
HAL Id: hal-04371643
https://hal.univ-lille.fr/hal-04371643v1

Submitted on 3 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Indexed Bit Map (IBM) for Mining Frequent Sequences
Lionel Savary, Karine Zeitouni

To cite this version:
Lionel Savary, Karine Zeitouni. Indexed Bit Map (IBM) for Mining Frequent Sequences. PKDD 2005:
9th European Conference on Principles and Practice of Knowledge Discovery in Databases, Oct 2005,
Porto, Portugal. pp.659-666, �10.1007/11564126_70�. �hal-04371643�

https://hal.univ-lille.fr/hal-04371643v1
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

Indexed Bit Map (IBM) for Mining Frequent Sequences

Lionel Savary, Karine Zeitouni
PRiSM Laboratory, 45 Avenue des Etats-Unis, 78035 Versailles cedex

{Lionel.Savary, Karine.Zeitouni}@prism.uvsq.fr

Résumé

La recherche de séquences fréquentes est un des
problèmes récemment étudié en fouille de données.
Dans cet article, nous proposons une nouvelle
méthodologie pour la découverte de séquences
fréquentes. L’algorithme proposé recherche des
motifs fréquents en respectant l’ordre des articles.
Ses performances ont été optimisées grâce aux
structures et aux index proposés. En effet, il
n’effectue qu’une seule lecture dans la base de
données tout en ayant une représentation des
données peu gourmande en mémoire et performante
lors de la recherche de sous-séquences fréquentes.
Les résultats expérimentaux démontrent l’efficacité
de notre algorithme par rapport aux algorithmes
existants. Il a été testé dans le contexte d’analyse de
séquences d’activités de la population dans le cadre
d’une enquête sur la mobilité urbaine. Les résultats
expérimentaux démontrent l’efficacité de notre
méthode comparée aux algorithmes existant.

Abstract

Sequential pattern mining has been an emerging

problem in data mining. In this paper, we propose a
new algorithm for mining frequent sequences. It
processes only one scan of the database thanks to an
indexed structure associated to a bit map
representation. Thus, it allows a fast data access
and a compact storage in main memory. This
algorithm has been applied to activity sequences
belonging to a population time-use survey. The
experimental results show the efficiency of our
method compared to existing algorithms.

1. Introduction

 The problem of mining sequential patterns was first
introduced in the context of customer transactions
analysis [2]. It aims to retrieve frequent patterns in the
sequences of products purchased by customers through
time ordered transactions. Several algorithms have been

proposed in order to improve the performances and to
reduce required space in memory [4], [14], [11]. Other
works have concerned mining frequent sequences in
DNA [6] or text mining [3]. Moreover, some association
rules algorithms use a bit map structure [5] that requires
few space in main memory, and gives good performances.
 The target application in this paper is related to
population time-use analysis and more precisely their
daily displacements [8]. The database describes the daily
activities carried out by each surveyed person at the scale
of a whole urban area. Thus, for each person of a
surveyed household, it captures the activity program [12],
the transport mode used between two activities, the
departure time, and the duration of the trip. For example,
during a day, an individual can leave home, take children
to school, go to work, pick children up from school, and
come back home. Activity programs of most individuals
may be the same or be similar. Each activity program
could be seen as a sequence of single values, making it
possible to discover frequent activity sequences that
characterize groups of the surveyed individuals. This
allows analyzing the mobility of this urban population.
Likewise, when considering transport mode, schedule or
duration sequences, it would be possible to determine a
typology of used transport modes, schedules, and so on.
 Existing algorithms are either inappropriate or not
enough efficient to our specific case. Most works [1, 2, 3]
make multiple scan of the database, which can be
considered as the main bottleneck of algorithms of
frequent sequence mining. Furthermore, unlike the
analysis of sequential transactions where each transaction
is an item set, our context only focuses on the analysis of
sequences of items.
 Although existing works [14, 9, 7, 5] can be applied in
this context, we propose here a new algorithm more
appropriate to this particular case. This algorithm only
makes one scan of the database. The indexed bit map
structure needs few spaces in the main memory and
allows a fast access to the data. The experimental results
show that our algorithm outperforms existing ones. The
associated index structure directly accesses sequences
over a given size n, without wasting time accessing
sequences of size k < n. This also allows the user to
specify such size constraint and avoids producing
uninteresting patterns. Specifying size constraint is
particularly useful in our application field where the size

of an activity sequence of an individual is characteristic
of his profile.
 The paper is organized as follows: section 2 presents
related works, then, section 3 describes our data structure
and the proposed algorithms. Section 4 presents their
performance evaluation and experimental results: a cost
analysis is given, the performances of the proposed
algorithms are compared with those from related works
and a discussion studies the extreme cases and highlights
the advantages of our approaches. Finally section 5 gives
a general conclusion summarizes our contribution and
traces some perspectives.

