N

N

Effective Density Queries for Moving Objects in Road
Networks
Caifeng Lai, Ling Wang, Jidong Chen, Xiaofeng Meng, Karine Zeitouni

» To cite this version:

Caifeng Lai, Ling Wang, Jidong Chen, Xiaofeng Meng, Karine Zeitouni. Effective Density Queries
for Moving Objects in Road Networks. APWeb WAIM 2007 Asia-Pacific Web Conference Interna-
tional Conference on Web-Age Information Management, Jun 2007, Huang Shan, China. pp.200-211,
10.1007/978-3-540-72524-4_ 23 . hal-04371614

HAL Id: hal-04371614
https://hal.univ-lille.fr /hal-04371614

Submitted on 3 Jan 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

https://hal.univ-lille.fr/hal-04371614
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

Effective Density Queries for Moving Objects in
Road Networks*

Caifeng Lai'2, Ling Wang!-2, Jidong Chen'?, Xiaofeng Meng!?, and
Karine Zeitouni?

1 School of Information, Renmin University of China
2 Key Laboratory of Data Engineering and Knowledge Engineering, MOE
{laicf,jingyiwang,chenjd,xfmeng}@ruc.edu.cn
3 PRISM, Versailles Saint-Quentin University, France
karine.zeitouni@prism.uvsq.fr

Abstract. Recent research has focused on density queries for moving
objects in highly dynamic scenarios. An area is dense if the number of
moving objects it contains is above some threshold. Monitoring dense ar-
eas has applications in traffic control systems, bandwidth management,
collision probability evaluation, etc. All existing methods, however, as-
sume the objects moving in the Euclidean space. In this paper, we study
the density queries in road networks, where density computation is de-
termined by the length of the road segment and the number of objects
on it. We define an effective road-network density query guaranteeing to
obtain useful answers. We then propose the cluster-based algorithm for
the efficient computation of density queries for objects moving in road
networks. Extensive experimental results show that our methods achieve
high efficiency and accuracy for finding the dense areas in road networks.

1 Introduction

The advances in mobile communication and database technology have enabled
innovative mobile applications monitoring moving objects. In some applications,
the object movement is constrained by an underlying spatial network, e.g., ve-
hicles move on road networks and trains on railway networks. In this scenario,
objects can not move freely in space, and their positions must satisfy the network
constrains. A network is usually modeled by a graph representation, comprising
a set of nodes (intersections) and a set of edges (segments). Depending on the
application, the graph may be directed, i.e. each edge has an orientation. Addi-
tionally, moving objects are assumed to move in a piecewise linear manner [6],
i.e., each object moves at a stable velocity at each edge. The distance between
two arbitrary objects is defined as the network distance between them on the
network. Several types of queries have been studied in the road network, such
as kNN queries [7], range queries [9], aggregate nearest neighbor queries [11],
reverse nearest neighbor queries [12].

In this paper, we focus on the problem of dynamic density queries for moving
objects in road networks. The objective is to find dense areas with high concen-
tration of moving objects in a road network efficiently. The density query can

* This research was partially supported by the grants from the Natural Science Foun-
dation of China under grant number 60573091, 60273018; Program for New Century
Excellent Talents in University (NCET).

be used in the traffic management systems to identify and predict the congested
areas or traffic jams. For example, the transportation bureau needs to monitor
the dense regions periodically in order to discover the traffic jams.

Existing research works on the density query [2, 4] assume the objects moving
in a free style and define the density query in the Euclidean space. In this setting,
the general density-based queries are difficult to be answered efficiently and
their focus is hence turned to simplified queries [2] or specialized density queries
without answer loss [4]. These methods use the grid to partition the data space
into disjoint cells and report the rectangle area with the fixed size. However, the
real dense areas may be larger or smaller than the fixed-size rectangle and appear
in different shapes. Simplifying the dense query to return the area with fixed
size and shape can not reflect the natural congested area in real-life application.
We focus on the density query in the road-network setting, where the dense
area consists of road segments containing large number of moving objects and
may be formed in any size and shape. The real congested areas can therefore be
obtained by finding the dense segments. In addition, for querying objects moving
in a road network, the existing methods based on a regular spatio-temporal grid
ignore the network constraint and therefore result in inaccurate query results.

