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Abstract 52 

Objective: To investigate neurophysiological dynamics during a visuocognitive task in 53 

glaucoma patients vs. healthy controls. 54 

Methods: Fifteen patients with early-stage primary open-angle glaucoma (POAG) and fifteen 55 

age-matched healthy participants underwent a “go/no-go” task, monitored with 56 

electroencephalography (EEG). Participants had to semantically categorize visual objects in 57 

central vision, with animal or furniture as targets according to the experimental block.  58 

Results: Early visual processing was delayed by 50 milliseconds (ms) in patients with POAG 59 

compared to controls. The patients displayed a smaller difference between animal and 60 

furniture categorization during higher-level cognitive processing (at 400-600 ms). Regarding 61 

behavioral data, the groups differed in accuracy performance and decision criterion. As 62 

opposed to the control group, patients did not display facilitation and a higher accuracy rate 63 

for animal stimuli. However, patients maintained a consistent decision criterion throughout 64 

the experiment, whereas controls displayed a shift towards worse decision criteria in furniture 65 

trials, with higher error rate. 66 

Conclusions: The comparative analysis of behavioral and neurophysiological data revealed in 67 

POAG patients a delay in early visual processing, and potential high-level cognitive 68 

compensation during late, task-dependent activations.  69 

Significance: To our knowledge, our findings provide the first evidence of modification in 70 

cognitive brain dynamics associated with POAG. 71 

Key Words 72 

Glaucoma, Vision Loss, EEG, Cognition, Plasticity  73 
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1. Introduction 74 

Primary open-angle glaucoma (POAG) is a complex visual disorder defined clinically by 75 

optic nerve degeneration and a progressive loss of peripheral and then central vision. Brain 76 

imaging studies have shown that damage to the optic nerve not only alters the patient’s 77 

sensory functions but also impacts the central nervous system’s fine-scale structure (Arrigo et 78 

al., 2021; Chen et al., 2013; Lawlor et al., 2018; Nucci et al., 2020; Nuzzi et al., 2018). 79 

However, the influence of these neurophysiological changes on the patient’s cognitive 80 

abilities has not been extensively documented. 81 

1.1. Glaucoma and Electrophysiology 82 

Most electrophysiological measurements in patients with glaucoma are performed in the clinic 83 

(Bach and Poloschek, 2013; Senger et al., 2020), in order to evaluate electrical signals from 84 

the retina (i.e. an electroretinogram, ERG), the eye muscles (i.e. the electro-oculogram, EOG) 85 

or the visual cortex (i.e. visual evoked potentials, VEPs), (Vaegan and Hollows, 2006). VEPs 86 

are the electrophysiological responses recorded by two electrodes placed on the visual cortex 87 

(below the left and right occipital areas of the scalp) during the presentation of luminance or 88 

contrast changes over different parts of the visual field. According to Graham and Klistorner, 89 

half of all patients with glaucoma have abnormal VEP patterns (Graham and Klistorner, 90 

1998). Kothari et al. studied the impact of the glaucoma stage (visual field loss) on VEP 91 

patterns in patients with POAG, (Kothari et al., 2014). The most affected patients had a longer 92 

latency for P100 (a positive potential recorded 100 ms after stimulus presentation). Although 93 

altered neuronal responses to low-level visual stimulation have been recorded in patients with 94 

glaucoma (Bach and Poloschek, 2013; Graham and Klistorner, 1998; Kothari et al., 2014; 95 

Senger et al., 2020; Vaegan and Hollows, 2006), neuronal changes in response to high-level 96 

visual stimulation tasks (i.e. those involving complex cognitive systems) have not previously 97 

been explored. 98 
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Functional electrophysiology can provide insights into the relationship between glaucoma and 99 

changes in brain dynamics and cognition. To the best of our knowledge, however, few studies 100 

have used electroencephalography (EEG) to measure brain activity in patients with glaucoma 101 

(Bola et al., 2015; Samanchi et al., 2021). Samanchi et al. measured spontaneous cortical 102 

activity under eyes-closed and eyes-open conditions in healthy controls and various 103 

populations of patients with glaucoma (Samanchi et al., 2021). Relative to controls, patients 104 

with POAG showed (i) significantly higher activity in the frontoparietal lobe in the eyes-105 

closed condition, and (ii) significantly higher, more widespread activity in the frontal cortex 106 

and frontoparietal regions in the eyes-open condition. Samanchi et al. suggested that patients 107 

with POAG increased their spontaneous brain activity in response to nerve degeneration. 108 

However, possible changes in high-density EEG recordings and brain dynamics in response to 109 

external stimuli and cognitive tasks have not previously been studied in patients with 110 

glaucoma. 111 

1.2. Visual cognition and semantic categorization in POAG 112 

Visual semantic categorization has been investigated in patients with glaucoma (Lenoble et 113 

al., 2016; Roux-Sibilon et al., 2018). In low-contrast conditions, for example, patients with 114 

POAG were less able to categorize certain semantic categories (notably outdoor/indoor 115 

scenes(Roux-Sibilon et al., 2018) or for living/non living items (Lenoble et al. 2016)). Both 116 

studies highlighted impairment in the semantic categorization of low-contrast images viewed 117 

in the central visual field – a field that is relatively undamaged, according to static automated 118 

perimetry measurements. The hypothesis was that pathological degeneration of ganglion cells 119 

led notably to a worsening in the perception of coarse information, i.e. the overall perception 120 

of an object or a visual scene before the details are processed (the “coarse-to-fine” model), 121 