2. Relate works

 Most works related to mining frequent sequences are in
the field of customer transaction analysis. Early work on
frequent patterns -Apriori algorithm- only considered
transactions, not sequence of transactions [1]. This
algorithm is costly because it carries out multiple scans of
the database to determine frequent subsets of items. Three
algorithms dealing with sequence of transactions are
presented and compared in [2]: AprioriAll, AprioriSome
and DynamicSome. AprioriAll algorithm is an adaptation
of Apriori to sequences where candidate generation and
support are computed differently. AprioriAll, and
AprioriSome only compute maximal frequent sequences.
Their principle is to jump to candidates of size k+next(k)
in the next scan, where next(k)>1. Maximum frequent
sequences of lower size that have not been calculated are
given in the backward phase. The value of next(k)
increases with Pk = |Lk|/|Ck|, where Lk stands for
frequent sequences of size k, and Ck the whole generated
candidates of size k. DynamicSome algorithm is based on
AprioriSome but uses a jump by a multiple of user
defined step.
 SPAM algorithm [4] uses a bitmap representation of
transaction sequences once the entire database has been
loaded in a lexicographic tree. The disadvantage in this
algorithm is that the entire database and all used data
structures should completely fit into main memory.
Indeed, this algorithm makes one scan of the database to
load it in memory at the condition that there is enough
space.
 The GSP algorithm [11] exploits the property that all
contiguous subsequences of a frequent sequence also
have to be frequent. As Apriori, it generates frequent
sequences, then candidate sequences by adding one or
more items. GSP makes multiple scans over the data
because the source dataset is scanned to evaluate the
support of candidates.
 PrefixSpan [9] first finds the frequent items after
scanning the database once. The sequence database is
then projected, according to the frequent items, into

several smaller databases. Finally, all sequential patterns
are found by recursively growing subsequence fragments
in each projected database. Employing a divide-and-
conquer strategy with the PatternGrowth methodology,
PrefixSpan efficiently mines the complete set of patterns.

3. IBM algorithm

 We are now going to focus on the specific case where
the considered sequences are basic since they are
composed of single items, not of a set of items as in the
transaction sequences mentioned above. We believe this
is the case of many applications related to tempral events
or DNA sequences. Our application goal is to find
frequent sequences in activity programs. This is
performed by seeking chains of activities (or transport
modes, or schedules, …) that characterize a group of
individuals. Our algorithm will be compared to
PrefixSpan and SPAM, the two most efficients among the
above mentioned methods.
 A sequence is said frequent if it is included in a number
of sequences greater than a support given by the user. The
inclusion between two sequences s1 = (a1, .., an) and s2 =
(b1, …, bn): s1 ⊂ s2 is defined by :
∃ bi1 = a1,…, bin = an such that i1 < i2< …<in.

3.1. Principle of the algorithm

 The proposed approach is two phases. The first stage is
the data encoding and compression into in-memory data
structures. The second one is the frequent generation that
in turn is composed of candidate generation, and
candidate support checking.
 The algorithm is based on four data structures:

1. A Bit Map is a binary matrix representing the
distinct sequences of the database,

2. An SV vector encodes all the ordered
combinations of sequences,

3. An index (INDEX) on the Bit Map allows a
direct access to sequences according to their
size,

4. An NB table associated to the Bit Map which
informs about the frequency of each distinct
sequences.

 This algorithm only makes one scan of the database
during which the total number of distinct sequences, the
frequency of these sequences and the number of sequence
by size are computed. This allows computing the support
of each generated sequence. These sequences are
classified by decreasing size in the IBM and only distinct
sequences are stored in the Bit Map. An index by size
allows a direct access to sequences according to their size.
This structure provides an optimisation since a generated
sequence s of size t will be directly compared with the

sequences of the same or upper size stored in the IBM
(figure 1 and 2).
 In order to simplify the notations, we represent each
activity by a specific character, e.g. HSWSH (standing for
Home, School, Work, School, Home).
In the figure 1, the sequence vector (SV) is made of 5
ordered activities (H,W,S,M,H). In this example one
supposes that the database is composed of three distinct
sequences of size 5 encoded in the IBM. The bit 1
indicates the items present in the sequence according to
the SV and bit 0, those that are not. Here, there are 3
distinct sequences: (HWH), (HSH), (HSMH).

