
HAL Id: hal-04371608
https://hal.univ-lille.fr/hal-04371608v1

Submitted on 3 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Online Clustering of Trajectory Data Stream
Ticiana Coelho da Silva, Karine Zeitouni, Jose de Macedo

To cite this version:
Ticiana Coelho da Silva, Karine Zeitouni, Jose de Macedo. Online Clustering of Trajectory Data
Stream. 2016 17th IEEE International Conference on Mobile Data Management (MDM), Jun 2016,
Porto, Portugal. pp.112-121, �10.1109/MDM.2016.28�. �hal-04371608�

https://hal.univ-lille.fr/hal-04371608v1
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

Online Clustering of Trajectory Data Stream
Ticiana L. Coelho da Silva

Federal University of Ceará, Brazil
Email: ticianalc@ufc.br

Karine Zeitouni
Université de Versailles-St-Quentin, France

Email: karine.zeitouni@uvsq.fr

José A. F. de Macêdo
Federal University of Ceará, Brazil

Email: jose.macedo@lia.ufc.br

Abstract—Movement tracking becomes ubiquitous in many
applications, which raises great interests in trajectory data
analysis and mining. Most existing approaches cluster the whole
trajectories offline. This allows characterizing the past move-
ments of the objects but not current patterns. Recent approaches
for online clustering of moving objects location are restricted
to instantaneous positions. Subsequently, they fail to capture
moving objects’ behavior over time. By continuously tracking
moving objects’ sub-trajectories at each time window, rather
than just the last position, it becomes possible to gain insight
on the current behavior, and potentially detect mobility patterns
in real time. In this work, we tackle the problem of discovering
and maintaining the density based clusters in trajectory data
streams, despite the fact that most moving objects change their
position over time. We propose CUTiS, an incremental algorithm
to solve this problem, while tracking the evolution of the clusters
as well as the membership of the moving objects to the clusters.
Our experiments were conducted on real data sets, and it shows
the efficiency and the effectiveness of our method.

I. INTRODUCTION

The huge volume of collected trajectories opens new op-
portunities for discovering hidden mobility patterns. These
patterns allow characterizing individual mobility as well as
groups sharing similar trajectories for a certain time interval.
Usually, this analysis is done off-line by applying data analysis
and mining techniques on the previously collected data. This
allows characterizing the past movements of the objects but
not the current mobility patterns. Nowadays, many services
involve tracking moving objects (e.g., persons, vehicles, an-
imals) to report their trajectory continuously (e.g., every
second or every minute). Analyzing these data while they are
generated may bring a real added-value in the comprehension
of the city dynamics, and the detection of regularities as well
as anomaly, which is essential for decision making. Among
these patterns, we consider in this paper the (sub)trajectory
clustering and its evolution. Such discovery may help the
search for effective re-engineering of traffic, or dynamically
detecting events or incidents at a city level.

Tracking applications need to deal with the incremental
nature of spatio-temporal data. Indeed, data arrive rapidly in
a short period of time and its size keep growing as time
goes. The exploration of the entire data stream might not
be very useful since the information to be extracted may be
outdated. Analyzing the data while it arrives can provide much
better comprehension of current cluster patterns and their
evolution between consecutive periods of time. By current
cluster patterns, we mean the groups of moving objects having
similar sub-trajectories during the last time window. Thus, by

tracking sub-trajectories rather than just the last position, it
becomes possible to gain insight on the current behavior, and
potentially detect suspicious behaviors or remarkable events on
the moment it happens. However, finding clusters over these
data stream in (quasi) real time is quite challenging because
all tracked moving objects may change their positions every
time, and clusters may also change accordingly. Furthermore,
new moving objects may appear as well as others may stop
and disappear. These changes may affect clusters formation.

In this paper, we address the problem of online clustering
discovery and its evolution by tracking moving objects at
consecutive time windows. To solve this problem, we pro-
pose CUTiS (standing for ClUstering Trajectory Stream), an
incremental algorithm tailored for trajectory data stream: (i)
most the objects changes their sub-trajectories data at each
time, (ii) new moving objects appear as well as (iii) others
disappear from the system. Because we do clustering for each
time window rather than for the whole trajectory, the clusters
we find are actually sub-trajectory clusters. We define a new
structure, called micro-group, to represent the relationship
among moving objects. Then, micro-groups may evolve, e.g.,
merge or split in the next time period. In our experiments, the
maintenance of micro-groups structure presents less computa-
tional cost than running the clustering algorithm from scratch.

There exist approaches for incremental clustering of moving
objects position and detects its evolution [1], [2], [3], [4],
[5], but they are restricted to instantaneous positions failing
to capture mobility behavior along a time window. Besides,
there are some approaches in the literature aiming at clus-
tering trajectories as a whole [6], [7], [8], some clustering
algorithms for sub-trajectories [9], [10] focusing on spatial
criteria and ignoring the time dimension and some that are
road network constrained [11], [12], [13]. According to the
author’s knowledge, we believe that our study is relevant, since
there is no approach for discovering and updating clusters of
trajectory data stream in (time, space and direction). The main
contributions of CUTiS are as follows:

• A novel definition of micro-group that we believe enables
the computation of interesting patterns.

• An incremental algorithm to maintain micro-groups and
to capture its evolution patterns on trajectory data stream.

• A sub-trajectory clustering algorithm based on time,
space and direction distance functions.

We conducted an extensive study on real data sets to
evaluate the effectiveness and efficiency of CUTiS. This paper

is organized as follows: In the next section, we provide the
problem statement. Section III presents our approach, and
Section IV shows our experimental evaluation. Section V
presents the main related works, before the conclusion.

II. PROBLEM DEFINITION

A trajectory is a sequence of the locations of a mov-
ing object at each time-stamp and is denoted by TRj =
< p1p2...pr...plenj>. Here, pk (1 ≤ k ≤ lenj) is a point
(xk, yk, tk) in a three dimensional space, where (xk, yk)
indicates the location of the object at time tk. The length lenj
of a trajectory can be different from those of other trajecto-
ries. In addition, CUTiS is time constrained, we use linear
interpolation to align the trajectories in time. A trajectory
< pl1 , pl2 , ..., plk> (1 ≤ l1 < l2 < ... < lk ≤ lenj , where
lk = lk−1+1) is called a sub-trajectory of TRj .