(Bullier, 2001; DeYoe and Van Essen, 1988; Parker et al., 1996; Petras et al., 2019; Peyrin et 122 

al., 2010).  123 
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The visual perception predictive coding models (Bar, 2007; Friston, 2005; Kauffmann et al., 124 

2014) postulate that the brain constructs an internal representation of the external visual 125 

environment, which is used to generate ongoing predictions, anticipate visual sensory inputs, 126 

and facilitate recognition. According to operational studies (Kauffmann et al., 2015; Kveraga 127 

et al., 2007), the brain is suggested to generate continuous predictions by rapidly processing 128 

basic visual information, specifically low spatial frequencies. These predictions would 129 

subsequently influence slower visual processing, including the integration of high spatial 130 

frequencies. Numerous neuroimaging studies have documented functional and structural 131 

alterations in the brain as a result of the gradual degeneration of retinal ganglion cells 132 

(specifically magnocellular cells) in glaucoma, which can potentially impact cognitive 133 

functions  (Frezzotti et al., 2016; Fukuda et al., 2018). Therefore, a recent study (Trouilloud et 134 

al., 2023) hypothesized that patients with glaucoma may not fully benefit from the predictive 135 

cortical mechanism involved in scene perception. Specifically, this mechanism entails the 136 

swift extraction of low spatial frequencies across the entire visual field, enabling the guidance 137 

of detailed perception in central vision. Their results revealed that patients with early 138 

glaucoma had greater semantic influence of low spatial frequencies on high spatial 139 

frequencies than controls, which then decreased for the severe cases of glaucoma. The authors 140 

reached the conclusion that the degradation of retinal ganglion cells has an impact on the 141 

processing of spatial frequencies in central vision. Studies investigating the categorization of 142 

coarse information (such as rapidly presented visual objects, low-contrast conditions, and low 143 

spatial frequencies) in healthy individuals have revealed that natural objects can be 144 

categorized using lower spatial frequencies compared to human-made objects. Non-living and 145 

human-made objects necessitate a different analysis involving the perception of fine details 146 

through higher spatial frequencies (Lenoble et al., 2013; Vannucci et al., 2001; Viggiano et 147 
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al., 2006). To date, there have been no studies evaluating whether patients with glaucoma 148 

exhibit the same visual dominance model for coarse information regarding natural objects. 149 

In order to better understand the visual cognitive changes experienced by patients with 150 

glaucoma in their remaining vision, the current study investigate the processing and 151 

integration of spatial frequencies in central vision. Data were collected from participants 152 

during a semantic categorization task, measuring both behavioral and neurophysiological 153 

responses. The task involved categorizing natural and human-made visual objects using both 154 

low-pass filtered (LPF) and normal (non-filtered, NF) images. We hypothesized that changes 155 

in the overall perception of visual objects and in the related electrophysiological signals 156 

occurred in early-stage POAG (i.e. in patients whose central vision was clinically unaffected). 157 

Therefore, only patients with POAG and a recent-onset or moderate visual impairment were 158 

recruited. The patients’ semantic categorization ability in a go/no-go task was compared with 159 

that of healthy, age-matched controls. Lastly, the EEG signal was recorded during the 160 

cognitive task, in order to assess the impact of glaucoma on high-level brain dynamics. 161 

2. Materials and Methods 162 

The experimental paradigm and the analysis were done based on the procedure described in 163 

(Wamain et al., 2023). A power analysis was conducted using the software G*Power (Faul et 164 

al., 2007) to determine the minimum sample size required. Statistical parameters were 165 

established based on prior published research (Lenoble et al., 2016), which demonstrated 166 

significant differences between glaucoma patients and healthy controls in behavioral data 167 

using the same experimental paradigm. Assuming a similar large effect size f = 0.60 for an 168 

ANOVA (fixed effects, special, main effects and interactions), an alpha error probability of 169 

0.05, and a minimum power level (1-B) of 0.85: the total sample size was estimated at 28 170 

participants across the two groups. 171 
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2.1. Participants 172 

The study was conducted in the Ophthalmology Department at Claude Huriez Hospital (Lille, 173 

France). Fifteen patients (mean ± standard deviation age: 60.8 ± 10.6) and 15 healthy age-174 

matched controls (mean age: 64.7 ± 6.84 years old) were recruited. A complete 175 

ophthalmological evaluation was performed for each participant, in order to confirm the 176 

diagnosis of POAG in the patient group and rule out any other complex visual disorders in 177 

both groups. All participants had to have a corrected binocular visual acuity of at least 0.1 178 

Logarithm of the Minimum Angle of Resolution (logMAR) and contrast sensitivity higher 179 

than 1.65 Logarithm of the Contrast Sensitivity (Log CS) at the Pelli Robson. We excluded 180 

individuals with ophthalmologic complications (other than glaucoma for the glaucoma group) 181 

and a neurologic or psychiatric history (confirmation provided by the patient, supplemented 182 

by review of the hospital record). The clinical assessment prior to the experiment included a 183 

visual field evaluation using a 24-2 program Humphrey field analyzer (HFA) (Carl Zeiss 184 

Meditec Inc., Dublin, CA) for the patients and then a binocular visual acuity test and a 185 

binocular contrast sensitivity assessment (using the Pelli-Robson chart) for all participants. 186 

POAG was staged according to the mean deviation (MD) of the worst eye: 0.00 to -6.00 187 

decibel (dB) for early POAG and -6.01 to -12.00 dB for moderate POAG. All the patients 188 

included in the experiment were considered to have a 0-5° central vision similar to the age-189 

matched control group. Participants were assessed using the Mini Mental State Examination: 190 

a score of 25 or less was considered to indicate cognitive impairment (Folstein et al., 1975). 191 