Figure 1. Indexed bit Map

Figure 2. The data structure

 In the example above (figure 2), IB
the whole distinct sequences of the d
5. Each cell of the Index indicates the
corresponding size of sequence is st

the cell number 5 (with value 9) corresponds to the line
number 9 of the first sequence of size 5 encoded in the
IBM. The table NB associates to the IBM stores the
frequency of each distinct sequence. Thus the sequence
(HWRWH) of size 5 has a frequency of 15 in the
database.
 In this algorithm, Index, SV, the NB table and IBM are
built on the fly during one pass. At each insertion of a
sequence, the IBM may increase in size, and a set of
shifting operations are applied to the bit values
stored in this table.

 1 1 0 0 1

 1 0 1 0 1

 1 0 1 1 1

 H W S M H

H W S M H R W

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 1 0 0 0 1 1 1

1 0 1 0 0 1 0 1

 ……..

 ……..

SV

Index

1

3

4

6

9

IBM (sequence database DB, threshold t)
00 For each sequence s in DB

IBM
SV

 M

01 - Gen-sequence-vector (s) //generates
 // sequence vector
02 - Encode and Insert s in the IBM
IB

03 - Update NB
04 - Update Index
05 End For
06 k =1
07 While exists frequent sequence of size k
08 - k = k+1
09 - Generate Ck
10 - Gen-frequent-sequences (t)
11 End While
H = Home
W = Work
S = School
M = Market
R = Restaurant
M is composed of
atabase of size 1 to
 first line where the
ored. For example,

Figure 3. IBM algorithm

 Figure 3 shows the general IBM algorithm that takes as
parameters: the batabase of sequences DB and a threshold
t. This value (t) stands for the minimum frequency of the
sequences which will be taken into account for the
generation of the candidates. Then for each sequence, it
reads from the database during the scan, the SV (line 01)
is generated using a merging process (see section 3.2). If
the sequence already exists in SV, only the NB table is
updated (line 03): the line corresponding to this sequence
in NB (and encoded in the IBM) is incremented. So, the
frequency corresponding to this value is incremented.
Else, if the sequence is not presented in SV, it is
generated by the Gen-sequence-vector(s) function
(section 3.2). The height of the IBM is increased to one
line (line 02), the length is increased to the SV length, and
the Index (line 04) is updated. Then, a set of shifting
operations is applied to the IBM in order to preserve the
initial values of existing sequences while encoding the
new one.
 Once all the data have been encoded in this structure
(SV, IBM, NB, Index), new candidates (line 09) are
generated (see section 3.3) and compared to the data
stored in the IBM (line 10) with a fast access thanks to
the Index.

H

15

…

1800

…

2400

5000

NB

Figure 4. IBM gener

 In the example of F
as the one in figure 1
addition. Here, th
(HSMH) have respec
the database. The ar
of a sequence (HSH
values in SV and IB
but it increments t
sequence in the NB
an insertion of the s
modifies the SV vec
operation is applied
the values stored i
encoded sequences
sequence. Then the f
to one.

3.2. Generation of

 The sequence vec
scan of the database
5. Here, s stands f
during the scan, and
of value x in the SV
SV, then there is no
possibilities: (i) If th
number of b is great
in SV (line 04 and 0
b in SV. (ii)Else, a is

 Thus all the distinct sequences of the database are
represented in the SV using a merging process.

1 1 0 0 1

1 0 1 0 1

1 0 1 1 1

H W S M H

H W S M W H

1 1 0 0 0 1

1 1 0 0 1

1 0 1 0 1

1 0 1 1 1

Index SV 1

NB
IBM

1

1

1

1

1

1

1

1

H W S M H

2

3

1 0 1 0 0 1

Figure 5. Sequence Vector generation 1

1 0 1 1 0 1

3.3. Candidate generation 1

1 1 0 1 1 1
ation

igure 4, the origina
 with the NB and t

e sequences (HW
tively the frequenc
row with value 1 s
). This operation do
M since this sequen
he frequency corre
table. The arrow w
equence (HWMWH
tor (section 3.2) an
to the IBM in orde
n the SV, to pres
and a new line is a
requency of this ne

 the sequence ve

tor is generated d
 according to the a
or a sequence of
position(x) stands f
. If an item a of s

thing to do, otherw
ere exists an item b
er than the cell num
5), then a is inserte
 inserted at the end

 4
 0 0 1

 0 0 1 3
0 0 1 3
l IBM is the same
he Index tables in
H), (HSH) and
y 15, 10 and 12 in
hows an insertion
es not change the
ce already exists,
sponding to this
ith value 2 shows
). This operation

d a set of shifting
r to correspond to
erve the existing
dded for the new
w sequence is set

ctor

uring the unique
lgorithm of figure
the database read
or the cell number
 already exists in
ise, there are two
 such that the cell
ber of a and b is

d before the value
 of SV (line 06).

co
sp
ge
ge
ph

ca
…
fo

co

co

∈[

(M
co
th

3.