Definition 1: (Input Stream) Let i = [t, t + δt]
be an observed time window. The set Ii =
{(o1, ST1,i), (o2, ST2,i),...,(on, STn,i)} is called input
stream at time window i if each STj,i is a sub-trajectory of a
moving object oj during the time window i, and there is no
temporal overlap between different input streams.

We aim to track moving objects and discover sub-trajectory
clusters incrementally using Ii avoiding executing clustering
algorithm from scratch at each time window. Because our data
are dynamic, each moving object sub-trajectory is manipulated
in CUTiS as one of these operations: (i) A moving object
can appear in the system (inserted into the system), (ii) a
moving object can disappear from the system (deleted from
the system), and also (iii) moving objects may update their
sub-trajectories during the time window. These operations may
affect the existing clusters.

Problem Statement: For each time window i, when the data
stream Ii = {(o1, ST1,i), (o2, ST2,i), ..., (on, STn,i)} arrives
in the system, the goal is to track the moving objects and
update clusters avoiding re-computing them from scratch at
each time window. We should discover sub-trajectory clusters
with respect to movement similarity taking into account time,
space and direction.

To discover sub-trajectory clusters with various shapes, we
employ the concept of density-based clustering in this study
[14].

III. OUR APPROACH

CUTiS, firstly proposed in [15], follows four steps: apply a
distance function, choose representative trajectories, maintain
the micro-groups, and discover sub-trajectory clusters.
• Apply a Distance Function: To measure the distance be-

tween two moving objects’ sub-trajectories STk,i, STj,i
at time window i, we implement the synchronous Eu-
clidean distance, which accounts for time, space, and
direction presented in Section III-A. However, CUTiS is
suitable to any distance function for trajectories.

• Choose Representative Trajectories: For
each group of moving object sub-trajectories
Si = {(o1, ST1,i), (o2, ST2,i), ..., (om, STm,i)} at

the time window i, we define the representative
trajectory as a pair composed by one moving object
and its sub-trajectory which “better represents” the
behavior of Si. To choose (oj , STj,i) as a representative
sub-trajectory, CUTiS uses two metrics: the number of
moving objects that have their sub-trajectory similar to
STj,i and a Gaussian kernel function to estimate the
representativeness of STj,i. This is discussed in the
Section III-B.

• Maintain the Micro-groups: We define a new structure
in Section III-C, called micro-group, to capture and main-
tain small and dense groups of moving objects around
the representatives at each time window. This adapts
to many situations such as families staying together or
persons sharing the same trip using a public transport.
Furthermore, their maintenance cost is lower than main-
taining a big cluster during each time window. The micro-
group definition is based on the use of a representative
trajectory. We propose an algorithm to incrementally
maintain each micro-group and to capture its evolution
patterns. We also propose density based cluster discovery
by merging micro-groups.

• Discover Sub-trajectory Clusters: We use the main-
tained micro-groups to discover patterns, by capturing
the evolution of micro-groups over time. Since each
micro-group is density based, it is suitable to find sub-
trajectory density based clusters (for example, merging
micro-groups results in density based sub-trajectory clus-
ters). We confirm in our experiments that CUTiS is more
efficient than running a clustering algorithm from scratch
at each time window (we used DBSCAN [14] as our
baseline algorithm). This step is presented in Section
III-D.

A. Distance Function

The distance function used in CUTiS has two levels: time
and space, and direction level.

Definition 2: (Spatio-Temporal Distance) For the time
window i = [t, t + δt], the distance between two moving
objects’ sub-trajectories STj,i and STk,i is computed by the
synchronous distance DSTj,i,STk,i , as follows [6]:

distλ(STj,i, STk,i) =

∫ t+δt
t

DSTj,i,STk,i(t) dt

δt
(1)

Let DSTj,i,STk,i(t) be the distance function between sub-
trajectories STj,i, STk,i at time t. Considering the time interval
[t, t + δt] and n be the number of timestamps of position
updates. In case the sampling rates of sub-trajectories vary,
the locations of missing updates are approximated by linear
interpolation between consecutive recorded points, so (1) is
adapted to:

distλ(STj,i, STk,i) =

n−1∑
r=1

∫ tr+1

tr
DSTj,i,STk,i(t) dt

δt
(2)

where each tr is the timestamp when at least one of the
moving objects report its position. The Euclidean distance
between two objects that move with linear functions of time
between consecutive timestamps, was defined in [16] as:

DSTj,i,STk,i(t) =
√
at2 + bt+ c (3)

where a, b, c are the factors of this trinomial (a ≥ 0). As
proved in [17], the integral can be computed on O(1) and can
be efficiently computed with Trapezoid Rule, [17] provided
also bounds for the approximation error:

distλ(STj,i, STk,i) ≈

1
2

n−1∑
r=1

[DSTj,i,STk,i(tr)] ∗ (tr+1 − tr)

δt

+

1
2

n−1∑
r=1

[DSTj,i,STk,i(tr+1)] ∗ (tr+1 − tr)

δt
(4)

Definition 3: (Direction Distance) The distance between
two moving objects sub-trajectory STj,i, STk,i at direction
level, during a time window i = [t, t+δt] is based on the angle
between the sub-trajectories line segments. As we consider the
time discretized, the direction distance is computed by the sum
of a function Dθ between two line segments of STj,i and STk,i
on the same time interval:

distθ(STj,i, STk,i) ≈

n−1∑
r=1

Dθ[(STj,i(tr), STj,i(tr+1)),

δt
(STk,i(tr), STk,i(tr+1))]

δt
(5)

where (STj,i(tr), STj,i(tr+1)) and
(STk,i(tr), STk,i(tr+1)) are line segments of the sub-
trajectories STj,i and STk,i, respectively, and tr is, as
above, a timestamp when an update holds. We defined
Dθ based on [10] and it expresses the maximum distance
that a moving object of line segment minimum length will
cover during rotation. Let Lj = (STj,i(tr), STj,i(tr+1)) and
Lk = (STk,i(tr), STk,i(tr+1)), and e = min(|Lj | , |Lk|).

