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Résumé 
 

La recherche de séquences fréquentes est un des 
problèmes récemment étudié en fouille de données. 
Dans cet article, nous proposons une nouvelle 
méthodologie pour la découverte de séquences 
fréquentes. L’algorithme proposé recherche des 
motifs fréquents en respectant l’ordre des articles.  
Ses performances ont été optimisées grâce aux 
structures et aux index proposés. En effet, il 
n’effectue qu’une seule lecture dans la base de 
données tout en ayant une représentation des 
données peu gourmande en mémoire et performante 
lors de la recherche de sous-séquences fréquentes. 
Les résultats expérimentaux démontrent l’efficacité 
de notre algorithme par rapport aux algorithmes 
existants. Il a été testé dans le contexte d’analyse de 
séquences d’activités de la population dans le cadre 
d’une enquête sur la mobilité urbaine. Les résultats 
expérimentaux démontrent l’efficacité de notre 
méthode comparée aux algorithmes existant. 

 
Abstract 

 
Sequential pattern mining has been an emerging 

problem in data mining. In this paper, we propose a 
new algorithm for mining frequent sequences. It 
processes only one scan of the database thanks to an 
indexed structure associated to a bit map 
representation. Thus, it allows a fast data access 
and a compact storage in main memory. This 
algorithm has been applied to activity sequences 
belonging to a population time-use survey. The 
experimental results show the efficiency of our 
method compared to existing algorithms. 
 
1. Introduction 
 
   The problem of mining sequential patterns was first 
introduced in the context of customer transactions 
analysis [2]. It aims to retrieve frequent patterns in the 
sequences of products purchased by customers through 
time ordered transactions. Several algorithms have been 

proposed in order to improve the performances and to 
reduce required space in memory [4], [14], [11]. Other 
works have concerned mining frequent sequences in 
DNA [6] or text mining [3]. Moreover, some association 
rules algorithms use a bit map structure [5] that requires 
few space in main memory, and gives good performances. 
    The target application in this paper is related to 
population time-use analysis and more precisely their 
daily displacements [8]. The database describes the daily 
activities carried out by each surveyed person at the scale 
of a whole urban area. Thus, for each person of a 
surveyed household, it captures the activity program [12], 
the transport mode used between two activities, the 
departure time, and the duration of the trip. For example, 
during a day, an individual can leave home, take children 
to school, go to work, pick children up from school, and 
come back home. Activity programs of most individuals 
may be the same or be similar. Each activity program 
could be seen as a sequence of single values, making it 
possible to discover frequent activity sequences that 
characterize groups of the surveyed individuals. This 
allows analyzing the mobility of this urban population. 
Likewise, when considering transport mode, schedule or 
duration sequences, it would be possible to determine a 
typology of used transport modes, schedules, and so on. 
   Existing algorithms are either inappropriate or not 
enough efficient to our specific case. Most works [1, 2, 3] 
make multiple scan of the database, which can be 
considered as the main bottleneck of algorithms of 
frequent sequence mining. Furthermore, unlike the 
analysis of sequential transactions where each transaction 
is an item set, our context only focuses on the analysis of 
sequences of items. 
   Although existing works [14, 9, 7, 5] can be applied in 
this context, we propose here a new algorithm more 
appropriate to this particular case. This algorithm only 
makes one scan of the database. The indexed bit map 
structure needs few spaces in the main memory and 
allows a fast access to the data. The experimental results 
show that our algorithm outperforms existing ones. The 
associated index structure directly accesses sequences 
over a given size n, without wasting time accessing 
sequences of size k < n. This also allows the user to 
specify such size constraint and avoids producing 
uninteresting patterns. Specifying size constraint is 
particularly useful in our application field where the size 



of an activity sequence of an individual is characteristic 
of his profile. 
    The paper is organized as follows: section 2 presents 
related works, then, section 3 describes our data structure 
and the proposed algorithms. Section 4 presents their 
performance evaluation and experimental results: a cost 
analysis is given, the performances of the proposed 
algorithms are compared with those from related works 
and a discussion studies the extreme cases and highlights 
the advantages of our approaches. Finally section 5 gives 
a general conclusion summarizes our contribution and 
traces some perspectives. 
 