fre
Fo
lo
se
ac
lin
Gen-sequence-vector(s):
00 - SV = φ //SV empty at
 // the beginning
01 current_position = 0 //position mark in
SV
02 - For each item a of s
03 - If a ∉ SV
04 - If ∃ b ∈ s such that b ∈ SV

and position(b) > position(a) in s
and position(b) > current_position in
SV

05 - Insert a before b
06 - Else insert a at the end of SV
07 current_position = position(a) in SV
During the scan, the frequencies of all items are
mputed. Those whose support is underneath the one
ecified by the user are deleted. Then, candidates are
nerated from these frequent items. Candidate
neration is realized using the fusion process (joining
ase) as in the GSP algorithm [11]:
Given a sequence s = (s1s2…sn) of size n and two
ndidate sequences c = (c1 c2 …cn-1) and c’ = (c’1 c’2
 c’n-1) of size n-1, s is generated from c and c’ if the
llowing conditions hold:
∀ i ∈[2..n-1], ci = c’i-1. (n > 3). c and c’ have a
mmon contiguous subsequence of size n-2.
if n = 3, c2 = c’1. c and c’ have only one item in
mmon.
if n = 2, c = (c1) and c’ = (c’1). Then s = (c1 c’1).
Then in case 1 and 2, s is generated as follow: ∀ i
1..n-1], si = ci. And ∀ j ∈[1..n-1], sj+1 = c’j.

For example, consider the two candidates sequences c =
MH) and c’ = (MHM) of size 3. (MH) is a common

ntiguous subsequence of c and c’, and of size 2. Thus
e candidate s = (MMHM) is generated from c and c’.

4. Support counting

Once the candidates have been generated, their
quencies can be determined using the data structure.
r a given candidate C of size S, the algorithm first

oks in the cell number S of the Index where the first
quence of size S is encoded. Then, this line l is
cessed. For each line starting from the line l to the last
e of IBM table, the algorithm determines using the SV

vector if C is contained in each line of IBM. If so, the
corresponding frequency of this sequence stored in the
NB table, is added to the frequency of the candidate.
After the comparison with each line until the last one, the
support of C is computed (see figure 6).

Figure 6. Example of candidate support counting

 Suppose C = (HSH) of size S = 3. Then, the algorihtm
will access to the cell number 3 of the Index which pin
point to the line 3 of the IBM table, where the first
sequence of size 3 starts. This sequence does not contain
C. But sequences in line 4 to 6 contain C. So the
frequency of C is computed as 30+20+15 = 65.
 The support of C is equal to 65 /
(100+60+40+30+20+15) = 0.245. If the support threshold
is equal to 0.4, C candidate will not be retained as
frequent pattern.

3.5. IBM2 proposal

 The advantage of the data structure proposed in IBM is
that it takes a few memory spaces. However, since the bit
variable is not provided in programming languages like
Java, C++, IBM algorithm need to decode the binary
representation. Therefore, shifting operations are required
to check each cell of the bit map for a given position in
SV. This leads to decrease the performances of
processing time.
 In order to avoid these superfluous computations, we
propose the IBM2 algorithm, where the bit map is
replaced by a Boolean matrix, i.e. where cells are
declared of Boolean type, which takes 8 bits for each cell.
Although this solution requires more space in memory,
the access to the target value stored in the Boolean matrix
is done directly without shifting computations. The result

of their respective performances is detailed in the next
section and compared with SPAM and PrefixSpan.

4. Experimentations and performances
analysis
 H W S M H R W H
 This section first gives some results for our application,
and then reports the performance analysis. An analytical
evaluation is provided in section 4.2 followed by
experimental tests. Finally, those results are discussed in
section 4.4.

SV
Index

6 1 1 0 0 0 1 1 1 15

20

30

40

60

100

 5
4.1. Analysis of population time survey

 The IBM has been performed on real data related to
daily activity programs of the population of Lille (a
French town). In this application, the number of items is
about 10, the number of sequences is 10800; while
distinct sequences are about 3429; the sequence size
varies between 2 and 34 with a mean of size equals to 6.
We have discovered some interesting patterns among
which:

 49% of the population do (Home, Leisure,
Home).

 Only 37% of the population do (Home, Work,
Home).

 9% of the population do (Home, Work, Home,
Work, Home).

 11% of the population do (Home, School,
Leisure, Home).

 8% of the population do (Home, Shopping,
Home, Leisure, Home).