Dθ(Lj , Lk) =

{
e ∗ sin(θ), if 0 ◦ ≤ θ < 90 ◦.

e, 90 ◦ ≤ θ ≤ 180 ◦.
(6)

The angle θ is calculated using vector operations. Let ~ab
denote a vector constructed by two points a and b. As Lj
and Lk are line segments and composed by two points, we
discover θ as follows:

cos(θ) =
~Lj ~Lk

‖ ~Lj‖‖ ~Lk‖
(7)

We finally define the distance measure between two moving
objects sub-trajectories STj,i and STk,i. The weights ωθ and
ωλ are determined depending on the application. We set these
weights equally to 0,5 as default.

distance(STj,i, STk,i) = ωθ ∗ distθ(STj,i, STk,i)
+ ωλ ∗ distλ(STj,i, STk,i) (8)

B. Choosing a Representative Trajectory

From a group of moving object sub-trajectories, the repre-
sentative trajectory tries to describe the overall movement.

Definition 4: (Representative Trajectory)
Consider a set of moving object sub-trajectories
Si = {(o1, ST1,i), (o2, ST2,i), .., (om, STm,i)} at the
time window i. Let ρ be a representativeness threshold, σ be
a standard deviation (sometimes called the Gaussian width),
ε be a given distance threshold and τ be a size/density
minimum threshold. Then, (oj , STj,i) is a representative
trajectory of Si if and only if:
• ∀(ok, STk,i) ∈ Si, voting(STj,i, STk,i) =

e−
distance2(STj,i,STk,i)

2σ2 > ρ
• Nε(oj) = {(ok, STk,i) ∈ Si|distance(STj,i, STk,i) ≤
ε}, then |Nε(oj)| ≥ τ

Our “voting” function is based on [18] which uses the Gaus-
sian function to quantify the representativeness of trajectory
line segments. In this work, it quantifies the representative-
ness of a sub-trajectory for a group of moving object sub-
trajectories. In order to be representative, the “voting” of a
sub-trajectory should be significant (greater than ρ thresh-
old). One idea to choose ρ is to establish the maximum
distance “allowed” from one moving object sub-trajectory to
its representative. Moreover, in CUTiS we also choose the
representative trajectory based on its density property (dense
neighborhood).

The intuition behind the relationship of “distance” and
“voting” function is: If “distance” is close to zero, the “voting”
is close to its maximum value. This means that if STj,i is very
close (in time, space and direction, for example) to STk,i, then
(oj , STj,i) is a candidate to be the representative of STj,i.
Otherwise, if the “distance” is high, the “voting” function is
close to its minimum value, meaning that STj,i is very far
way from STk,i, so STk,i can be not represented by STj,i.

We do not use centroid (as in the related works [19], [20])
instead of representative trajectory, because we handle sub-
trajectory data. It is not trivial to estimate the centroid sub-
trajectory (according to space, time and direction similarity),
moreover we may have different sampling rates for each sub-
trajectory during a time window.

C. Micro-group Definition and Maintenance

The following section presents a new structure called micro-
group, based on the concept of representative trajectory.

Definition 5: (Micro-Group) Let Si =
{(o1, ST1,i), (o2, ST2,i), ..., (om, STm,i)} be a set of moving
object sub-trajectory at time window i, let Oi be the set
of moving objects in Si, ε be a distance threshold, τ be a
size/density minimum threshold, ρ be a representativeness
threshold, a micro-group g is defined as a set of objects
satisfying:

1) g ⊆ Oi
2) ∃oj ∈ g, such that Rtrajg = (oj , STj,i) is a representa-

tive trajectory of g w.r.t. ε, τ and ρ.

Consider Rtrajg = (oj , STj,i), we use object[Rtrajg]=oj and
traj[Rtrajg]=STj,i. To create a micro-group, the representative
trajectory is randomly chosen among the core objects (as
defined in DBSCAN). Then, the micro-group is derived as the
objects that vote for the chosen representative as we show on
the Algorithm 1. The initialization cost is O(n2) time for n
moving objects. However this step only needs to be carried
out once and each micro-group is dynamically maintained
along the stream for each time window according to the
Algorithm 2. Furthermore, the cost O(n2) cannot be reduced,
since moving objects are always changing their positions in
time and maintain spatial index (such as 3D R-tree) at each
time window may incur high cost.

The Algorithm 1 randomly picks an unvisited moving object
sub-trajectory (oj , STj,i) and checks if it can be a representa-
tive trajectory. If it has a density neighborhood (according to
ε radius and τ threshold (Lines 6-7)), a new micro-group “g”
is created with oj and its neighbors that can be represented by
(oj , STj,i) (Lines 7-12). Otherwise, oj is marked as ungrouped
(Lines 23-24), because it can to be represented by one another
representative and then belong to an existing micro-group.
Or it can be an outlier (Lines 26-27). On Lines 15-19, the
Algorithm tries to expand the micro-group g, inserting moving
objects which are not visited yet, and can be represented
by (oj , STj,i). On Line 21, (oj , STj,i) is finally defined as
representative trajectory of micro-group g. The Algorithm 1
outputs a set of micro-groups (Line 28) from a moving object
sub-trajectory set.

Since CUTiS deals with data stream, the most important
contribution is the maintenance phase. The intuition behind is:
(i) to check for each micro-group whether the representative is
still valid in the next time window (it survives), otherwise, the
micro-group disappears or splits, (ii) to track moving object
sub-trajectories that are likely to join the micro-group (e.g.,
outliers, new objects, and other micro-group objects migrating
to another micro-group), (iii) for the remaining objects, a
similar process to the initialization allows creating new micro-
groups. Since the Algorithm 1 is not deterministic, the interest
of maintenance is two folds: (i) by running from scratch
the initialization algorithm leads to totally different micro-
groups, (ii) and does not allow to track the evolution of
micro-groups. CUTiS captures the evolution patterns in the
maintenance phase, which provides insights about the nature
of cluster/group changes [21].