Considering the real-life application, finding dense regions for a point in time
is more useful than finding the dense regions for a period of time [4]. In this
paper, we study the querying for dense regions consisting of dense segments for
a point in time. For monitoring the dense areas of moving objects in the road
network, the dense query requests need to be issued periodically in order to find
the changes of dense areas. If we use the existing methods, the total cost is quite
high since each query request requires accessing all objects in the road network.
Since clustering can represent the dense areas naturally, we propose a cluster-
based method to process density queries in a road network. The moving objects
are first grouped into cluster units on each road segment according to their
locations and moving patterns. Then the cluster units are maintained continu-
ously. The process can be treated as a separate pre-processing for the periodical
density queries. For density query processing, we use a two-phase algorithm to
identify the dense areas based on the summary information of the cluster units.
Maintaining cluster units comes with a cost, but our experimental evaluations
demonstrate it is much cheaper than keeping the complete information about
individual locations of objects to process the dynamic density queries.

Our contributions are summarized as follows:

— We define the density query for moving objects in road networks that is
amenable to obtain the effective answers.

— We propose a cluster-based algorithm to efficiently monitor the dense areas
in a road network.

— We show, through extensive experiments, that our query algorithms achieve
high efficiency and accuracy.

The rest of the paper is organized as follows. Section 2 reviews related work
on density query processing and clustering moving objects. Section 3 gives the
problem definition. Section 4 details our density query method including dynamic
cluster maintenance and two-phase query algorithm. Algorithm analysis and
experimental results are shown in Section 5. We conclude this paper in Section 6.

2 Related Work

Density query for moving objects is first proposed in [2]. The objective is to find
regions in space and time that with the density higher than a given threshold.
They find the general density-based queries difficult to be answered efficiently
and hence turn to simplified queries. Specifically, they partition the data space
into disjoint cells, and the simplified density query reports cells, instead of arbi-
trary regions that satisfy the query conditions. This scheme may result in answer
loss. To solve this problem, Jensen et al. [4] define an effective density query to
guarantee that there is no answer loss. The two works both assume the objects
moving in a free style and define the density query in Euclidean space. However,
efficient dynamic density query in spatial networks is crucial for many applica-
tions. As an example of a real world, considering that the queries correspond
to vehicles distribution in the road network, the users would like to know real-
time traffic density distribution. Clearly, in this case the Euclidean density query
methods are inapplicable, since the path between two cars is restricted by the
underlying road network. Additionally, these existing query methods can not re-
flect the natural dense area in a road network since they simplify the dense query
to return the area with fixed size and shape. The grid-based algorithms also ig-
nore the network constraint and result in inaccurate query results. It is natural
to represent the dense area in a road network as road segments containing large
number of moving objects. We exploit the network property and define effective
road-network density query(e-RNDQ) to return the natural density areas with
arbitrary size and shape in the road network.

Existing network based clustering algorithms are also related to our work.
Jain et al. [3] use the agglomerative hierarchical approach to cluster nodes of a
graph. CHAMELEON [5] is a general-purpose algorithm, which transforms the
problem space into a weighted kNN graph, where each object is connected with
its k nearest neighbors. Yiu and Mamoulis [10] define the problem of clustering
objects based on the network distance and propose algorithms for three different
clustering paradigms, i.e., k-medoids for K-partitioning, e-link for density-based,
and single-link for hierarchical clustering. The e-link method is most efficient to
find dense segments in road network. However, all these solutions assumed a
static dataset. Li et al. [6] propose the micro moving cluster (MMC) to clus-
tering moving objects in Euclidean spaces. Our clustering algorithm focuses on
moving objects in the road network which exploits the road-network features
and provides the summary information of moving objects to density query pro-
cessing.