 These results allow better understanding the daily
activity and mobility for a given population, which is
useful in decision support. As an example, based on such
results, policy makers may improve their transport policy

4.2. Performance evaluation

 The cost analysis is based on the evaluation of the
number of memory accesses, to determine the frequencies
of the generated sub-sequences. Here, the cost is
computed without taking into account the cost to generate
candidates. Notations and parameters are listed in the
table 1 below.
 The cost to determine the frequency for one sub-
sequence c is equal to:
 Eq1: Cost(c) = Cindex + CNB + CSV + CIBM.
 Where the cost to access a specified value in the Index
is :
 Eq.2: Cindex = 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 1

NB

1

2

3

1 0 1 0 0 1 0 0

1 0 1 1 0 0 0 1

IBM

 This Index access will determine the starting position
(pos) in the IBM for sequences to be compared with a
candidate of size LSS (Index[LSS] = pos). The number of
such lines is:
Eq.3: CNB = n – posc.

4.2.1. Cost evaluation for IBM2

 The cost to compare a sub-sequence of size LSS with SV
is equal to:
Eq.4: E

SS

SV
cLSSSV CcLC)(*)(=

))!((!
!*)(

cLSVL
SVcLC

SSESS

E
SSSV −

=

Proof:
 In order to compare c with SV, all sub-sequences of
size LSS(c) in SV must be compared to c. The number of
combinations of M=LSS(c) items among a list of N=SVE
items is a common formula given by:

)!(!
!

MNM
NC N

M −
=

 The number of comparisons for each item of a
candidate c with a SV sub-sequence is equal to M. The
cost to compare a candidate c with SV is equal to:

)!(!
!**

MNM
NMCM N

M −
=

�

Example:
 Suppose a sequence vector SV = (a, b, c d) of size SVE
= 4 and a candidate sub-sequence c of size LSS(c) = 3.
Then c can match with the following 4 sub-sequences of
SV: (a,b,c), (a,b,d), (a,c,d), (b,c,d). The number of
comparison to find c in SV is equal to 3*4=12 memory
accesses is necessary to compare c with SV, which is

equal to:
)!34(!3

!4*3
−

 Finally to compare a candidate c in the bit map
structure, CIBM = (n – posc) * CSV, since it is compared
from position posc to the top.

Eq. 5: E

SS

SV
cLSScIBM CcLposnC)(*)(*)(−=

 Based on the above equations, Eq. 1 to Eq.5, frequency
calculation for one candidate c is:

++−+= E

SS

SV
cLSSc CcLposncCost)(*)(1)(

E

SS

SV
cLSSc CcLposn)(*)(*)(− .

+−+= cposncCost 1)(

)*)((*)1()(
E

SS

SV
cLSSc CcLposn −+ .

{ }E

SS

SV
cLSSc CcLposncCost)(*)(1*)1()(+−+=

 Then for all of the N generated candidates (noted i for
simplification), the algorithm cost C is equal to:

∑=
=

N

i
iCostC

1
)(

() { }E

SS

SV
iLSS

N

i i CiLposnC)(1
*)(1*1 +−+=∑ =

4.2.2. Cost evaluation for IBM

 Using IBM, shifting operations are required to get the
value of a bit. For implementation, the Bit Map is in fact
composed of a Byte Map, where each Byte encodes 8
bits. Then the maximum number of memory accesses to
retrieve a specific bit value is equal to 8.
 Then, the cost for IBM is equal to:

() { }E

SS

SV
iLSS

N

i i CiLposnC)(1
8)(1*1 +−+= ∑ =

Cost(k) The cost of frequency calculation
 for k candidate sub-sequences.
Cindex The access cost to a specified value in
 the Index.
CNB The number of accessed lines in NB.

CSV The cost of comparison of a given sub-
 sequence with SV.
CIBM The cost of comparison of a given sub-
 sequence with sequences stored in IBM.

Tss The number of items in a given sub-
 sequence.

SVE The number of elements in SV

n The total number of lines in IBM

N The total number of generated
 Candidates.

Table 1. Notations and parameters

Posc Position of the first sequence in
 the bit map of size equal to c size

4.2.3. Remarks

 According to the above formulas, the cost depends on:

1. The number m of lines to scan in the Bit Map (m

2. f SV (SVE).
SS(i)).

hen the threshold increases, the number of generated

r of

t with our experimental results

.3. Performance measurements

he experiments aimed to validate our approach and to

.3.1. Processing time cost

= n – posi).
The length o

3. The length of a candidate sub-sequence (L
4. The number of generated candidates (N).

 W
candidates N will decrease. Then the cost of retrieving all
frequent patterns for great support will also decrease.
 Inversely, when the threshold decreases, the numbe
generated candidates N increases. Thus the cost of
retrieving all frequent patterns will increase. The number
of lines to scan in the Bit or Boolean Map will be
numerous. This has a direct repercussion in the
processing time.
 This is consisten
illustrated from figures 7 to 10 in next section

4

T
compare it to other methods. This comparison focuses on
processing performances, storage costs, and scalability.
The tests were performed on a 2.5Ghz Pentium IV with 1
GB of memory running Microsoft Windows XP
Professional, with three different sizes of datasets:
100,000; 300,000; 600,000; and 1,000,000 rows. Items
and the size of the sequences have been randomly
generated for the experimentations. The size of sequences
is randomly generated from 2 to 60, and the number of
distinct items is about 10 (from 0 to 9). For our
experimentations, we have used the packages PrefixSpan-
0.4.tar.gz1 and Spam.1.3.1.tar.gz2.