The Algorithm 2 maintains a micro-group given as input,
let gi−1 be it. The Algorithm 2 receives the set of moving
objects that should be deleted (goldi) from gi−1 and the set of
moving objects that update their sub-trajectories (gupdi). We
consider that gi−1 ⊆ goldi ∪ g

upd
i and goldi ∪ g

upd
i ⊆ gi−1, i.e.

the moving object that is not removed from gi−1, so it updates
its sub-trajectory. For the new moving objects, the Algorithm 3
tries to find an existing micro-group to add them. In this way,

Algorithm 1: Initialize micro-group
Input: Si moving object sub-trajectory set for the time

interval i = [t, t+ δt], ε distance thresholds, τ the
size threshold, ρ representativeness threshold

Output: Gi: a set of micro-group
1 begin
2 Gi ← empty;
3 mark all the sub-trajectories in Si as unvisited;
4 while ∃(oj , STj,i) ∈ Si unvisited do
5 mark (oj , STj,i) as visited;
6 get Nε(oj);
7 if |Nε(oj)| -1 ≥ τ then
8 for ok ∈ Nε(oj) not visited do
9 vote← voting(STj,i, STk,i);

10 if vote > ρ then
11 g ← g ∪ {ok};
12 mark (ok, STk,i) as visited;

13

14

15 for (ok, STk,i) not visited do
16 vote← voting(STj,i, STk,i);
17 if vote > ρ then
18 g ← g ∪ {ok};
19 mark (ok, STk,i) as visited;

20

21 Rtrajg ← (oj , STj,i);
22 Gi ← Gi ∪ {g};
23 else
24 mark STj,i as ungrouped;

25

26 for STj,i ungrouped do
27 mark oj as outlier;

28 return Gi;

we can see that CUTiS is suitable for data stream, because it
handles insertions, deletions and consider that the remaining
moving objects update their sub-trajectories, unlike [4], [19],
[20], [22], among others.

The Lines 2-3 in the Algorithm 2, gi−1 is updated and
relabels to gi. At this point, as the micro-group data changes,
it is necessary to check if (oj , STj,i) = Rtrajgi continuous
to be the representative trajectory of gi. In the Line 6, the
variable size stores the number of oj’s neighbors (ε radius)
and the algorithm checks the neighbors vote (Line 7). If
(oj , STj,i) continuous to be the representative of gi, w.r.t. τ, ε
and ρ, then gi survives (Lines 8-9). The algorithm checks for
each moving object ok ∈ gi, if it can still be represented
by (oj , STj,i) (Lines 10-13) or it might migrated to another
micro-group (Lines 14-19). In this last case, ok is deleted
from gi and migrated to another micro-group(Lines 14-17),
otherwise it becomes an outlier (Lines 18-19). If gi changes

Algorithm 2: Incremental Maintenance of a micro-group
Input: gi−1: micro-group, ε distance thresholds, τ the

size threshold, ρ representativeness threshold,
{goldi , gupdi } are sets of moving objects to be
deleted,updated from gi−1 to gi

Output: updated micro-group gi
1 begin
2 ∀oj ∈ gupdi : updates its sub-trajectory in gi−1
3 gi ← gi−1 − goldi
4 Let (oj , STj,i) = Rtrajgi ;
5 get Nε(oj);
6 size← |Nε(oj)| ;
7 if size ≥ τ and ∀ok ∈ Nε(oj)

voting(STj,i, STk,i) > ρ then
8 gi survives;
9 (oj , STj,i) continues to be the representative

trajectory for gi;
10 foreach ok ∈ {gi \Nε(oj)} do
11 vote← voting(STj,i, STk,i);
12 if vote > ρ then
13 ok continuous to belong to gi
14 else
15 Delete ok from gi;
16 if ∃gz ∈ Gi,

voting(traj[Rtrajgz], STk,i) > ρ then
17 Insert ok into gz;

18 else
19 ok is an outlier;

20

21 else
22 if |gi| ≥ τ then
23 gi splits;
24 Sgi ← set of gi moving objects sub-trajectory;
25 initializeMicroGroup(Sgi , ε, τ, ρ);

26 else
27 gi disappears
28 ∀ok ∈ gi, ok is an outlier;

29 return gi

its representative trajectory, it means that the micro-group’s
behavior changes, then gi splits or disappears from the system.
In the case that it splits, it is necessary to rebuild gi into
one or more micro-group(s) using gi data (Lines 21-25).
However, if gi is not density enough to generate micro-
group(s), its moving objects become outliers (Lines 27-28)
and gi disappears. We only merge two or more micro-group
when they can form a cluster, since by merging micro-groups
might not result in another micro-group (imagine when there
is no trajectory to represent all merging micro-groups objects).
Let m be the number of micro-groups at time window i

and nu be the number of moving objects which update their
sub-trajectories. The maintenance cost w.r.t. Algorithm 2 is
O(m ∗ nu), “headed” by the cost in the Lines 10-20. As
Algorithm 2 is called for each micro-group, finally the total
cost is O(m2 ∗ nu). As the number of micro-groups is much
smaller than the number of moving objects, the incremental
maintenance is still more attractive than initialize micro-groups
from scratch.

The Algorithm 3 tries to find for each new moving object,
a micro-group gi (Line 3), such that its representative trajec-
tory can represent the new moving object sub-trajectory. Let
(ok, STk,i) be a new one, if voting(traj[Rtrajgi], STk,i) > ρ
(Line 4), then ok can be inserted into gi (Line 6). The
remaining objects that cannot be assigned to any existing
micro-group might create new ones (Line 9), including the
Outliers set. The cost analysis did for Algorithm 1 can be
applied to Algorithm 3, by taking into account the number of
new moving objects and outliers at time window i.

A micro-group can disappear or split because of moving
object(s) deletion(s) or update(s), however by inserting new
moving object(s) the micro-group may survive. We leave thus
issue for future work.