The characteristics of the glaucomatous population are summarized in Table 1. Patients and 192 

controls did not differ in age and cognitive score (respectively, p = 0.24 and p = 0.99, 193 

student’s t-test). The protocol was validated by the ethical committee of Lille (N°2016-4-S46) 194 

and a consent form was completed by each subject before their participation. 195 

[Insert Table 1] 196 
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2.2. Materials 197 

Using MATLAB software (version 2014b, MathWorks, Natick, MA, USA), we presented 198 

stimuli on a DELL (Dell inc., Austin, Texas, USA) S2721H screen (59.5° width at a distance 199 

of 57cm, resolution: 1920 x 1980 pixels; sampling rate: 75 Hz, brightness: 300 cd/m²). EEG 200 

data were recorded in a dimly illuminated room using a cap with 64 Ag/Agcl electrodes 201 

(BioSemi, Amsterdam, The Netherlands) mounted according to the 10-20 system over the 202 

whole scalp (http://www.biosemi.com). The EEG signals were acquired at a sampling rate of 203 

512 Hz, using ActiView software (BioSemi). Four additional electrodes were placed to 204 

monitor eye movements, eye blinks (one electrode on the lateral canthi of the right eye, one 205 

below the right eye), and signals from mastoid sites (one electrode on each mastoid). The 206 

experiment began once the voltage differences between the electrodes were below 20 mV. 207 

The recordings of the presented images, EEG data, and keyboard responses were 208 

synchronized using a custom program developed with MATLAB and the Psychotoolbox 209 

(Brainard, 1997). Statistical analyses were performed with Jamovi software (Jamovi, 2020) 210 

and the threshold for statistical significance was set to p<0.05. 211 

2.3. Stimuli 212 

The stimuli were gray-scale 512 x 512 pixel photographs of 400 objects in four semantic 213 

categories: 100 images of animals, 100 images of furniture, 100 images of plants and 100 214 

images of tools. The photographs were isolated from their original background for 215 

presentation on a gray screen. The luminance (mean ± standard deviation: 30.08 ± 1.45 cd/m²) 216 

and contrast (mean ± standard deviation Michelson contrast: 55% ± 0.8%) of the images were 217 

checked. There were no significant differences between the four semantic categories in the 218 

luminance or the contrast (F3.297 = 2.48, p = 0.06). The photographs were displayed so that 219 

they covered a visual angle 5° at the center of the screen; the fixed viewing distance of 57 cm 220 

was set by the use of a chinrest. 221 
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We built an NF version and an LPF version of each image, (Figure 1A). Each semantic 222 

category (animals, furniture, plants, and tools) therefore comprised 100 NF images and 100 223 

LPF images. In the NF condition, pictures were displayed without spatial filtering. For the 224 

LPF condition, the Fourier transform of the NF version was multiplied by a Gaussian filter. 225 

Hence, the spatial frequency content above 3 cycles per degree of visual angle was removed. 226 

[Insert Figure 1] 227 

2.4. Procedure 228 

After the participant had provided his/her written, informed consent, he/she was seated in an 229 

adjustable chair, and the EEG cap was installed. The experiment comprised two blocks of a 230 

go/no-go task: Animal and Furniture. The order of the Animal and the Furniture blocks was 231 

counterbalanced across the participants. For the Animal block, participants were instructed to 232 

press the space bar as soon as possible after the presentation of an animal target (200 stimuli: 233 

100 NF and 100 LPF images). Participants were instructed not to press the space bar when a 234 

distractor appeared (200 images of plants and 200 images of tools = 400 in total). Within a 235 

given block, the probabilities of the NF and LPF conditions were equivalent. The same 236 

distractors were used in the Furniture block (600 images: 200 images of furniture, 200 images 237 

of tools, and 200 images of plants). Each participant performed a total of 1200 trials. The trial 238 

sequence began with the presentation of a central black fixation cross for 500 ms. The 239 

stimulus was then presented for 28 ms,(Lenoble et al., 2016; Macé et al., 2005) and the 240 

fixation cross reappeared for 2000 ms (the intertrial period) (Figure 1B).  241 

2.5. Analyses 242 

Only performance in target trials was considered in our analysis of behavioral and 243 

electrophysiological data. In order to compare the groups’ respective level of performance, we 244 

focused on the effect of object (Animals vs. Furniture, i.e. the relationship between 245 
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performance and the visual object’s semantic category) and the effect of filter (NF vs. LPF, 246 

i.e. the relationship between performance and the use of a low-pass filter). 247 

2.5.1. Behavioral Data 248 

Behavioral data were analyzed separately for each group (POAG vs. controls) and each 249 

condition (object and filter). We assessed three variables as a function of the processing level: 250 

accuracy, the decision criterion, and the response time. Accuracy and the decision criterion 251 

were calculated according to signal detection theory (Hautus et al., 2021; Stanislaw and 252 

Todorov, 1999). Four components were calculated: the hit rate (H, the percentage of trials in 253 

which a target was correctly detected), the correct rejection rate (CR, the percentage of 254 

distractor trials in which a manual response was not recorded), the miss rate (the percentage 255 

of missed targets), the false alarm rate (FA, the percentage of distractor trials in which a 256 

manual response was recorded). Accuracy was computed as the number of correct responses 257 

(hits and correct rejections) as a percentage of the total number of trials within a block. The 258 

response bias (i.e. the decision criterion (c)) for each participant was calculated as ￼	[𝑐	 =259 