4

1 http://chasen.org/~taku/software/prefixspan/
2 http://himalaya-tools.sourceforge.net/Spam/#download

0

5

10

15

20

25

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Support

Ti
m

e
(s

ec
on

ds
)

IBM2

IBM

PrefixSpan

SPAM

Figure. 7. Performances with 100,000 rows

0

10

20

30

40

50

60

70

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Support

Ti
m

e
(s

ec
on

ds
)

IBM2

IBM

PrefixSpan

SPAM

 Figure. 8. Performances with 300,000 rows

0

20

40

60

80

100

120

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Support

Ti
m

e
(s

ec
on

ds
)

IBM2

IBM

PrefixSpan

Figure. 9. Performances with 600,000 rows

0

20

40

60

80

100

120

140

160

180

200

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Support

Ti
m

e
(s

ec
on

ds
)

IBM2

IBM

PrefixSpan

Figure. 10. Performances with 1,000,000 rows

 Notice that IBM and IBM2 have been implemented in
JAVA, and perform a database scan, whereas PrefixSpan
and SPAM have been implemented in C++ and read the
dataset from a file. Although SPAM and PrefixSpan
development environment is theoretically more favorable,
IBM and IBM2 outperform SPAM and PrefixSpan as
shown in the figures above, especially in the context of
small number of items. This arises in several applications
as the one treated here, or for mining web traversal
patterns (the number of distinct web pages is limited).
Notice that beyond 700,000 rows with 512 MB of
memory, PrefixSpan crashes because its data structure
does not fit in the main memory, whereas IBM and IBM2
run efficiently and do not require much more memory
resources than for smaller databases. We have pushed the
experimentation to 1,000,000 sequences. These
experiments show that IBM and IBM2 are more
appropriate for large databases than SPAM and
PrefixSpan.
 The experimentations show that the larger is the
database size, the more IBM and IBM2 outperform
SPAM and PrefixSpan. This is because IBM and IBM2
make only one scan of the database, and have an efficient
and compact structure allowing a fast retrieval of frequent
sub-sequences. According to the analytical assessments
(section 4.2), the number of memory accesses increase
with low threshold. In consequence, the performances of
IBM and IBM2 will decrease. This has been confirmed by
the tests as seen in figures 7 to 10, where IBM and IBM2
curves goes up inversely with the threshold.
 There is only one case where PrefixSpan outperforms
IBM (see figure 7). This occurs for small size of dataset
(here 100,000 rows) and small support threshold (here
0.2). This is because: (i) the number of candidates to
compare increases when the support is low. This

comparison in IBM requires many shifting operations,
which affects the performances; (ii) scanning a small
database in PrefixSpan will requires less I/O.
 Compared to IBM, IBM2 and PrefixSpan, SPAM
performs linearly and outperforms both PrefixSpan and
IBM, when the support threshold becomes small: under
0.2 with 100,000 and 300,000 rows (figure 8). Beyond
300,000 rows, SPAM data structure requires too much
memory space and may overflow depending on the used
platform (see figure 11).
But whatever is the size of the database, IBM2 always
outperforms SPAM, PrefixSpan, and IBM because no
shifting operation is required.

4.3.2. Storage cost

0

500

1000

1500

2000

100000 300000 600000 1000000

Dataset Size

M
em

or
y

S
iz

e
(M

B
)

IBM2
IBM
PrefixSpan
SPAM

Figure. 11. Memory consumption

 Figure 11 shows the total memory consumption (in
Mega Bytes) used by IBM and IBM2, SPAM, and
PrefixSpan.
For instance, with a database composed of 600,000 rows,
SV contains about 265 values for 90,000 distinct rows.
The size of the Boolean Map is then equal to: 265*90,000
= 23.85 Mega Bytes (a Boolean is encoded on 8 bits). As
IBM is 8 times more compact, .the size of the Bit Map is
less than 3 MB. With 1000,000 rows (figure 10), SV
contains 370 elements for 160,000 distinct rows. Then,
the size of the Boolean Map reaches 59.2 MB, whereas
the size of the Bit Map fits in 7.5 MB.