2. Relate works 
 
   Most works related to mining frequent sequences are in 
the field of customer transaction analysis. Early work on 
frequent patterns -Apriori algorithm- only considered 
transactions, not sequence of transactions [1]. This 
algorithm is costly because it carries out multiple scans of 
the database to determine frequent subsets of items. Three 
algorithms dealing with sequence of transactions are 
presented and compared in [2]: AprioriAll, AprioriSome 
and DynamicSome. AprioriAll algorithm is an adaptation 
of Apriori to sequences where candidate generation and 
support are computed differently. AprioriAll, and 
AprioriSome only compute maximal frequent sequences. 
Their principle is to jump to candidates of size k+next(k) 
in the next scan, where next(k)>1. Maximum frequent 
sequences of lower size that have not been calculated are 
given in the backward phase. The value of next(k) 
increases with Pk = |Lk|/|Ck|, where Lk stands for 
frequent sequences of size k, and Ck the whole generated 
candidates of size k. DynamicSome algorithm is based on 
AprioriSome but uses a jump by a multiple of user 
defined step. 
    SPAM algorithm [4] uses a bitmap representation of 
transaction sequences once the entire database has been 
loaded in a lexicographic tree. The disadvantage in this 
algorithm is that the entire database and all used data 
structures should completely fit into main memory. 
Indeed, this algorithm makes one scan of the database to 
load it in memory at the condition that there is enough 
space. 
   The GSP algorithm [11] exploits the property that all 
contiguous subsequences of a frequent sequence also 
have to be frequent. As Apriori, it generates frequent 
sequences, then candidate sequences by adding one or 
more items. GSP makes multiple scans over the data 
because the source dataset is scanned to evaluate the 
support of candidates.  
   PrefixSpan [9] first finds the frequent items after 
scanning the database once. The sequence database is 
then projected, according to the frequent items, into 

several smaller databases. Finally, all sequential patterns 
are found by recursively growing subsequence fragments 
in each projected database. Employing a divide-and-
conquer strategy with the PatternGrowth methodology, 
PrefixSpan efficiently mines the complete set of patterns. 

 
3. IBM algorithm 
 
   We are  now going to focus on the specific case where 
the considered sequences are basic since they are 
composed of single items, not of a set of items as in the 
transaction sequences mentioned above. We believe this 
is the case of many applications related to tempral events 
or DNA sequences. Our application goal is to find 
frequent sequences in activity programs. This is 
performed by seeking chains of activities (or transport 
modes, or schedules, …) that characterize a group of 
individuals. Our algorithm will be compared to 
PrefixSpan and SPAM, the two most efficients among the 
above mentioned methods. 
   A sequence is said frequent if it is included in a number 
of sequences greater than a support given by the user. The 
inclusion between two sequences s1 = (a1, .., an) and s2 = 
(b1, …, bn):  s1 ⊂ s2 is defined by : 
∃ bi1 = a1,…, bin = an  such that   i1 < i2< …<in. 
 
3.1. Principle of the algorithm 
 
   The proposed approach is two phases. The first stage is 
the data encoding and compression into in-memory data 
structures. The second one is the frequent generation that 
in turn is composed of candidate generation, and 
candidate support checking. 
   The algorithm is based on four data structures: 

1. A Bit Map is a binary matrix representing the 
distinct sequences of the database, 

2. An SV vector encodes all the ordered 
combinations of sequences, 

3. An index (INDEX) on the Bit Map allows a 
direct access to sequences according to their 
size, 

4. An NB table associated to the Bit Map which 
informs about the frequency of each distinct 
sequences. 

   This algorithm only makes one scan of the database 
during which the total number of distinct sequences, the 
frequency of these sequences and the number of sequence 
by size are computed. This allows computing the support 
of each generated sequence. These sequences are 
classified by decreasing size in the IBM and only distinct 
sequences are stored in the Bit Map. An index by size 
allows a direct access to sequences according to their size. 
This structure provides an optimisation since a generated 
sequence s of size t will be directly compared with the 



sequences of the same or upper size stored in the IBM 
(figure 1 and 2). 
   In order to simplify the notations, we represent each 
activity by a specific character, e.g. HSWSH (standing for 
Home, School, Work, School, Home). 
In the figure 1, the sequence vector (SV) is made of 5 
ordered activities (H,W,S,M,H). In this example one 
supposes that the database is composed of three distinct 
sequences of size 5 encoded in the IBM. The bit 1 
indicates the items present in the sequence according to 
the SV and bit 0, those that are not. Here, there are 3 
distinct sequences: (HWH), (HSH), (HSMH). 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1. Indexed bit Map 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The data structure 
 