There are some other related works on query processing in spatial network
databases [1,7,11]. Their focus is to evaluate various types of queries based
on the network distance by minimizing the cost of the expensive shortest path
computation. To the best of our knowledge, this is the first work which specifies
on the cluster-based method for dynamic density queries in spatial networks.

3 Problem Definition

As the result of density queries in the road network are the set of dense segments,
we first introduce the concepts of density and dense segment.

Definition 1 Density. The density of a road segment s is represented as density(s) =
N/len(s), where N is the number of objects on s and len(s) is the length of s.

Definition 2 Dense Segment (DS). The road segment s is a dense segment
(DS) if and only if density(s) > p, where p is a user-defined density parameter.

A straightforward method to process the query is to traverse all objects
moving on a road network to compute dense regions by their number, the length
of the segment and a given density threshold. Figure 1 shows a density query in
a road network. Obviously, the cost is very high and it is difficult to find effective
results. Specifically, the query results may have three problems as follows:

1) The different DS may be overlapped, such as Case 1 in Figure 1.

2) The distribution of moving objects may be very skewed in some DS,
namely, the distribution of objects is dense in one part of a DS, but it is sparse
in another part, such as Case 2 in Figure 1.

3) Some DS may contain very few objects, such as Case 3 in Figure 1.

/_ case 3 § [ﬁl

s

Fig. 1. An example of density query

Such query results are less useful. Thus, we define an ef fective density query
in a road network to find the useful dense regions with a high concentration of
objects and symmetrical distribution of objects as well as no overlapping.

Definition 3 Effective Road-Network Density Query (e-RNDQ): Given density
parameter p, find all dense segments that satisfy the following conditions:

1. Any dense segment set can not be intersecting (namely no overlaps).

2. In each dense segment set, the distance between any neighboring object is
not more than a given distance threshold .

3. The length of dense segments is not less than a given length threshold L.

4. Any dense segment containing moving objects is in the query result set.

The first condition ensures that the result is not redundant. It avoids the case
1 in Figure 1. The second condition guarantees that objects are symmetrically
distributed in a dense segment set. The third condition provides restriction that
there is no small segments that only contain few objects in the result. The fourth
condition ensures that query results do not suffer from answer loss.

4 Density Query Processing in Road Networks

4.1 Overview
Considering the feature of road networks, we propose a cluster-based density

querying algorithm, which regards clustering operation as a pre-processing to
provide the summary information of moving objects. In the query processing,
we develop a two-phase filter-and-refinement algorithm to find dense areas.

4.2 Cluster-based Query Preprocessing

To reduce the cost of clustering maintenance, we introduce the definition of
Cluster Unit. A cluster unit is a group of moving objects close to each other at
present and near future time. It will be incrementally maintained with moving of
objects in it. Specifically, we constrain the objects in a cluster unit moving in the
same direction and on the same segment. For keeping the objects in a cluster unit
dense enough, the network distance between each pair of neighboring objects in a
cluster unit does not exceed a system threshold €. As mentioned in Introduction,
we assume that objects move in a piecewise linear manner and the next segment
to move along is known in advance. Formally, a cluster unit is defined as follows:

Definition 4 Cluster Unit (CU). A cluster unit is represented by CU= (O,
Ng, M, head, tail, ObjNum), where O is a list of objects {01,092, +,04, -, 0n},
0;=(0id;, na, np, pos;, speed;, next_node;), where pos; is the relative location
to ng, speed; is the moving speed and (ny,next-node) is the next segment to
move along. Without loss of generality, assuming pos; < poss < --- < poSy,
it must satisfy |posit1 — pos;| < e (1 < i < n —1). Since all objects are on
the same segment (nq,ny), the position of the CU is determined by an interval
(head, tail) in terms of the network distance from m,. Thus, the length of the
CU is |tail — head|. ObjNum is the number of objects in the CU.