4.3. Discussion

 These results show that IBM is more appropriate than
IBM2 for very large databases, due to data compression.
However, IBM2 runs faster than IBM. This is due to the
costs of shifting operations necessary to access target
values, while IBM2 directly accesses the target
sequences. As we can see in figure 11, memory
consumption using IBM and IBM2 compared to SPAM
and PrefixSpan becomes insignificant when the size of
dataset becomes large. For example with 1,000,000 rows,
the total memory consumption for IBM used by Java is
equal to 28 MB (81 with IBM2) whereas for PrefixSpan,
it is about 468 MB.
 The size of the bit map also depends on the size of SV,
which also increases with the number of distinct
sequences. Notice that SV size does not depend on the
size of the database itself. In fact, it only increases when
the encountered sequence can not be encoded using the
current SV. Moreover, not all the items of the inserted
sequence are added in SV, but only those that are not
present in the same order. Finally, since the probability to
find common ordered items between SV and the current
sequence becomes high as the building process advances,
SV size becomes stable regardless of the size of the
database.
 In order to prove the efficiency of IBM in extreme
cases, we have performed a test with a sequence cT of the
following form: (H,W,H,W,H,W, … ,H,W) of size 200,
composed of repeated series of H and W items. This type
of sequence may increase the size of the data structure.
This experiment aims first to demonstrate that this
situation does not affect the processing costs. The second
goal is to evaluate the loss of storage performance.
 Tests have been done with datasets composed of
600,000 and 1,000,000 sequences. Indeed, no variation of
processing costs has been detected. This is because,
according to the sequence vector generation algorithm
(section 3.2), the items (H or W) that are not located in
other sequences are put at the end of SV. Therefore,
unless repeated series are actually frequent in the
database, the probability to have long repeated series of
HW in the middle of SV is very low. Then, using the data
structure for candidate generation and frequent patterns
will not be affected, because the items H,W put at the end
of the structure would never been accessed.
 Concerning the storages costs, we have estimated and
experimentally testes the loss of performances. For a
dataset composed of 600,000 sequences, the size of SV
varies from 265 to 328 values, with the new inserted test
cT sequence. Then the size of the Boolean Map is equal
to: 328*90,000 = 29.52 Mega Bytes, and 3.69 MB for the
Bit Map. This corresponds to about 19% more storage
cost compared to the case without cT.

 For a dataset composed of 1,000,000 sequences, the
size of SV varies from 370 to 415 values. The size of the
Boolean Map is equal to: 415*160,000 = 66.40 Mega
Bytes, and 8.30 Mega Bytes for the Bit Map. This
represents 10% more storage cost.
 The theoretical loss and the experimental memory
measurements are given in figure 12 and 13.

IBM & IBM2 Loss Memory Performances

-0,2

-0,18

-0,16

-0,14

-0,12

-0,1

-0,08

-0,06

-0,04

-0,02

0
600000 1000000

IBM & IBM2

Lo
ss IBM & IBM2

Figure. 12. Memory Loss Analytical Performances

 In figure 12, the theoretical loss is estimated by:

SizeMapevious
SizeMapNewloss
__Pr

__
−=

 Previous_Map_Size stands for the Boolean or Bit Map
without insertion of the test sequence, and
New_Map_Size stands for the Boolean or Bit Map with
insertion of the test sequence. Here we can notice that the
size of the bit map is increased to roughly 19% with a
dataset composed of 600,000 sequences, and 10% with
1,000,000 sequences. Here, the loss is less important for
the dataset composed of 1,000,000 sequences than for
600,000 sequences (figure 12). This is because the more
SV is long and the more the items composing a sequence
have a higher probability to be found in SV. This also
explains the gap performances between IBM and IBM2
with SPAM and PrefixSpan when the size of the dataset,
and thus the size of SV, become greater.

Loss Experimental Results

0

10

20

30

40

50

60

70

80

90

600,000
seq

600,000
test seq.

1,000,000
seq

1,000,000
test seq.

Datasets sizes

M
em

or
y

(M
B

)

IBM

IBM2

Figure. 13. Comparison of Storage Performances

 Figure 13 gives the experimental measurements of
memory consumption using datasets without cT test
sequence insertion (600,000 seq. and 1,000,000 seq.) and
with cT insertion (600,000 test seq. and 1,000,000 test
seq.).
 Here we can notice that the insertion of the cT test
sequence have a repercussion in the allocated size for
IBM and IBM2, especially for a dataset composed of
600,000 sequences. But the variation of the memory
allocation becomes insignificant with a higher SV size
(with a dataset composed of 1,000,000 sequences).
 The processing time for both datasets remains the same
as in figure 9 and 10, since the items H,W located at the
end of SV are never accessed.