   In the example above (figure 2), IB
the whole distinct sequences of the d
5. Each cell of the Index indicates the
corresponding size of sequence is st

the cell number 5 (with value 9) corresponds to the line 
number 9 of the first sequence of size 5 encoded in the 
IBM. The table NB associates to the IBM stores the 
frequency of each distinct sequence. Thus the sequence 
(HWRWH) of size 5 has a frequency of 15 in the 
database. 
    In this algorithm, Index, SV, the NB table and IBM are 
built on the fly during one pass. At each insertion of a 
sequence, the IBM may increase in size, and a set of 
shifting operations are applied to the bit values 
stored in this table. 
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02   - Encode and Insert s in the IBM 
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03   - Update NB  
04   - Update Index 
05 End For 
06 k =1 
07 While exists frequent sequence of size k 
08    - k = k+1                                           
09    - Generate Ck 
10    - Gen-frequent-sequences (t) 
11 End While 
H = Home 
W = Work 
S = School 
M = Market 
R = Restaurant 
M is composed of 
atabase of size 1 to 
 first line where the 
ored. For example, 

Figure 3. IBM algorithm 

   Figure 3 shows the general IBM algorithm that takes as 
parameters: the batabase of sequences DB and a threshold 
t. This value (t) stands for the minimum frequency of the 
sequences which will be taken into account for the 
generation of the candidates. Then for each sequence, it 
reads from the database during the scan, the SV (line 01) 
is generated using a merging process (see section 3.2). If 
the sequence already exists in SV, only the NB table is 
updated (line 03): the line corresponding to this sequence 
in NB (and encoded in the IBM) is incremented. So, the 
frequency corresponding to this value is incremented. 
Else, if the sequence is not presented in SV, it is 
generated by the Gen-sequence-vector(s) function 
(section 3.2). The height of the IBM is increased to one 
line (line 02), the length is increased to the SV length, and 
the Index (line 04) is updated. Then, a set of shifting 
operations is applied to the IBM in order to preserve the 
initial values of existing sequences while encoding the 
new one. 
    Once all the data have been encoded in this structure 
(SV, IBM, NB, Index), new candidates (line 09) are 
generated (see section 3.3) and compared to the data 
stored in the IBM (line 10) with a fast access thanks to 
the Index. 
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Gen-sequence-vector(s): 
00 - SV = φ   //SV empty at 
                                           // the beginning 
01 current_position = 0 //position mark in 
SV 
02  -  For each item a of s 
03     - If a ∉ SV 
04       - If ∃ b ∈ s such that b ∈ SV 

and position(b) > position(a) in s 
and position(b) > current_position in
SV 

05           - Insert a before b 
06      - Else insert a at the end of SV  
07      current_position = position(a) in SV 
During the scan, the frequencies of all items are 
mputed. Those whose support is underneath the one 
ecified by the user are deleted. Then, candidates are 
nerated from these frequent items. Candidate 
neration is realized using the fusion process (joining 
ase) as in the GSP algorithm [11]: 
Given a sequence s = (s1s2…sn) of size n and two 
ndidate sequences c = (c1 c2 …cn-1) and c’ = (c’1 c’2 
 c’n-1) of size n-1, s is generated from c and c’ if the 
llowing conditions hold: 
∀ i ∈[2..n-1], ci = c’i-1.  ( n > 3). c and c’ have a 
mmon contiguous subsequence of size n-2. 
if n = 3, c2 = c’1. c and c’ have only one item in 
mmon. 
if n = 2, c = (c1) and c’ = (c’1). Then s = (c1 c’1). 
Then in case 1 and 2, s is generated as follow: ∀ i 
1..n-1], si = ci. And ∀ j ∈[1..n-1], sj+1 = c’j.