Initially, based on the definition, a set of CU are created by traversing all
segments in the network and their associated objects. The CUs are incrementally
maintained after their creation. As time elapsed, the distance between adjacent
objects in a CU may exceed e. Thus, we need to split the CU. A CU may also
merge with its adjacent CUs when they are within the distance of €. Hence, for
each CU, we predict the time when they may split or merge. The predicted split
and merge events are then inserted into an event queue. Afterwards, when the
first event in the queue takes place, we process it and update the affected CUs.
This process is continuously repeated. The key problems are: 1) how to predict
split/merge time of a CU, and 2) how to process a split/merge event of a CU.

The split of a CU may occur in two cases. The first one is when CU arriving
at the end of the segment (i.e., an intersection node of the road network). When
the moving objects in a CU reach an intersection node, the CU has to be split
since they may head in different directions. Obviously, a split time is the time
when the first object in the CU arrives at the node. In the second case, the
split of a CU is when the distance between some neighboring objects moving
on the segment exceed €. However, it is not easy to predict the split time since
the neighborhood of objects changes over time. Therefore, the main task is to
dynamically maintain the order of objects on the segment. We compute the
earliest time instance when two adjacent objects in the CU meet as t,,. We
then compare the maximum distance between each pair of adjacent objects with
€ until %,,. if this distance exceeds € at some time, the process stops and the
earliest time exceeding € is recorded as the split time of CU. Otherwise, we
update the order of objects starting from ¢,, and repeat the same process until
some distance exceed € or one of the objects arrives at the end of the segment.
When the velocity of an object changes over the segment, we need to re-predict
the split and merge time of the CU.

To reduce the processing cost of splitting at the end of segment, we propose
group split scheme. When the first object leaves the segment, we split the original

CU into several new CUs according to objects’ directions (which can be implied
by next_node). On one hand, we compute a to-be-expired time (i.e., the time
until the departure from the segment) for each object in the original CU and
retain the CU until the last object leaves the segment. On the other hand, we
attach a to-be-valid time (with the same value as to-be-expired time) for each
object in the new CUs. Only valid objects will be counted in constructing CUs.

The merge of CUs may occur when adjacent CUs in a segment are moving
together (i.e., their network distance < €). To predict the initial merge time
of CUs, we dynamically maintain the boundary objects of each CU and their
validity time (the period when they are treated as boundary of the CU), and
compare the minimum distance between the boundary objects of two CUs with
the threshold e at their validity time. The boundary objects of CUs can be
obtained by maintaining the order of objects during computing the split time.

The processing of the merge event is similar to the split event on the segment.
We get the merge event and time from the event queue to merge the CUs into
one CU and compute the split time and merge time of the merged CU. Finally,
the corresponding affected CUs in the event queue are updated.

Besides the split and merge of CUs, new objects may come into the network
or existing objects may leave. For a new object, we locate all CUs of the same
segment that the object enters and see if the new object can join any CU ac-
cording to the CU definition. If the object can join some CU, its split and merge
events are updated. If no such CUs are found, a new CU for the object is created
and the merge event is computed. For a leaving object, we update the split and
merge events of its original CU if necessary. Due to the limitation of the space,
we omit the algorithm pseudo of maintaining CUs.

4.3 Density Query Processing

Based on the dynamic CUs, density query at any time point can be processed ef-
ficiently to return dense areas in the road networks. And then the dense segment
(DS) we defined in Section 3 is represented as (CU, ng, np, startpos, endpos,
len, N), where CU is the set of cluster units on segment (n,, ny), startpos is
the start position of the DS, and endpos is the end position of the DS, len is the
length of DS, N is the number of objects. To obtain the effective dense areas
restricted in the e-RNDQ, we introduce the parameter ¢ to DS.

Definition 5 §-Dense Segment (6-DS). A DS is 6-DS if and only if the distance
between any adjacent CUs is not more than ¢ (i.e. guarantee that the distance
between any adjacent object satisfies Distance(o;,0;+1)<0), and density is not
less than p. (For convenience, we abbreviate the term 0-DS to DS in the sequel)

In fact, § is a user-defined parameter of the density query and € is a system
parameter to maintain the CUs. Since the distance of adjacent objects is not
more than e in a CU, in order to retrieve dense areas based on CUs, we require
e < max{J, %} In the road network, a dense area is represented as a dense
segment set, which may contain several DSs in different segments. Therefore, we
exploit network nodes to optimize the combination of these DSs.