	− &
'
[𝑧(𝐻)	+ 	𝑧(𝐹𝐴)] where z is the reverse normal distribution function (i.e. the z-score for a 260 

hit or an FA). A null decision criterion (c=0) corresponds to the absence of bias, a positive 261 

value (c>0) corresponds to conservative behavior with a tendency for “no-go” responses (the 262 

participant has more misses than FAs), and negative value (c<0) corresponds to conservative 263 

behavior with a tendency for “go” responses (the participant has more FAs than misses). 264 

The tests used to assess inter- and intragroup differences depended on whether or not the data 265 

were normally distributed. The data on the participants’ accuracy and decision criteria were 266 

not normally distributed (p<0.05 in the Shapiro-Wilk test); hence, intergroup differences were 267 

analyzed with a Kruskal-Wallis test, and intragroup differences were analyzed with a 268 

Friedman nonparametric analysis of variance (ANOVA) with repeated measures. Pairwise 269 
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comparisons were performed with the Durbin-Conover post hoc test. The response times were 270 

normally distributed (p>0.05 in the Shapiro-Wilk test). A parametric ANOVA with repeated 271 

measures was conducted on the mean latency of the participants' responses in the various 272 

conditions. Pairwise comparisons were performed post hoc, using the Bonferroni adjustment 273 

for type 1 errors. 274 

2.5.2. Electrophysiological Data  275 

Data were analyzed with the EEGLab toolbox (version 13.6.5b).(Delorme and Makeig, 2004) 276 

Two basic finite impulse response (FIR) filters were applied successively to continuous 277 

variables: a high-pass filter (order: 1691 points; transition band width: 1 Hz) and a low-pass 278 

filter (order: 227 points; transition band width: 7.5 Hz). Next, the filtered signal (1-30 Hz) 279 

was inspected visually, and periods with excessive numbers of noise artifacts were removed. 280 

Independent component analysis-based artifact correction was then used to correct for blink 281 

artifacts (Delorme et al., 2007). After the interpolation of noisy electrodes, the continuous 282 

EEG signal was re-referenced against the average reference signal (Delorme et al., 2015). 283 

Only data from target trials with a correct manual response were analyzed. Recordings were 284 

segmented in a time window of interest around the trial (from 200 ms before stimulus 285 

presentation to 1000 ms after the start of the stimulus presentation). Event-related potentials 286 

(ERPs) were built using the activity from -200 to 0 ms as the baseline (see Appendices, Figure 287 

A). After segmentation, the data were re-inspected visually by an expert EEG processing 288 

engineer in order to remove trials exhibiting muscle contraction artifacts (using ±100 µV as 289 

maximal deviation threshold. This final cleaning procedure removed 32% of data (range 22-290 

40) leading to keep for subsequent analyze a minimum of 42 trials per condition (M= 68 trials 291 

per condition). Lastly, a Laplacian filter was used to increase the signal’s spatial and temporal 292 

resolution (Perrin et al., 1989), and ERP data were then down-sampled to 100 Hz for 293 

submission to the classification analysis (Carlson et al., 2013). 294 
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2.5.3. Classifier 295 

We used a data-driven approach to evaluate neural activation related to the effect of object 296 

(Animals/Furniture) and the effect of filter (NF/LPF). To this end, we adopted a classifier 297 

approach based on a naïve Bayesian implementation of linear discriminant analysis (Duda et 298 

al., 1974): this corresponds to the unsupervised training of an algorithm to categorize trials on 299 

the basis of the ERP patterns. Hence, this approach trained the classifier to recognize brain 300 

dynamic patterns evoked by the experimental conditions (Object, Filter). The algorithm 301 

required a training phase and a test phase. The classifier’s performance was measured using 302 

10-fold cross-validation (a training:test ratio of 9:1) for each individual dataset. For instance, 303 

the algorithm was trained on 9 subsets of one individual dataset so that it could classify the 304 

last subset, and the procedure was repeated ten times (so that each subset was classified once). 305 

The classifier’s sensitivity (i.e. decoding performance) was calculated for each participant as 306 

the mean accuracy over all trials for differentiating between neural responses (i.e. the 307 

response to an Animal trial vs. the response a Furniture trial) within the time window of 308 

interest (0 to 1000 ms). This decoding performance was computed as the mean decoding 309 

result for the trials, using a sliding window with three successive points (30 ms). The 310 

decoding performance at each time point was compared with chance (50%) in a Wilcoxon 311 

test. The p value was corrected for multiple comparisons by computing Benjamini and 312 

Hochberg’s false discovery rate (FDR), (Benjamini and Hochberg, 1995). 313 

Object and filter classifier analyses were used to test for effects on spatiotemporal brain 314 

dynamics. Moreover, we independently tested for the effects of object on performance, i.e. an 315 

Animals vs. Furniture analysis in NF trials and in LPF trials. The groups (POAG vs. controls) 316 

were compared with regard to the mean decoding performance. The difference in performance 317 

(computed using a Wilcoxon test) was defined as being statistically significant (p<0.05) or not 318 

over sliding periods of 30 ms. The classification results were used to model topographical 319 
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maps of brain activation during the semantic categorization of visual stimuli. Activation 320 

patterns were calculated according to Haufe et. al.’s method (Grootswagers et al., 2017; Haufe 321 

et al., 2014). 322 

3. Results 323 

3.1. Behavioral Data 324 

Intragroup analyses of accuracy revealed an effect of object (p<0.01) and an effect of filter 325 