For example, consider the two candidates sequences c = 
MH) and c’ = (MHM) of size 3. (MH) is a common 

ntiguous subsequence of c and c’, and of size 2. Thus 
e candidate s = (MMHM) is generated from c and c’. 

4. Support counting 

Once the candidates have been generated, their 
quencies can be determined using the data structure. 
r a given candidate C of size S, the algorithm first 

oks in the cell number S of the Index where the first 
quence of size S is encoded. Then, this line l is 
cessed. For each line starting from the line l to the last 
e of IBM table, the algorithm determines using the SV 



vector if C is contained in each line of IBM. If so, the 
corresponding frequency of this sequence stored in the 
NB table, is added to the frequency of the candidate. 
After the comparison with each line until the last one, the 
support of C is computed (see figure 6). 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
Figure 6. Example of candidate support counting 

   Suppose C = (HSH) of size S = 3. Then, the algorihtm 
will access to the cell number 3 of the Index which pin 
point to the line 3 of the IBM table, where the first 
sequence of size 3 starts. This sequence does not contain 
C. But sequences in line 4 to 6 contain C. So the 
frequency of C is computed as 30+20+15 = 65. 
   The support of C is equal to 65 / 
(100+60+40+30+20+15) = 0.245. If the support threshold 
is equal to 0.4, C candidate will not be retained as 
frequent pattern. 
 
3.5. IBM2 proposal 
 
   The advantage of the data structure proposed in IBM is 
that it takes a few memory spaces. However, since the bit 
variable is not provided in programming languages like 
Java, C++, IBM algorithm need to decode the binary 
representation. Therefore, shifting operations are required 
to check each cell of the bit map for a given position in 
SV. This leads to decrease the performances of 
processing time. 
   In order to avoid these superfluous computations, we 
propose the IBM2 algorithm, where the bit map is 
replaced by a Boolean matrix, i.e. where cells are 
declared of Boolean type, which takes 8 bits for each cell. 
Although this solution requires more space in memory, 
the access to the target value stored in the Boolean matrix 
is done directly without shifting computations. The result 

of their respective performances is detailed in the next 
section and compared with SPAM and PrefixSpan. 
 
4. Experimentations and performances 
analysis 
 H   W    S    M    H    R    W   H 
   This section first gives some results for our application, 
and then reports the performance analysis. An analytical 
evaluation is provided in section 4.2 followed by 
experimental tests. Finally, those results are discussed in 
section 4.4. 
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4.1. Analysis of population time survey 
 
   The IBM has been performed on real data related to 
daily activity programs of the population of Lille (a 
French town). In this application, the number of items is 
about 10, the number of sequences is 10800; while 
distinct sequences are about 3429; the sequence size 
varies between 2 and 34 with a mean of size equals to 6. 
We have discovered some interesting patterns among 
which: 
 

 49% of the population do (Home, Leisure, 
Home). 

 Only 37% of the population do (Home, Work, 
Home). 

 9% of the population do (Home, Work, Home, 
Work, Home). 

  11% of the population do (Home, School, 
Leisure, Home). 

 8% of the population do (Home, Shopping, 
Home, Leisure, Home). 

 
   These results allow better understanding the daily 
activity and mobility for a given population, which is 
useful in decision support. As an example, based on such 
results, policy makers may improve their transport policy 
 
4.2. Performance evaluation 
 
   The cost analysis is based on the evaluation of the 
number of memory accesses, to determine the frequencies 
of the generated sub-sequences. Here, the cost is 
computed without taking into account the cost to generate 
candidates. Notations and parameters are listed in the 
table 1 below. 
   The cost to determine the frequency for one sub-
sequence c is equal to: 
   Eq1: Cost(c) = Cindex + CNB + CSV + CIBM. 
   Where the cost to access a specified value in the Index 
is : 
   Eq.2:  Cindex = 1 

1      0    0     0     0     0     0     0 
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1    0     1      0     0     1     0     0 
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   This Index access will determine the starting position 
(pos) in the IBM for sequences to be compared with a 
candidate of size LSS (Index[LSS] = pos). The number of 
such lines is: 
Eq.3: CNB = n – posc. 
 