Definition 6 §-ClusterNode (6-CN). In each DS, n, is §-CN of the DS, if and
only if |startpos-n, |< &; ny is §-CN of the DS, if and only if |endpos-ny, | < 4.

Definition 7 Dense Segment Set (DSS). A DSS consists of different DSs where
the distance between adjacent DSs is not more than § and the total length of DSs
in the DSS is not less than L, the density in the DSS is not less than p.

Actually, DSS may contain DSs located in different segments where DSs are
joined by 6-CN. DSS constitutes the road-network density query results. Suppose
the density query parameter is given as (p,d, L, t,), where ¢, is the query time.
For query processing based on CUs, our algorithm includes two steps:

(1) The filtering step: Merge CUs into DSs by checking the parameter of p
and ¢, which can prune some unnecessary segments. In this step, we can obtain
a series of dense segments, specifically, a list of DSs and 0-CNs.

(2) The refinement step: Merge the adjacent DSs around §-CNs to con-
struct DSS by checking the parameter of p, §, L and finally find out the effective
density query result consisting of dense segment sets.

Fig. 2. An example to construct DS and DSS

We explain the two steps of density query processing in detail. Firstly, ac-
cording to network expansion approach [8], we traverse each segment to retrieve
CUs sequentially, then compute the distance between adjacent CUs and the den-
sity of them. If the distance is not more than § and the density is not less than
p, the CUs are merged to be a DS. Figure 2 shows an example. Given p=1.5
and 0=2, we compute DS at query time t,. The road segment s; (represented
as < Jp, Ja >) includes two CUs named cu; and cus. Assume that the distance
between cu; and cus is 1.2 at ¢, which is less than ¢, and the density is 1.8 after
merging cuy with cug which is more than p, cu; and cus can construct a DS (we
call it DS7). The start position of DS; is the head of cu; and the end position of
DS, is the tail of cus. The number of objects in DSy is the sum of the number
of objects in cu; and that in cus. Assume that the distance between DS; and
node Jy is 1.0 which is less than §, Jo is the §-CN of DS; (we call it §-C'Ny).
We insert DS; into the DS list of §-C'N;. In this way, we can obtain DS on
s3 including cuy and DS3 on s4 including cug respectively. The §-CN of DSy
(6-C'Ns) is Jy and that of DS3 is Jo. So the DS list of §-C'N; includes D.S; and
DSj3, while the DS list of 5-C'Ny includes DS5. Algorithm 1 shows the pseudo.

In the refinement step, we compute dense segment sets so that the effective
dense areas can be obtained. We traverse the list of each §-C N and evaluate
whether those DSs around the 6-C'N can construct DSS based on the def-
inition 8. Given L=100 in Figure 2. As the Distance(DS;, 6-CN;)=1.0 and
Distance(DS3,5-C'N1)=0.7, the distance between DSy and DS3 is 1.7, which is
less than 4. In addition, if DS; is merged with DS3, the density is more than p.
Therefore, DS; and DS3 can be merged to be a DS.S named D.SS;. In the same
way, we check if there are other dense segments can be merged with DSS; by

Algorithm 1: Filter(p,0,t,)