(p<0.001) in the age-matched controls (Durbin-Conover multiple comparisons, after a 326 

Friedman test [𝜒2 = 	30.6, df	 = 	3; 	p < 0.01]); whereas an effect of filter only (p<0.05) 327 

was observed for the patients with POAG. Both groups performed better in the NF condition 328 

than in the LPF condition. Regardless of the filter condition, the percentage of correct 329 

responses was higher for animal stimuli than for furniture stimuli (mean accuracy: 95% for 330 

Animal and 91% for Furniture; [𝜒2 = 	6.25, df	 = 	1, p < 0.01]; Friedman's test), (Figure 331 

2A). Intergroup analyses showed that controls performed better than patients in the animal 332 

semantic category only (mean values: 95% vs. 91%, respectively [𝜒2 = 	5.3, df	 = 	1, P =333 

	0.02	, ε²	 = 		0.17]; Kruskal-Wallis test), (Figure 2A). The two groups performed to a similar 334 

level with Furniture stimuli. 335 

 [Insert Figure 2] 336 

A decision criterion analysis of the effect of object highlighted a conservative bias in both 337 

groups (c > 0, Figure 2B). Intragroup analyses demonstrated a significant Animal vs. 338 

Furniture difference in the decision criterion for controls (mean c = 0.28 for Animal vs. c = 339 

0.53 for Furniture, [𝜒2 = 	8.00, df	 = 	1, p < 0.01]; Friedman test) but not for patients 340 

(mean c = 0.25 for Animal vs. 0.32 for Furniture [𝜒2 = 	0.28, df	 = 	1, p	 = 	0.59]; 341 

Friedman test), (Figure 2B). Intergroup analyses showed that the decision criterion for 342 

Animal stimuli were similar in the two groups, whereas the conservative bias for Furniture 343 
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stimuli was greater in the control group than in the glaucoma group (mean c = 0.53 and 0.32, 344 

respectively [𝜒2 = 	5.2, df	 = 	1, p	 = 	0.02	, ε²	 = 		0.16]; Kruskal-Wallis test). 345 

The ANOVA of the response time revealed an effect of object for all participants (F1.28 = 54.5, 346 

p<0.001): Furniture stimuli had significantly longer response times (Figure 2C). Indeed, the 347 

difference between Furniture stimuli and Animal stimuli during correct trials was significant 348 

for both controls (RT = 502 for Animal vs. RT(F) = 540 ms for Furniture; p<0.001) and 349 

patients (RT = 485 ms for Animal vs RT = 524 ms for Furniture, p<0.001). The effect of filter 350 

on response time was not significant (F1.28 = 3.72, p = 0.06), although responses were longer 351 

for LPF stimuli - especially in the Furniture semantic category. The intergroup difference was 352 

not significant (F1.28 = 3.28, p = 0.08), although response times were about 20 ms shorter for 353 

patients with glaucoma. 354 

3.2. EEG data 355 

The Object classifier was significantly more accurate than chance for classifying 356 

electrophysiological signals in Animal vs. Furniture trials, whereas the Filter classifier 357 

performed no better than chance (decoding performance = 0.5) for classifying 358 

electrophysiological signals in NF vs. LPF trials. We therefore focused our analyses of the 359 

EEG data on the Object classifier. Given the better behavioral performance in NF condition 360 

(i.e. for accuracy and the reaction time) in the two groups, we expected different brain 361 

dynamics of semantic categorization depending on the filter condition. Consequently, we 362 

compared effects in the groups, i.e. Object classifier performance in the NF condition (Figure 363 

3A) and in LPF condition (Figure 3B). 364 

[Insert Figure 3] 365 

In the NF condition (Figure 3A), the difference between Animal and Furniture EEG signals 366 

(decoding performance) was significant in controls from 100 to 800 ms. This difference to be 367 
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appeared more transient and later in glaucomatous patients. The Wilcoxon test revealed two-368 

time windows of interest in which patients and controls differed significantly (p<0.05) with 369 

regard to the decoding performance of the Object classifier: an early window from 70 to 170 370 

ms after stimulus onset, and a late window from 400 to 600 ms. 371 

3.2.1. Early processing 372 
Classification between Animal and Furniture objects started at 150 ms in glaucoma group, i.e. 373 

around 50 ms later than in the control group. The topographic maps computed over this 70-374 

170 ms time-window highlighted occipital activation in controls but not in patients with 375 

POAG. 376 

3.2.2. Late processing 377 
In the control group, a peak correct classification rate of 85% was observed between 400 and 378 

600 ms; this corresponded to the greatest difference in neuronal responses between Animals 379 

and Furniture. This peak was not found in the POAG group, whose decoding performance 380 

was significantly lower than that of controls (p<0.05, Wilcoxon test). The topographic maps 381 

of the late component revealed frontal (blue) and parietal (red) activations in the control 382 

group. The activation patterns were less salient in the POAG group, with weak activity over 383 

the frontal and occipital regions. 384 

In the LPF condition (Figure 3B), the brain dynamics were more similar in the two groups. 385 

The decoding performance significantly exceeded chance from 120 ms to 800 ms post-386 

stimulus in controls, and from 170 ms to 800 ms in patients. The early processing interval was 387 

also present in patients but was not statistically significant. The decoding performance for 388 

controls remained high between 400 ms and 600 ms, although peak seen in the NF condition 389 

was absent. Patients were less sensitive throughout the late time window (p<0.05, Wilcoxon 390 

test). The topographic activation patterns were also more widely spread over the frontal and 391 

occipital regions in controls (i.e. much as seen in the patient group). 392 
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4. Discussion 393 