4.2.1. Cost evaluation for IBM2 
 
   The cost to compare a sub-sequence of size LSS with SV 
is equal to: 
Eq.4:  E

SS

SV
cLSSSV CcLC )(*)(=

))!((!
!*)(

cLSVL
SVcLC

SSESS

E
SSSV −

=  

Proof: 
   In order to compare c with SV, all sub-sequences of 
size LSS(c) in SV must be compared to c. The number of 
combinations of M=LSS(c) items among a list of N=SVE 
items is a common formula given by: 

)!(!
!

MNM
NC N

M −
=  

   The number of comparisons for each item of a 
candidate c with a SV sub-sequence is equal to M. The 
cost to compare a candidate c with SV is equal to: 

)!(!
!**

MNM
NMCM N

M −
=  
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Example: 
   Suppose a sequence vector SV = (a, b, c d) of size SVE 
= 4 and a candidate sub-sequence c of size LSS(c) = 3. 
Then c can match with the following 4 sub-sequences of 
SV: (a,b,c), (a,b,d), (a,c,d), (b,c,d). The number of 
comparison to find c in SV is equal to 3*4=12 memory 
accesses is necessary to compare c with SV, which is 

equal to: 
)!34(!3

!4*3
−

 

   Finally to compare a candidate c in the bit map 
structure, CIBM = (n – posc) * CSV, since it is compared 
from position posc to the top. 
 
Eq. 5:  E
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SV
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   Based on the above equations, Eq. 1 to Eq.5, frequency 
calculation for one candidate c is: 
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   Then for all of the N generated candidates (noted i for 
simplification), the algorithm cost C is equal to: 
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4.2.2. Cost evaluation for IBM 
 
   Using IBM, shifting operations are required to get the 
value of a bit. For implementation, the Bit Map is in fact 
composed of a Byte Map, where each Byte encodes 8 
bits. Then the maximum number of memory accesses to 
retrieve a specific bit value is equal to 8. 
   Then, the cost for IBM is equal to: 
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Cost(k)   The cost of frequency calculation   
                for k candidate sub-sequences. 
Cindex       The access cost to a specified value in  
                the Index. 
CNB          The number of accessed lines in NB. 

CSV          The cost of comparison of a given sub- 
                 sequence with SV. 
CIBM         The cost of comparison of a given sub- 
               sequence with sequences stored in IBM.

Tss         The number of items in a given sub- 
               sequence. 

SVE         The number of elements in SV 

n              The total number of lines in IBM 

N             The total number of generated  
               Candidates.

 
Table 1. Notations and parameters 
 
 
 
 
 

Posc       Position of the first sequence in 
               the bit map of size equal to c size 

 



4.2.3. Remarks 

 According to the above formulas, the cost depends on: 

1. The number m of lines to scan in the Bit Map (m 

2. f SV (SVE). 
SS(i)). 

   
hen the threshold increases, the number of generated 

r of 

t with our experimental results 

.3. Performance measurements 

he experiments aimed to validate our approach and to 

.3.1. Processing time cost 

                                                

 
  
 

= n – posi). 
The length o

3. The length of a candidate sub-sequence (L
4. The number of generated candidates (N). 

  W
candidates N will decrease. Then the cost of retrieving all 
frequent patterns for great support will also decrease. 
   Inversely, when the threshold decreases, the numbe
generated candidates N increases. Thus the cost of 
retrieving all frequent patterns will increase. The number 
of lines to scan in the Bit or Boolean Map will be 
numerous. This has a direct repercussion in the 
processing time. 
   This is consisten
illustrated from figures 7 to 10 in next section 
 
4
 
T
compare it to other methods. This comparison focuses on 
processing performances, storage costs, and scalability. 
The tests were performed on a 2.5Ghz Pentium IV with 1 
GB of memory running Microsoft Windows XP 
Professional, with three different sizes of datasets: 
100,000; 300,000; 600,000; and 1,000,000 rows. Items 
and the size of the sequences have been randomly 
generated for the experimentations. The size of sequences 
is randomly generated from 2 to 60, and the number of 
distinct items is about 10 (from 0 to 9). For our 
experimentations, we have used the packages PrefixSpan-
0.4.tar.gz1 and Spam.1.3.1.tar.gz2. 
 