Input: density threshold p, query time ¢,
1 begin

2 foreach e(n;,ny) of edgeList do
3 if e.cuList # null then
4 create a new DS: ds
5 cu — getFirstCU (e)
6 ds.addCU (cu); ds.startpos = cu.pos
7 if ds.startpos < 6 then
8 ds.putCN(ng); 6-CN[ng].putDS(ds)
9 while getNextCU (e) # null do
10 nextcu «— getNextCU (e)
11 if Dd(ds,nextcu) > 6 or
12 Dens(ds,nextcu) < p then
13 ds.endpos = cu.pos + cu.len; e.addDS(ds)
14 create a new DS: ds
15 ds.startpos = nextcu.pos
16 ds.addCU (nextcu); cu = nextcu
17 ds.endpos = cu.pos + cu.len
18 if 1 — ds.endpos < § then
19 ds.putCN (ny); 6-CN[ny].putDS(ds)
20 e.addDS(ds)
21 end

utilizing its 6-C'N and insert it into DSS;. Finally, we check if the total length
of DSS is more than L. If so, DSS; is one of the answers of the density query.
Repeat the process until all §-C'N's containing dense segments are accessed. Then
we can obtain all dense areas which are represented as dense segment sets at t,.
Note that a DS may be involved in the lists of two §-C'N's. To avoid scanning the
same nodes repeatedly, we mark the scanned 6-C'N as accessed node. Algorithm
2 shows the pseudo of the refinement step.

5 Performance Analysis

In this section, we first analyze the time complexity of the cluster-based query
processing and then perform experimental evaluation.

5.1 Cluster-based Query Cost Analysis

Let n be the number of moving objects and m be the number of CUs created
from the n objects at the initial time, where m << n. Thus, the average number
of objects in a CU is n/m. Let W be the total number of edges and V' be the
total number of nodes of the road network. Let |E| denote the length of event
priority queue F, which has a size of O(SE + M E), where SE and M E are the
number of split and merge events stored in F, respectively.

In the initial phase of our approach, the network is traversed and all the
objects are grouped into CUs, and the initial split/merge events of all the CUs are
calculated. It requires O(n+ |V |log|V|) time to build the initial CUs. Computing
a split event from a CU takes O((n/m)?) to predict the split time and inserting
a split event to the priority queue F takes O(log|E|). Since there are m CUs, the

Algorithm 2: Refinement(p,d, L,t,)

Input: density threshold p, length threshold of DSS L
Output: Result: The set of DSSs
1 begin

2 foreach §-C'N; of §-C'N List do
3 if (0-CNj.dsList # null) and (not §-C Nj.accessed) then
4 /*Q is a priority queue to store all DSs around 0-C'N;*/
5 /*8-Q is a priority queue to store all unaccessed 6-CNs*/
6 Q — null; §5-Q.put(5-CN;)
7 while §-Q # null do
8 cn = 6-Q.pop(); cn.accessed = true
9 Q.addDSs(cn); /*add all DSs around cn and sorted*/
10 create a new DSS: dss
11 ds = Q.pop(); dss.addDS(ds)
12 0-Q.putdscn(ds); /*add all unaccessed §-C'N around ds*/
13 while @ # null do
14 nextDS = Q.pop()
15 if Dist(dss,nextDS) < § and Dens(dss,nextDS) > p then
16 dss.addDS(nextD.S)
17 0-Q.putdscn(nextDS)
18 if dss.len > L then
19 Result.insert(dss)
20 return Result
21 end

cost of computing all the initial split events is O(mlog|E| +n?/m). To compute
all the merge events and insert them into E, it requires O(2mlog|E]), since
there are 2m pairs of adjacent CUs. Hence, the total time of the initial phase is
O(n+ |V]iog|V| + mlog|E| + n*/m).

The maintenance phase of CUs processes split/merge events from the priority
queue E. For each split event that occurred on the edge, it takes O((n/m)?)
to compute the new split event for the CU and O(log|E|) to insert this new
split event to E. Therefore a split event on the edge is O(n?/m? + mlog|E|)
time complexity. For each split event at the node, the group split method needs
O(n/m) to access and group the contained objects and O((n/m)?) to compute
the next split event for each split CU. The total cost to process a split in this
case is O(n/m + n?/m? + mlog|E|).

For a merge event, O(log|E|) is required to remove split/merge events associ-
ated with the two CUs. It takes O((n/m)?) to compute the new split event and
O(log|E|) to insert the new split event to E. Finally, the merge events that are
associated with the other CUs are recomputed and inserted into E. These oper-
ations require O(mlog|E|). Hence, the total time of processing a merge event is
O((n/m)? + mlog|E|).