Algorithm 3: Insert new moving objects
Input: Gi: the set of micro-groups, ρ the

representativeness threshold, Inewi : a set of new
moving objects sub-trajectories from the time
window i

1 begin
2 foreach {ok, STk,i} ∈ Inewi do
3 foreach gi ∈ Gi do
4 vote← voting(traj[Rtrajgi], STk,i);
5 if vote > ρ then
6 gi ← gi ∪ {ok};
7 Remove (ok, STk,i) from Inewi ;
8 break;

9 initializeMicroGroup(Inewi ∪Outliers, ε, τ, ρ);

D. Density-based Sub-trajectory Clustering

Some existing clustering algorithms have to check the
density connectivity for each object which makes the approach
computational costly. CUTiS avoids computing all the moving
objects density connections, and uses the representative trajec-
tory in the clustering process, since it tries to better describe
the behavior of a micro-group. Fortunately, each micro-group
is density based, it is suitable to find sub-trajectory density
based clusters by merging two or more micro-groups into one
cluster. In this way, we propose a clustering algorithm which
is a variant of DBSCAN based on two parameters ε and τ . It
has two phases which are described below and presented on
the Algorithm 4.

Choose the merge candidates to form a cluster. This
first phase aims to find the micro-groups candidates to be

merged into a cluster. Imagine that each micro-group gi has
a coverage area on the format of circular shape. This area is
derived from gi radius which is the distance value between gi
representative trajectory and the farthest moving object’s sub-
trajectory in gi. Two micro-groups are candidates to merge
into a density based cluster, if they intersect or are tangent
to each other w.r.t. their circular area. Let gi and gk be
micro-groups and rgi and rgk their respectively radius. If
distance(traj[Rtrajgi], traj[Rtrajgk

]) ≤ rgi + rgk is satisfied,
then gi and gk are merge candidates.

Algorithm 4: Sub-trajectory Clustering
Input: Gi: the set of micro-groups, ε distance threshold,

τ the size threshold
Output: C: is a set of clusters

1 begin
2 while Gi 6= ∅ do
3 randomly pick a micro-group gi from Gi;
4 Initialize cluster c← gi, add c to C;
5 remove gi from Gi;
6 foreach gi unvisited in c do
7 mark gi as visited;
8 foreach gk ∈MergeCandidates(gi, ε, Gi)

do
9 foreach oi ∈ gi, ok ∈ gk do

10 if distance(oi, ok) ≤ ε then
11 ni ← |Neps(oi)|;
12 nk ← |Neps(ok)|;
13 if ni ≥ τ and nk ≥ τ then
14 c← c ∪ gk;
15 remove gk from Gi;
16 break;

17 return C;

Density Based Clustering. In the second phase, CUTiS
finally finds the clusters using the merge candidates. By
pruning the merge candidates, CUTiS saves computation and
the final clustering result is approximated to the one which is
produced by applying the original DBSCAN w.r.t. ε and τ as
presented in the experiments section. The following definitions
address the concept of density connectivity in this work.

Definition 6: (Direct Density Reachable) Let Gi be the set
of micro-groups at time window i. A micro-group gi ∈ Gi is
directly density reachable from a micro-group gk ∈ Gi w.r.t. ε
and τ , if ∃oi ∈ gi, ok ∈ gk, such that the distance(oi, ok) ≤ ε,
|Nε(oi)| ≥ τ (Nε(oi) = {o′i ∈ Gi|distance(oi, o′i) ≤ ε}) and
|Nε(ok)| ≥ τ (Nε(ok) = {o′k ∈ Gi|distance(ok, o′k) ≤ ε}).

Definition 7: (Density Reachable) A micro-group gi is
density reachable from gk w.r.t. ε and τ , if there is a chain of
micro-groups {gs1 , ..., gsn}, where gs1 = gi, gsn = gk such
that gsj+1

is directly density reachable from gsj .
Definition 8: (Density Connected) A micro-group gi is

density connected to gk w.r.t. ε and τ , if there is a micro-

Figure 1: Analysis of Taxi data set from Fortaleza: (a) Total
Running Time for 5 time windows, (b) Recall and (c) Precision
for clusters detection.

group gj such that gi and gk are density reachable from gj
w.r.t. ε and τ .

The Algorithm 4 firstly picks a micro-group and initialized
it as a new cluster (Lines 4-5). For each micro-group gi in a
cluster, the algorithm checks its candidates to merge (Line 8),
some micro-groups are filtered out. For each micro-group gk
candidate to merge with gi, the algorithm checks if they are
direct density reachable (Lines 9-13). If they are, the algorithm
merges them into the same cluster(Lines 14-15). The algorithm
outputs the density connected clusters when all micro-groups
belonged to any cluster (Line 17).

IV. EXPERIMENTS

To the best of our knowledge, there is no other incremental
trajectory clustering algorithm for trajectory data stream. How-
ever, for validation purpose, we employ as a baseline some
methods of the state of the art: TraClus [10] and DBSCAN,
with the following changes: (i) at each time window we run
DBSCAN and TraClus given as input only the sub-trajectories
of the current time window, and not the complete trajectory;
(ii) we also adapted TraClus and DBSCAN to use our distance
function, in order to take into account the distance in time,
space and direction. We avoid to compare with [1] because to
apply incremental clustering for each moving object trajectory
at each time window is expensive [5].

Evaluation Metrics. The DBSCAN’s results are used as
the ground truth to test the effectiveness (recall and precision)
because (i) DBSCAN has been regarded as the most represen-
tative density-based clustering algorithm and (ii) both TraClus

and CUTiS share many characteristics with the algorithm
DBSCAN. The effectiveness is measured according to the
found clusters and outliers detection. In our case, the recall
measure for outliers detection is the proportion of correctly
classified as outliers (true positives) over DBSCAN’s outliers
(true positives+false negatives). And the precision measure is
the proportion of correctly classified as outliers (true positives)
by CUTiS over all the objects classified as outliers (true pos-
itives+false positives) by CUTiS. Let Outdbscani and Outmgi
be the a set of moving object outliers found by DBSCAN and
by CUTiS on the time window i, respectively. The recall and
precision for outliers detection are measured as follows:

1) Recalloutlier =
|Outdbscani ∩Outmgi |
|Outdbscani |

2) Precisionoutlier =
|Outdbscani ∩Outmgi |

|Outmgi |
The recall and precision were also measured for the found

clusters. At first, we matched each cluster Cmgi found by
CUTiS with only one DBSCAN cluster Cdbscani . On the
matching process, we applied Jaccard Similarity to compare
the clusters based on their moving objects labeled as core
(since the set of core moving objects is a deterministic result
in DBSCAN). In this way, the cluster Cmgi matches with
one DBSCAN cluster (for example, Cdbscani) that presents
maximum Jaccard similarity value. The recall and precision
are applied for each matched pair to measure the quality of
clusters result. The recall for {Cmgi , Cdbscani } is the proportion
of correctly core moving objects classified by CUTiS in Cmgi
(true positives) over the core moving objects classified by
DBSCAN in Cdbscani (true positives+false negatives). The
precision measure for {Cmgi , Cdbscani } is the proportion of
correctly classified as core moving objects by CUTiS in Cmgi
(true positives) over all the core moving objects classified in
Cmgi by CUTiS (true positives+false positives). If two or more
clusters of CUTiS match with the same DBSCAN cluster, we
gather them in the same matching. In this paper, we reported
the average recall and precision for all the matched clusters.
Let Coredbscani and Coremgi be the set of core moving objects
in Cdbscani and Cmgi clusters, respectively.

1) Recall{C
mg
i , Cdbscani } = |Core

dbscan
i ∩Coremgi |
|Coredbscani |

2) Precision{C
mg
i , Cdbscani } = |Core

dbscan
i ∩Coremgi |
|Coremgi |

Meanwhile, we also measured the efficiency of CUTiS
against our competitors. We implemented CUTiS and the
baselines in Java, and tested them by using real data sets.
The clustering parameters eps = ε and minPoints = τ are
the same for CUTiS, DBSCAN and TraClus implementation.
We set these parameters according to different data sets. In all
experiments, we studied the influence of micro-group radius
(and also the representativeness threshold ρ, they are related).
The micro-group radius is varied according to the values eps,
2eps and 3eps.

A. Experiments Results for Taxi Data Set from Fortaleza

This data set is computed from GPS recorded data of a taxi
fleet in Fortaleza city, Brazil. It has around 400 trajectories

of taxis. The taxi fleet belongs to a private transportation
company that tags and tracks its vehicles as they move around,
and aims to support drivers’ decisions related to displacement
through the city in (quasi) real time (i.e., movement behaviors
through the city that can be found by trajectory clusters
analysis). In the Figure 1, we evaluated the efficiency and ef-
fectiveness to cluster sub-trajectories using CUTiS, DBSCAN
and TraClus algorithm. We set the time window size as 5 (five)
minutes and the clusters are tracked for 5 (five) sequential time
windows.

Note that CUTiS outperforms DBSCAN algorithm for all
tested values of micro-group radius. When (i) micro-group
radius=eps, CUTiS is from 20% a 54% faster than DBSCAN,
for (ii) radius=2eps, it is from 70% to 90% faster and for (iii)
radius=3eps, it is from 88% to 92% faster than DBSCAN.
When micro-group radius increases, CUTiS also outperforms
TraClus, because in this case there are less micro-group to
be maintained. Even if TraClus outperformed CUTiS when
radius=eps, the obtained clusters do not match with those of
DBSCAN (our ground truth). The quality of our clusters is
higher than TraClus as presented in the Figures 1(b) and 1(c).
We omitted the effectiveness analysis for outliers detection due
to the lack of space. In the next section, we will discuss in
detail the experiments on a much larger number of moving
objects, for better illustration of the advantages of CUTiS.

B. Experiments Results for Taxi Data Set from Beijing

This data set contains a real world GPS recorded data from
taxis of Beijing [23]. We have used a trajectory subset of this
data set containing around 7,000 trajectories referring to taxi
travels around Beijing city. In the experiments, we set the time
window size as 10 (ten) minutes and the clusters are tracked
for 5 (five) sequential time windows.

Effectiveness Analysis of the Clustering approach. The
effectiveness analysis is measured by applying the precision
and recall metrics introduced above, and compares the shapes
of the clusters in DBSCAN, TraClus and CUTiS where the
clustering is computed by merging micro-groups. We expected
that our method finds more clusters than DBSCAN, given
the fact that the merge of two or more micro-groups only
compares their representatives trajectories (this allows us to
save the cost of pairwise sub-trajectory distance computation
in DBSCAN). So each DBSCAN cluster is expected to match
with many clusters from CUTiS. Actually, in our experiments,
CUTiS found the same clusters as DBSCAN when the micro-
group radius=eps and micro-group radius=2eps (except very
few differences).The Figure 2 compares the shapes of the
clusters in DBSCAN, TraClus and CUTiS. The Figure con-
centrates in only two time windows and each color (blue, red,
purple, green and black) represents one DBSCAN cluster. We
obtain the best matches with DBSCAN, in both time windows,
especially with radius=eps.

The differences are greater when micro-groups have
radius=3eps. In the third time window, CUTiS included the
clusters represented by green and red colors into the same
cluster (represented by blue color). This means that a cluster

Figure 2: Comparison between clusters shapes of DBSCAN,
TraClus and CUTiS (varying the micro-group radius) for 2
time windows using Taxi data set from Beijing

found by CUTiS contains core objects from three different
DBSCAN clusters. This happens because these core objects
can be represented by their micro-group representative tra-
jectory, however the core objects are not density reachable
objects (according to DBSCAN definition) to be in the same
cluster. TraClus did not produce similar clusters to DBSCAN
for both time windows, the clusters represented by red, green
and black colors were not found. Furthermore, there are many
moving objects in DBSCAN clusters that were not clustered by
TraClus. The main reason for the difference between TraClus
and DBSCAN results is the preprocessing phase in TraClus
which partitions the trajectories which modifies the similarity
since it is applied per partition instead of the whole sub-
trajectories.