The objective of this exploratory study was to assess behavioral and neurophysiological 394 

dynamics during a visuocognitive task in patients with POAG. To that end, a group of patients 395 

with early-stage POAG and a group of age-matched controls performed an ERP experiment in 396 

which they had to categorize briefly displayed visual objects (Animal/Furniture targets and 397 

Plant/Tool distractors) with different spatial frequencies (NF/LPF). Our results showed that 398 

patients with POAG were able to categorize visual objects on the basis of the overall shape. 399 

However, unlike the controls, the patients showed similar levels of accuracy in Animal trials 400 

and Furniture trials. The patient group applied the same decision criterion in each of the two 401 

semantic categories. Moreover, the behavioral and neurophysiological recordings highlighted 402 

POAG vs. control differences in brain dynamics during the semantic categorization task with 403 

central vision: the early stages of visual recognition were delayed for early-stage POAG 404 

participants, and this might have resulted in high-level cognitive compensation in the later 405 

part of the semantic categorization process. 406 

On the behavioral level, our results showed that patients with POAG are able to categorize 407 

visual objects with a high level of performance under visually degraded condition. Firstly, we 408 

did not observe a difference in response time between controls and patients. This finding is in 409 

line with previous studies in which patients with glaucoma were able to perform complex 410 

cognitive tasks after brief exposure to stimuli (exposure time: 28 ms), (Lenoble et al., 2016). 411 

Moreover, in trials with correct responses, the two groups detected Animals more rapidly than 412 

Furniture. As suggested in the literature, visual object categorization triggers different 413 

behavioral responses depending on the animate vs. inanimate nature of the stimulus 414 

(Grootswagers et al., 2017). Secondly, the mean accuracy rate in the POAG group was high 415 

(90%). However, the POAG group’s accuracy rates were similar for Animal stimuli and 416 

Furniture stimuli, whereas controls were significantly more accurate with Animal stimuli than 417 
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with Furniture stimuli. Hence, patients were significantly less accurate than controls when 418 

categorizing Animal stimuli. We have two possible hypotheses for the lack of facilitation by 419 

animate objects: (i) high-level cognitive impairment caused by neurophysiological damage to 420 

the visual pathway (Boucard et al., 2009; Lawlor et al., 2018), and (ii) use of a different 421 

response strategy (through compensation and cerebral re-organization), in an attempt to 422 

maintain a good level of overall performance. The first hypothesis (the “damage” hypothesis) 423 

was suggested by the fact that stimuli were displayed at a visual angle 0-5° in the central 424 

visual field, which was known to be undamaged in the POAG group immediately prior to the 425 

experiment. Consequently, the patients’ low accuracy rate with Animal stimuli might be due 426 

to changes in high-level brain areas beyond the primary visual cortex (Dai et al., 2013). This 427 

result is also in line with an impairment of the coarse information processing and of the 428 

predictive model in glaucoma (Roux-Sibilon et al., 2019): the progressive degradation of 429 

ganglion cells impacts coarse information processing and fast predictive visual input that 430 

facilitate perception of animate visual stimuli. The second hypothesis (the “compensation” 431 

hypothesis) was prompted by our analysis of the Furniture data. Patients with POAG were as 432 

accurate as controls during Furniture trials; they were not disadvantaged in categorizing 433 

images of inanimate objects. Despite potential changes in their neuronal responses to 434 

transiently displayed objects, patients maintained a good overall level of performance – 435 

possibly by implementing a compensation strategy.  436 

An analysis of the decision criterion during the task might be of value in determining which 437 

of the two hypotheses is true. In the “go/no-go” task, errors correspond to oversights or FAs. 438 

Oversights can be due to an attentional impairment and/or a conservative response bias (i.e. 439 

the absence of a preferred response during ambiguous trials). FAs can be caused by impaired 440 

inhibition during distractor trials and/or a liberal response bias (i.e. answering even during 441 

ambiguous trials). Our group of patients applied the same decision criterion to all trials, 442 
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whereas controls demonstrated significantly more conservative behavior in Furniture trials 443 

(c= 0.53 in controls vs. 0.32 in glaucoma). Interestingly, these results highlighted a 444 

performance-impairing shift in decision strategy in controls (leading to more omissions of 445 

Furniture targets) but not in patients with POAG. The difference in the decision criterion in 446 

the control group (but not in the patient group) underpins the compensation hypothesis; it 447 

seems possible that in patients with glaucoma, the visual and decision-making systems adapt 448 

in order to maintain a neutral decision criterion and thus maximize the likelihood of detecting 449 

targets. 450 

On the neurophysiological level, an analysis of temporal brain dynamics during visual and 451 

semantic category processing revealed two main differences between patients with POAG and 452 

age-matched controls: an early (visual) component (Martinovic et al., 2008; Di Russo et al., 453 

2002) (70-170 ms) and a late (cognitive) component around 400 and 600 ms (Craddock et al., 454 

2013). The key variable was decoding performance, i.e. time windows in which 455 

electrophysiological signals differed when comparing Animal trials with Furniture trials (i.e. 456 

the object classifier). During the two above-mentioned time windows, the classifier’s 457 

decoding performance was significantly lower for patients than for controls. Moreover, in 458 

both NF and LPF conditions, the controls’ classifier differentiated between Animal trial brain 459 

signals and Furniture trial brain signals as soon as 100 ms after the stimulus onset; this 460 

distinction occurred 50 ms later in the patient group. Our topographic analyses showed that 461 

over the 70 - 170 ms time window, the difference in Animals vs. Furniture activation was 462 

observed in the occipital region in controls but not in patients with POAG. These results are in 463 

line with literature reports (Graham and Klistorner, 1998; Kothari et al., 2014; Vaegan and 464 