For query processing, in the filter step, we access the CUs in the whole
network from each node by network expansion approach. In the refinement step,
we only need to visit the 6-CNs list and decrease the cost of traversing the
network. Thus, the cost of query processing is O(|V |log|V| + m).

5.2 Experimental Evaluation

In this section, we compare the cluster-based density query processing with the
existing density-based road-network clustering algorithm, e-link proposed by Yiu
et al. [10] in terms of query performance and accuracy since e-link also returns
the dense areas which consist of the density-based clusters of objects. We monitor
the query results by running the e-link algorithm periodically and by maintaining
CUs and finding the dense segments based on CUs.

Experimental Settings We implement the algorithms in C++ and carry
out experiments on a Pentium 4, 2.4 GHz PC with 512MB RAM running Win-
dows XP. For monitoring the dense areas in a road network, we design a moving
object generator to produce synthetic datasets. The generator takes a map of a
road network as input, and our experiment is based on the map of Beijing city.
We set K hot spots (destination nodes) in the map. Initially, the generator places
80 percent objects around the hot spots and 20 percent objects at random posi-
tions, and updates their locations at each time unit. The query workload is 100
and each query has three parameters: (i) the density threshold p; (ii) the thresh-
old for dense segment length L; (iii) the threshold for the distance of adjacent
objects §. The query cost is measured in terms of CPU time. We also measure the
accuracy of query answers. The parameters are summarized in Table 1, where
values in bold denote the default values used.

Table 1. Parameters and their values

Parameter Setting
Data size 100K,. .., 1M
Clustering threshold € 0.5,1,...,3
Density threshold p 1,1.5,...,5.5
Dense segment threshold ¢ 2,253,354
The total length threshold of dense segments L| 100,200,300
Number of queries 100

Comparison with the e-link Algorithm To evaluate the performance,
we first measure the total workload time and average query response time of
two algorithms when varying the number of moving objects from 100K to 1M.
We execute the CU maintenance and query processing in comparison with the
static e-link on all objects at each time unit during 0 to 20 time units. For total
workload time (shown in Figure 3), we measure the total CPU time including
CU maintenance and query processing based on CUs. Figure 4 shows the average
query response time for periodic query processing. In fact, considering the feature
of road network, a CU represents the summary information of its objects and is
incrementally updated over time with low cost, which can help speeding up the
query processing. Therefore, our method is substantially better than the static
one in terms of average query response time and still better in terms of total
workload time.

Accuracy Density Query We evaluate the accuracy of density queries
by computing average correct ratio of the number of objects in query result to
that in the dataset around hot spots. Let avgCorrect Rate represent the average
correct ratio of query result, Query_objNum be the number of objects of the

250000

200000

150000

100000

Total time (ms)

RNDQ
eps-link

50000 ="

Response time (ms)

250000

200000

150000

100000

e

RNDQ
eps-link x

o

50000 |-

W
10 20 30 40 50 60 70 80 90 100
The Number of Objects (k)

o PR S S S R
10 20 30 40 50 60 70 80 90 100
Number of moving objects (k)

Fig. 3. Total time varies in data size Fig. 4. Response time varies in data size

result, Real_obj Num be the average number of objects around each hot spot in
the dataset, avgCorrect Rate can be calculated by the following equation:

M .)
1 |Query_obj Num — Real_obj Num)|
tRate = — 1-— 1
avgCorrectRate ;:1(Real_obj Num) (1)

where M denotes the number of dense areas (i.e., DSS) in the query result.
Figure 5 shows the comparison of the two methods in the query accuracy. We
can see that the accuracy of our query algorithm is higher and stable with the
different data distributions.