As expected, CUTiS presents higher precision and recall
for cluster detection when the micro-group radius=eps and
micro-group radius=2eps (Figure 3), since the clusters pro-
duced by CUTiS, in these cases, have similar shapes to
DBSCAN clusters. Unlike when the micro-group radius=3eps
and for TraClus approach (as we previously discussed). In
the Figure 2, we highlighted with brown color the misclas-
sified outliers by CUTiS. When micro-group radius becomes
larger, it means that the representativeness threshold is higher,
then some outlier sub-trajectories have enough votes to be

Figure 3: Effectiveness Analysis: (a) Recall and (b) Precision
for detecting clusters using Taxi data set from Beijing

Figure 4: Effectiveness Analysis: (a) Recall and (b) Precision
for detecting outliers using Taxi data set from Beijing

reached by one micro-group representative trajectory. This
holds for radius=2eps and micro-group radius=3eps. In this
case, CUTiS may misclassify outliers, and the recall for
outliers detection decreases (Figure 4(a)). As expected, when
the micro-group radius=eps, CUTiS does not misclassify out-
liers (since each micro-group only contains the representative
trajectory which is a core object according to DBSCAN
definition, and its directly density reachable sub-trajectories).
However, there are some false positive outliers as well as in
TraClus result. This affects the precision measure showed in
the Figure 4(b). So when micro-group radius increases, CUTiS
may misclassify outliers but also brings down the number of
false positive outliers. This means the recall decreases and
the precision increases for outliers detection. This trade-off
between precision and recall in outlier detection depends on
the application needs. However we believe that CUTiS is quite
satisfactory for both measures since it does not present very
low values.

Figure 5: Efficiency Analysis: (a) Total Running Time for
5 time windows using Taxi data set from Beijing and (b)
Running Time of Micro-group maintenance and clustering

Efficiency Analysis of the Clustering approaches. Data
stream applications impose a limited memory constrained, it
becomes difficult to provide arbitrary-shaped clustering results
using conventional algorithms as DBSCAN. It is unrealistic
to provide such a precise result. In the original DBSCAN, the
system has to check the density connectivity for each moving
object sub-trajectory which makes the approach computational
costly (showed in Figure 5(a)). To discover density based
clusters from trajectory data stream, CUTiS has two steps
namely the creation and maintenance step (Mstep, Algorithms
1, 2 and 3), and clustering step (Cstep, Algorithm 4). In the
Figure 5(b), the clustering step dominates the total cost in
most of the time windows. Since to merge micro-groups into
a cluster, we need to detect if they are density connected which
is expensive (in the worst case, it is necessary to compare all
pairwise moving objects that belong to these micro-groups).
However, the micro-group structure can save computation in
the maintenance processing avoid accessing all data set objects
in details. Our results present more gain in efficiency than
DBSCAN when micro-group radius increases (it maintains
less representative trajectories, i.e. less number of micro-
groups). As we mentioned before, TraClus approximated in
the experiments most of the time the sub-trajectory to only one
segment. In this case, the distance computation is less costly
than consider each sub-trajectory with many segments as
CUTiS did. This is the main reason why TraClus is much faster
to do clustering. However, it only essentially outperformed
CUTiS when micro-group radius=eps.

In general, our results present a trade-off between quality
and performance, it is influenced by the micro-group radius
value. Generally speaking, when the radius has low value,
i.e. the micro-groups size decreases, it leads to maintain too
many representatives (low performance) but our clustering
algorithm produces similar result to DBSCAN (high quality).

Figure 6: Micro-group evolution pattern for (a) radius=eps and
(b) radius=3eps on the 5 tracked time windows using Taxi data
from Beijing

By increasing the micro-group radius, CUTiS presents high
performance but it may lead to misclassify outliers (low
quality).

Micro-group Evolution Pattern. CUTiS captures the
micro-group evolution. The Figure 6 reports the percentage of
micro-groups that evolve according to each pattern for all the
tracking time windows. One can clearly see that the proportion
of unchanged micro-groups (micro-groups that survive) is
greater when micro-group radius is lower. The intuition is
when the radius is lower, there are more micro-groups, and
consequently it is necessary to choose more representatives.
The probability to randomly choose good ones is greater
than when micro-group radius increases (less representatives
trajectories are chosen). A micro-group splits when its repre-
sentative trajectory does not have enough votes to remain the
representative in the current time window. There is less micro-
groups that split when radius=eps (CUTiS got more “good”
ones representatives) than when micro-group radius=3eps.

Hence we suggest that in real applications, the user should
set higher micro-group radius to achieve higher performance
to cluster sub-trajectories. However, if the priority is to have
quality in the results (considering DBSCAN as the ground
truth), we suggest to set lower value for micro-group radius
in order to filter out outliers, and to guarantee the algorithm’s
sensitivity.

V. RELATED WORK

In this section, we review existing works in the domains
related to ours. In our setting, tracking the object movements
and incrementally maintaining the sub-trajectory density clus-
ters from trajectory data stream is a relevant problem that was
not addressed before.

Trajectory Clustering There are some works related to
clustering trajectory data [6], [7], [8] however the major
problem is those approaches tend to generate clusters for

the entire trajectory data set, instead of the most recent time
window. Hence the fine-grained spatio-temporal relationships
between moving objects are lost. The papers [10], [11], [12]
cluster sub-trajectory data, but [10] focused on spatial criteria
and ignored the time dimension. And [11], [12] only con-
sider road network constrained movement. Also they are not
suitable for incremental data since clusters are re-calculated
from scratch every time. The work [22] proposes efficient
algorithms for maintaining and updating the clusters when
new trajectories are received. However it does not consider the
temporal aspects of the trajectories. As such, moving objects
whose trajectories are in the same cluster may not actually
stay together temporally. The online discovery of specific
trajectory patterns so-called “gatherings” has been tackled in
[24]. However, their focus was rather on moving objects that
share a stable and durable dense area.

Moving Objects Clustering The approaches proposed on
[3], [4], [5], [25], [26] cluster moving object based on object
spatial position at each timestamp and some of them incremen-
tally maintain the clusters as time goes by. Some of them also
consider that the objects move in a linear function model([3],
[5], [25]) and predict when a moving object will leave or
join a cluster. Instead of predict, CUTiS can observe the real
displacement behavior of objects. Furthermore, [3], [25] do not
apply density-based clustering, and [4] just consider update on
moving object position as time goes by (no insertion and no
deletion of moving objects).