Hollows, 2006) in which patients with glaucoma showed delayed early visual processing 465 

(relative to controls), as measured with VEPs and referred to as the P100 pattern. Here, using 466 

a cognitive task, we replicated the neurophysiological change under low-level visual 467 



20 
 

stimulation (i.e., contrast level shifts) reported in the literature. Furthermore, the late 468 

component (a peak in decoding performance from 400 to 600 ms) was observed in the control 469 

group but not in the POAG group. According to the literature (Craddock et al., 2013), late 470 

activations in healthy subjects correspond to high-level processing and depend on the 471 

semantic categorization task (the N350 component). The absence of the classification peak 472 

and the presence of frontoparietal activation on the topographic map suggest that patients and 473 

controls differed in the high-level information processing. Indeed, neural networks in the 474 

frontal and prefrontal regions are known to be involved in decision making and can influence 475 

the motor response (Gold and Shadlen, 2007; Paulus et al., 2001). In line with the 476 

compensation hypothesis, the observed difference in this component may depend on the 477 

behaviors present in controls but not in patients with glaucoma: i.e., the change in the decision 478 

criterion only for the Furniture stimuli in controls. Our results on the early visual processing 479 

delay and late cognitive changes are in line with the findings of a recent functional MRI 480 

study: functional reorganization was not observed in the primary visual cortex, whereas there 481 

were significant changes in the activation of top-down networks from the frontal regions to 482 

the visual cortex (Prabhakaran et al., 2021). Prabhakaran et al.’s study of the functional 483 

dynamics of V1 in glaucoma highlighted aberrant activation within the lesion projection zone 484 

(corresponding to the projection of the visual field’s scotomas in V1) and top-down 485 

modulations from higher cortical areas. Further brain imaging studies in patients with 486 

glaucoma are needed to replicate these findings and characterize the nature of cortical 487 

plasticity in areas beyond the visual cortex. 488 

The present study had some limitations. First, the number of participants per group was 489 

relatively small. However, we are confident that this should not significantly affect our 490 

conclusions on behavioral data and neurophysiological data because we employed a common 491 

and robust experimental paradigm and calculated the effect size based on previous findings in 492 
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POAG patient in the same task (Lenoble et al., 2016). Additionally, the task included 1200 493 

trials to obtain reliable individual EEG signals. Nevertheless, due to the sample size of the 494 

patient group and the limitation to early POAG, we were unable to assess the impact of visual 495 

impairment on behavioral performance. A larger cohort of patients would allow to examine 496 

different stages of glaucoma and to provide valuable insights to validate or invalidate the 497 

compensation hypothesis in our results. Second, we did not observe the effect of the spatial 498 

frequency filter on the behavioral and neurophysiological data. We measured overall shape 499 

perception ability by adapting the methods described in (Macé et al., 2005) and (Lenoble et 500 

al., 2016): the stimuli were flashed up as black and white images for 28 ms. According to 501 

Lenoble et al., patients with glaucoma presented longer response times and lower correct 502 

response rates at a medium contrast level (50%), relative to age-matched controls performing 503 

the same semantic categorization task (Lenoble et al., 2016). Moreover, the degradation of 504 

retinal ganglion cells is known to reduce sensitivity to low spatial frequencies in glaucoma 505 

(McKendrick et al., 2007), impacting the anticipation of visual sensory input in central vision 506 

according to predictive coding models (Kveraga et al., 2007; Trouilloud et al., 2023). Thus, 507 

we expected the patients’ level of performance to be (i) lower in the LPF condition than in the 508 

NF condition and (ii) lower than with controls. In fact, both groups of participants had 509 

difficulty in the LPF condition; this difficulty did not therefore appear to be specific for the 510 

visual deficit – except with Animal stimuli. Similarly, the classifier was not able to 511 

discriminate between NF trials and LPF trials by reference to the brain dynamics. One 512 

possible explanation is that the NF condition corresponded to a coarse display of stimuli, 513 

given (i) the brief presentation (28 ms), the small size, and the lack of specific information for 514 

central vision (e.g. color information). Further comparisons of a low-pass filter (LPF) vs. a 515 

high spatial frequency filter (rather than no filter) might shed light on differences in 516 

information processing between healthy controls and patients with POAG as a function of the 517 
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spatial frequency. Additionally, these comparisons could allow us to identify distinct brain 518 

dynamic profiles in a classification analysis. 519 

5. Conclusion 520 
Our study provided preliminary information on high-level visual functions and brain 521 

dynamics in patients with POAG. We found that the patients and healthy controls differed in 522 

their ability to categorize overall perceptions of visual objects. Controls (but not patients with 523 

POAG) performed better when categorizing Animal stimuli. Glaucoma impacted overall 524 

shape perception for visual objects and weakened the facilitating effect of LSF information. 525 

On the neurophysiological level, the patients' brain responses differ from those of the controls 526 

in early and late time windows. Even though caution must be exerted when comparing 527 

behavioral and neurophysiological analyses, our results suggested that (i) the early stages of 528 

visual processing were impaired in patients with POAG, and (ii) higher-level compensation 529 

was required to categorize visual objects with degraded properties. Thus, the neuroanatomical 530 

changes observed in previous brain imaging studies might be related not only to impairments 531 

in the early stages of perception but also to structural plasticity and compensation mechanisms 532 

beyond the primary visual cortex. Further visuo-cognitive studies, involving a larger cohort of 533 

patients with varying stages of glaucoma from early to severe, are essential to investigate the 534 

interplay between visual impairment, neurological changes, and compensatory behaviors.  535 
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Figure’s legends 698 

