination)
 - Only two studies, no methodology for AMFC, AMFA, and FDMA (Dunbabin *et al.* 2017, Petri *et al.* 2018)

Applications

- Very few applications described
- > AMFC: Cyclic trimeric oligopeptide (Kchakraborty et al. 2002, Sharma et al. 2006)
 - Production of new polyamides/polyimines
 - and other polymers

New hybrid route for AMFC

Screening of supported metal nanoparticles

Results after 24 hours at 60°C

7

Screening of supported metal nanoparticles

1P2S synthesis of AMFC

1P2S : Addition of *Cv*-TA@EziG[™] OPAL after 48h reaction and cooling

Lancien et al. ChemCatChem, 2021

1P2S synthesis of AMFC

ChemCatChem Chemistry Europe European Chemical Societies Publishing The European Society Journal for Catalysis

AMFC synthesis – 1P2S

Towards a 1P1S system

Seeking a thermostable TA

- > Attempted production of 5 new amine-TAs sent by the University of Greifswald
 - Efficient production of a single TA
- > Testing the new TA on HMF and its derivatives
 - Higher activity for HMF and AFCA

Antoine Lancien PhD Student in Hybrid Catalysis

Cary 3500 (Agilent)

Towards a 1P1S system

Seeking a thermostable TA

AMFC synthesis – 1P1S

- Attempted production of 5 new amine-TAs sent by the University of Greifswald
 - Efficient production of a single TA
- Testing the new TA on HMF and its derivatives
 - Higher activity for HMF and AFCA
- Thermostability/thermoactivity

Antoine Lancien PhD Student in Hybrid Catalysis

Thermostability at 60°C : 87% after 24h (free enzyme) – 55% after 24h (immobilized)

Towards a 1P1S system

Towards a 1P1S system

Screening new chemocatalysts for HMFA oxidation

- 33 new catalysts tested (mainly Au based)
- 300 combinations/conditions tested in 1 month
 - New screening methodology using the BioLector Pro
- Selection of Au@TiO₂, Au@CaO and Au@UiO-66_NH₂

Towards a 1P1S system

AMFC synthesis – 1P1S

Production of amphiphilic molecules from alcohols derived from biomass

UMR GENOSCOPE METABOLIC GENOMICS

Anne Zaparucha Aurélie Fossey

AMFC derivatives

Expending the reaction scope: CoA Ligases

Screening new chemocatalysts for fatty alcohols oxidation

- Butanol and pentanol used as substrate
- > 11 catalysts tested
- Selection of Au@CaO: 100% conversion in 48h at 50°C

AMFC derivatives

Expending the reaction scope: CoA Ligases

Screening new chemocatalysts for fatty alcohols oxidation

- Butanol and pentanol used as substrate
- > 11 catalysts tested
- Selection of Au@CaO: 100% conversion in 48h at 50°C

Promising preliminary results

- 65% and 54% yield (100% conversion) for butanol and pentanol respectively
- Amide confirmed by NMR and Mass

Expending the reaction scope: CoA Ligases

The next steps...

AMFC derivatives

Expending the reaction scope: CoA Ligases

The next steps...

... toward a complete 1P1S system

Merci pour votre attention!

Brings catalysis over lightspeed

www.realcat.fr

... au Nord, c'étaient les Corons!

Antoine Lancien