Movement Pattern Discovery A very related topic to this
study is to discover collective patterns among moving objects
as flock, swarm, convoy, herds, gathering, among others [21].
The published approaches to find these patterns are very
sensitive to specific parameters. Hence, these methods cannot
be directly applicable for our problem since they do not report
sub-trajectory clusters and their evolution. We believe that
CUTiS enable to find some mobility patterns. For instance,
flocks could be derived from micro-groups by a light post-
processing since it is a subset of the later. The convoys are
also similar to the density based clusters generated by our
clustering algorithm. The representative trajectory is close
notion to leadership.

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider the problem of discover and
maintain sub-trajectory clusters at each time window, since
each moving object updates its sub-trajectory from time to
time, new moving objects appear and others disappear from
the system. As each moving object evolves in time, also cluster
evolves. We have presented an approach to track moving ob-
jects and incrementally maintain sub-trajectory clusters using
trajectory data streams. CUTiS also captures the sub-trajectory
cluster’s evolution from time to time. Our experiments were
conducted on real data sets, and it shows the efficiency and
effectiveness of CUTiS compared to our competitors. In the
future, we are going to extend our method to find others
mobility patterns.

Acknowledgement. Research supported by CNPq in Brazil
and performed while the first author was visiting David
Laboratory in UVSQ, France.

REFERENCES

[1] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Michael Wimmer, and
Xiaowei Xu. Incremental clustering for mining in a data warehousing
environment. In VLDB, volume 98, pages 323–333, 1998.

[2] Yifan Li, Jiawei Han, and Jiong Yang. Clustering moving objects. In
SIGKDD, pages 617–622, 2004.

[3] Christian S. Jensen, D. Lin, and Beng-Chin Ooi. Continuous clustering
of moving objects. IEEE TKDE, 19, 2007.

[4] Lu-An Tang, Yu Zheng, Jing Yuan, Jiawei Han, Alice Leung, Chih-Chieh
Hung, and Wen-Chih Peng. On discovery of traveling companions from
streaming trajectories. In ICDE, pages 186–197, 2012.

[5] Xiaohui Li, Vaida Ceikute, Christian S Jensen, and Kian-Lee Tan. Ef-
fective online group discovery in trajectory databases. TKDE, 25:2752–
2766, 2013.

[6] Mirco Nanni and Dino Pedreschi. Time-focused clustering of trajectories
of moving objects. JIIS, 27:267–289, 2006.

[7] Nikos Pelekis, Ioannis Kopanakis, Evangelos E Kotsifakos, Elias Frent-
zos, and Yannis Theodoridis. Clustering uncertain trajectories. KAIS,
28:117–147, 2011.

[8] Michail Vlachos, George Kollios, and Dimitrios Gunopulos. Discovering
similar multidimensional trajectories. In ICDE, pages 673–684, 2002.

[9] Jae-Gil Lee, Jiawei Han, Xiaolei Li, and Hector Gonzalez. Traclass:
trajectory classification using hierarchical region-based and trajectory-
based clustering. VLDB, 1:1081–1094, 2008.

[10] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering:
a partition-and-group framework. In SIGMOD, pages 593–604, 2007.

[11] Xiaolei Li, Jiawei Han, Jae-Gil Lee, and Hector Gonzalez. Traffic
density-based discovery of hot routes in road networks. In SSTD, pages
441–459. 2007.

[12] Binh Han, Ling Liu, and Edward Omiecinski. Neat: Road network aware
trajectory clustering. In ICDCS, pages 142–151, 2012.

[13] Ahmed Kharrat, Iulian Sandu Popa, Karine Zeitouni, and Sami Faiz.
Clustering algorithm for network constraint trajectories. In Headway in
Spatial Data Handling, pages 631–647. Springer, 2008.

[14] Martin Ester, Hans-Peter Kriegel, Jörg S, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with
noise. In KDD, volume 96, pages 226–231, 1996.

[15] Ticiana Coelho da Silva, Karine Zeitouni, José A F de Macêdo, and
Marco A Casanova. On-line mobility pattern discovering using trajectory
data. In EDBT, pages 682–683, 2016.

[16] Elias Frentzos, Kostas Gratsias, Nikos Pelekis, and Yannis Theodoridis.
Algorithms for nearest neighbor search on moving object trajectories.
Geoinformatica, 11:159–193, 2007.

[17] Elias Frentzos, Kostas Gratsias, and Yannis Theodoridis. Index-based
most similar trajectory search. In ICDE, pages 816–825, 2007.

[18] Costas Panagiotakis, Nikos Pelekis, Ioannis Kopanakis, Emmanuel Ra-
masso, and Yannis Theodoridis. Segmentation and sampling of moving
object trajectories based on representativeness. TKDE, pages 1328–1343,
2012.

[19] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. Density-based
clustering over an evolving data stream with noise. In SDM, volume 6,
pages 328–339, 2006.

[20] Yixin Chen and Li Tu. Density-based clustering for real-time stream
data. In SIGKDD, pages 133–142, 2007.

[21] Yu Zheng. Trajectory data mining: an overview. TIST, page 29, 2015.
[22] Zhenhui Li, Jae-Gil Lee, Xiaolei Li, and Jiawei Han. Incremental

clustering for trajectories. In DASFAA, pages 32–46, 2010.
[23] Yu Zheng. T-drive trajectory data sample. August 2011.
[24] Kai Zheng, Yu Zheng, Nicholas Jing Yuan, and Shuo Shang. On

discovery of gathering patterns from trajectories. In ICDE, pages 242–
253, 2013.

[25] Yifan Li, Jiawei Han, and Jiong Yang. Clustering moving objects. In
SIGKDD, pages 617–622, 2004.

[26] Ticiana Coelho da Silva, José de Macêdo, and Marco A Casanova.
Discovering frequent mobility patterns on moving object data. In
SIGSPATIAL on MobiGIS, pages 60–67, 2014.