Table 1: Demographic and clinical characteristics of the patients with primary open-angle glaucoma 699 

(POAG). MMSE: Mini Mental State Examination; logMAR: Logarithm of the Minimum Angle of Resolution; 700 

Log CS: Logarithm of the Contrast Sensitivity; HFA MD: Humphrey field analyzer mean deviation; dB: decibel; 701 

NA: Non-Applicable. 702 

Figure 1 : Stimuli and procedure. (A) Examples of stimuli from two semantic categories (Animals and 703 

Furniture) in the nonfiltered condition (NF) and the low-pass-filtered condition (LPF: spatial frequencies above 3 704 

cycles per degree had been removed). (B) The experimental sequence: a black fixation cross appeared for 500 705 

milliseconds (ms). The stimulus was then displayed for 28 ms. The participant has been instructed to press the 706 

space bar as soon as possible during the intertrial period of 2000 ms only when a target (an animal or furniture) 707 

had been displayed. 708 

Figure 2: An intergroup comparison and the effect of object for semantic categorization performance: 709 

Accuracy (A), decision criterion (B) and response time (C). Accuracy corresponds to the percentage of correct 710 

detections and correct rejections. The decision criterion corresponds to the response bias and ranges from neutral 711 

(c=0) to conservative (c > 0). The response time corresponds to the time interval (in ms) between presentation of 712 

the stimulus and the manual response (in correct trials only). Group average performances are plotted as a 713 

function of the Animal condition or the Furniture condition on the horizontal axes. The control and glaucoma 714 

groups are represented in blue and orange, respectively. Error bars correspond to 95% confidence intervals. 715 

 *** p<0.001, ** p<0.01, * p<0.05. 716 

Figure 3: Object decoding (based on the EEG signal) in the non-filtered (NF) condition (A) and the low-717 

pass filtered (LPF) condition (B). The graphs show the change over time in the classifier’s decoding 718 

performance for Animal vs. Furniture neuronal responses, as a function of the participant group (glaucoma in 719 

green and controls in blue). Shaded areas correspond to the group’s standard error. Green and blue stars indicate 720 

significant differences in decoding performance (vs. chance, shown by the grey line). Black stars indicate 721 

significant differences between the Glaucoma and control groups (Wilcoxon test, p<0.05). The lower panels are 722 

the corresponding topographic activation maps for the scalp regions involved in object classification in specific 723 

time windows (1: early processing, 70-170 ms; 2: late processing, 400-600 ms). Green areas represent areas that 724 

are neutral in the classification task, whereas blue and red areas represent polarized activation patterns of 725 
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importance in the classification task. The view corresponds to the top of the head, with the nose pointing towards 726 

the top of the page (top-frontal, middle-parietal, bottom-occipital). 727 

Table 728 

 729 

Table 1: Demographic and clinical characteristics of the participants. MMSE: Mini Mental State 730 
Examination; logMAR: Logarithm of the Minimum Angle of Resolution; Log CS: Logarithm of the Contrast 731 
Sensitivity; HFA MD: Humphrey field analyzer mean deviation; dB: decibel; NA: Non-Applicable; Sex 732 
(F=Female, M=Male). 733 

 734 
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Participants  
 

Sex Age  
(years) 

MMSE 
(out of 30) 

Binocular  
visual 
acuity  

(logMAR) 

Contrast 
sensitivity 
(log CS) 

Worst-eye  
HFA MD 

(dB) 

Glaucoma  
stage 

Patients with POAG   
 
 

    
G1 F 56 30 0.10 1.85 -4.6 Early 

G2 M 82 27 0.00 1.85 -4.7 Early 

G3 M 69 29 0.10 2 -3.6 Early 

G4 M 56 27 0.00 1.7 -6.35 Moderate 

G5 F 66 29 0.00 1.85 -7.4 Moderate 

G6 F 61 28 0.10 1.7 -2.9 Early 

G7 M 70 27 0.10 1.7 -3.4 Early 

G8 F 60 27 0.00 2 -1.3 Early 

G9 F 65 28 0.10 1.7 -8.4 Moderate 

G10 F 69 30 0.00 1.85 -1.9 Early 

G11 M 53 27 0.00 1.85 -3.6 Early 

G12 M 43 29 0.00 2 -1 Early 

G13 M 43 28 0.00 2 -1.2 Early 

G14 M 67 27 0.00 1.85 -3.7 Early 

G15 M 52 28 0.10 1.7 -2 Early 

Age-matched 
Controls 

   ≥ 0.10 > 1.65 NA NA 

C1 M 53 30 - - - - 

C2 F 76 28 - - - - 

C3 M 76 29 - - - - 

C4 M 62 28 - - - - 

C5 M 67 29 - - - - 

C6 F 75 30 - - - - 

C7 F 63 27 - - - - 

C8 M 63 28 - - - - 

C9 F 61 27 - - - - 

C10 F 60 30 - - - - 

C11 M 65 26 - - - - 

C12 M 58 25 - - - - 

C13 F 60 30 - - - - 

C14 M 70 28 - - - - 

C15 F 62 26 - - - - 
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Figure 1 735 

 736 

  737 
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Figure 2 738 

 739 

  740 
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Figure 3 741 

 742 