5. Conclusion and perspectives

This paper presents a new algorithm IBM and a variation
IBM2. The aim of this algorithm is to find all frequent
sequences in item sequences. It has been applied to
discover all frequent activity sequences in the time use
database within an urban environment. IBM only makes
one scan of the database and provides efficient data
structure optimizing memory space occupancy, and
access costs. The use of the specified index provides
another optimization of comparisons during candidate
counting.
The proposed algorithm allows complying with a new
demand in the field of transport analysis. It is appropriate
for large size databases with a low number of distinct

items. The experiments have shown that IBM and IBM2
provide better performances than existing algorithms in
most cases. Better response time is reached, while a very
low memory is consumed.
 Experimental results show that IBM2 outperforms
IBM, which in turns outperforms SPAM and PrefixSpan
for large and very large databases. But depending on the
size of the dataset, IBM would be a better choice than
IBM2 for very large database.
 Notice that the proposed data structure for IBM and
IBM2 algorithms and especially the SV vector could be
used for other purposes as similarity search between
sequences and sequence clustering. Therefore, we plan to
use this data structure for efficient sequence clustering
and similarity analysis. Another perspective is to apply it
to different application contexts, as the analysis of
traversal patterns in web usage mining [10], or DNA
mining, and finally to extend the algorithm to customer
sequence databases.
 In the context of the activity-mobility survey, we will
explore the mining of spatial sequences (such as
trajectories) and the extension to multidimensional
sequential patterns as in [13]. Indeed, each daily activity
program is described using many attributes related to the
individual like age, socio-professional category, etc. In
addition, the sequence items may also have attributes as
transport mode, duration, geographical location etc. This
is still a challenging research issue.

6. References

[1] Agrawal R., Srikant R., “Fast Algorithms for Mining
Association Rules”. In Proc. of the 20th Int. Conf. Very
Large Data Bases (VLDB), Santiago, Chile, September
(1994).
[2] Agrawal R., Srikant R., “Mining sequential patterns”.
In Proc. of the 11th Int'l Conference on Data Engineering,
Taipei, Taiwan, March (1995).
[3] Ahonen H., “Finding all maximal frequent sequences
in text”. ICML 1999, Machine Learning in text Data
Analysis Workshop. Bled, Slovenia (1999).
[4] Jay A., Johannes .G, Tomi .Y, Jason F., “Sequential
Pattern Mining Using a Bitmap Representation”.
SIGMOD pp 429-435, July (2002), Edmonton, Alberta,
Canada.
[5] Gardarin G., Pucheral P., Wu F., “Bitmap Based
Algorithms for Mining Association Rules”, 14èmes
Journées Bases de Données Avancées, BDA 1998,
pp157-175, Hammamet, Tunisie, Octobre 1998.
[6] Han, J., Jamil, H. M., Lu, Y., Chen, L., Liao, Y. and
Pei, J. DNA Miner, “A system prototype for mining DNA
sequences”. In the proc. of the ACM SIGMOD, 2001,
Santa Barbara, CA, USA.

[7] Masseglia F., Poncelet P., Teisseire M., “Incremental
mining of sequential patterns in large databases”. Data
Knowledge Engineering 46(1), pp 97-121 (2003).
[8] Ministère de l’Equipement, des Transports et du
Logement. L’enquête ménages déplacements “méthode
standard”. Collections du Certu. Octobre (1998). ISSN
1263-3313.
[9] Pei J., Han J., B. Mortazavi-Asl, and Pinto H.,
“Prefixspan: Mining sequential patterns efficiency by
prefix-projected pat tern growth.” In Proc. of the In-
ternational Conference on Data Engineering (ICDE), pp
215–224, 2001.
[10] Pei J., Han J., B. Mortazavi-Asl and H.Zhu, “Mining
Access Patterns Efficiently from Web Logs”, Proceedings
of the Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pp. 396-407, 2000.

[11] Srikant R., Agrawal R., “Mining Sequential Patterns
: Generalizations and Performance Improvements”. Proc.
5th EDBT, Mars 25-29, (1996). Avignon, France. pp 3-
17.
[12] Wang D., Tao C., “A spatio-temporal data model for
activity-based transport demand modeling”. International
Journal of Geographical Information Science, 2001,
15(6), pp 561-585.
[13] Yu C.-C. and Y.-L. Chen. “Mining sequential
patterns from multidimensional sequence data”. IEEE
Transactions on Knowledge and Data Engineering, 17(1)
pp 136-140, 2005.
[14] Zaki M. J., “Efficient Enumeration of Frequent
Sequences”. Int. Conference on Information and
Knowledge Management, November 1998, Washington
DC.