12 200

— RND(

0
o epsiink 180
160

—+—RNDQ

Correct rate
°
>

PR R Lo
10 20 30 40 50 60 70 80 90 100
The Number of Hot Spot

Time cost (ms)

140
120
100
80
60
40
20

1 15 2 25 3 35 4 45 5 55
Density Parameter

Fig. 5. Accuracy comparison Fig. 6. Query Performance with p

Effect of Parameters Finally, we study the effect of parameters (p, L, 6 and
€) of our methods on the query performance. Given € value at 2.5, § value at 4.5,
and L value at 100, we change density threshold p to evaluate time cost of query
processing. Figure 6 shows the experimental result. In addition, we also evaluate
time cost by adjusting the parameter L, and the result is similar to Figure 6.
Next, when fixing the € value at 2.5, we vary § to study its effect on the query
processing. Finally, as the number of CUs depends on the system parameter e,
we change the value of € from 0.5 to 3 to measure the maintenance cost of CUs.
Figure 7 and Figure 8 show the effect of the two parameters. We observe that
when § and € are set to 4.5 and 2.5, the method achieves the highest efficiency
in our experimental settings.

5000 110000
—*—RNDQ —*—RNDQ

4000
105000
3000
100000
2000

Response time (ms)
Maintaining time (ms)

95000
1000

0 L L L L) 90000 L L L L)
05 1 15 2 25 3

Delta Epsilon

Fig. 7. Clustering performance with ¢ Fig. 8. Query performance with e

6 Conclusion

In this paper, we introduce the definition of the dense segment and propose the
problem of the effective road-network density query. Under our definition, we
are able to answer queries for dense segments and find out dense areas in road
network with arbitrary shape and arbitrary size. We present an cluster-based
algorithm to response dynamic density queries and analyze the cost of cluster
maintenance based on the object’s movement feature in the road network. The
cluster-based pre-processing can efficiently support density queries in road net-
work. The experimental results show the efficiency and accuracy of our methods.

References

1. Hyung-Ju Cho, Chin-Wan Chung: An Efficient and Scalable Approach to CNN
Queries in a Road Network. VLDB 2005: 865-876.

2. Marios Hadjieleftheriou, George Kollios, Dimitrios Gunopulos, Vassilis J. Tsotras:
On-Line Discovery of Dense Areas in Spatio-temporal Databases. SSTD 2003: 306-
324

3. Anil K. Jain, Richard C. Dubes: Algorithms for Clustering Data. Prentice Hall, 1988

4. Christian S. Jensen, Dan Lin, Beng Chin Ooi, Rui Zhang: Effective Density Queries
on Continuously Moving Objects. ICDE 2006: 71

5. George Karypis, Eui-Hong Han, Vipin Kumar: Chameleon: Hierarchical clustering

using dynamic modeling. IEEE Computer, 1999, 32(8):68-75.

Yifan Li, Jiawei Han, Jiong Yang: Clustering moving objects. KDD 2004: 617-622

Kyriakos Mouratidis, Man Lung Yiu, Dimitris Papadias, Nikos Mamoulis: Contin-

uous Nearest Neighbor Monitoring in Road Networks. VLDB 2006: 43-54

8. Dimitris Papadias, Jun Zhang, Nikos Mamoulis, Yufei Tao: Query Processing in
Spatial Network Databases. VLDB 2003: 802-813

9. Dragan Stojanovic, Slobodanka Djordjevic-Kajan, Apostolos N. Papadopoulos,
Alexandros Nanopoulos: Continuous Range Query Processing for Network Con-
strained Mobile Objects. ICEIS (1) 2006: 63-70

10. Man Lung Yiu, Nikos Mamoulis: Clustering Objects on a Spatial Network. SIG-
MOD 2004: 443-454.

11. Man Lung Yiu, Nikos Mamoulis, Dimitris Papadias: Aggregate Nearest Neighbor
Queries in Road Networks. IEEE Trans. Knowl. Data Eng. 17(6): 820-833 (2005)
12. Man Lung Yiu, Dimitris Papadias, Nikos Mamoulis, Yufei Tao: Reverse Nearest

Neighbors in Large Graphs. IEEE Trans. Knowl. Data Eng. 18(4): 540-553 (2006)