4
 

 
1 http://chasen.org/~taku/software/prefixspan/ 
2 http://himalaya-tools.sourceforge.net/Spam/#download 
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Figure. 7. Performances with 100,000 rows 
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  Figure. 8. Performances with 300,000 rows 
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Figure. 9. Performances with 600,000 rows 
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Figure. 10. Performances with 1,000,000 rows 

   Notice that IBM and IBM2 have been implemented in 
JAVA, and perform a database scan, whereas PrefixSpan 
and SPAM have been implemented in C++ and read the 
dataset from a file. Although SPAM and PrefixSpan 
development environment is theoretically more favorable, 
IBM and IBM2 outperform SPAM and PrefixSpan as 
shown in the figures above, especially in the context of 
small number of items. This arises in several applications 
as the one treated here, or for mining web traversal 
patterns (the number of distinct web pages is limited). 
Notice that beyond 700,000 rows with 512 MB of 
memory, PrefixSpan crashes because its data structure 
does not fit in the main memory, whereas IBM and IBM2 
run efficiently and do not require much more memory 
resources than for smaller databases. We have pushed the 
experimentation to 1,000,000 sequences. These 
experiments show that IBM and IBM2 are more 
appropriate for large databases than SPAM and 
PrefixSpan. 
   The experimentations show that the larger is the 
database size, the more IBM and IBM2 outperform 
SPAM and PrefixSpan. This is because IBM and IBM2 
make only one scan of the database, and have an efficient 
and compact structure allowing a fast retrieval of frequent 
sub-sequences. According to the analytical assessments 
(section 4.2), the number of memory accesses increase 
with low threshold. In consequence, the performances of 
IBM and IBM2 will decrease. This has been confirmed by 
the tests as seen in figures 7 to 10, where IBM and IBM2 
curves goes up inversely with the threshold.   
   There is only one case where PrefixSpan outperforms 
IBM (see figure 7). This occurs for small size of dataset 
(here 100,000 rows) and small support threshold (here 
0.2). This is because: (i) the number of candidates to 
compare increases when the support is low. This 

comparison in IBM requires many shifting operations, 
which affects the performances; (ii) scanning a small 
database in PrefixSpan will requires less I/O. 
   Compared to IBM, IBM2 and PrefixSpan, SPAM 
performs linearly and outperforms both PrefixSpan and 
IBM, when the support threshold becomes small: under 
0.2 with 100,000 and 300,000 rows (figure 8). Beyond 
300,000 rows, SPAM data structure requires too much 
memory space and may overflow depending on the used 
platform (see figure 11). 
But whatever is the size of the database, IBM2 always 
outperforms SPAM, PrefixSpan, and IBM because no 
shifting operation is required. 
 
4.3.2. Storage cost 
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Figure. 11. Memory consumption 
 
   Figure 11 shows the total memory consumption (in 
Mega Bytes) used by IBM and IBM2, SPAM, and 
PrefixSpan. 
For instance, with a database composed of 600,000 rows, 
SV contains about 265 values for 90,000 distinct rows. 
The size of the Boolean Map is then equal to: 265*90,000 
= 23.85 Mega Bytes (a Boolean is encoded on 8 bits). As 
IBM is 8 times more compact, .the size of the Bit Map is 
less than 3 MB. With 1000,000 rows (figure 10), SV 
contains 370 elements for 160,000 distinct rows. Then, 
the size of the Boolean Map reaches 59.2 MB, whereas 
the size of the Bit Map fits in 7.5 MB. 
 
 
 
 
 
 



4.3. Discussion 
 
   These results show that IBM is more appropriate than 
IBM2 for very large databases, due to data compression. 
However, IBM2 runs faster than IBM. This is due to the 
costs of shifting operations necessary to access target 
values, while IBM2 directly accesses the target 
sequences. As we can see in figure 11, memory 
consumption using IBM and IBM2 compared to SPAM 
and PrefixSpan becomes insignificant when the size of 
dataset becomes large. For example with 1,000,000 rows, 
the total memory consumption for IBM used by Java is 
equal to 28 MB (81 with IBM2) whereas for PrefixSpan, 
it is about 468 MB. 
   The size of the bit map also depends on the size of SV, 
which also increases with the number of distinct 
sequences. Notice that SV size does not depend on the 
size of the database itself. In fact, it only increases when 
the encountered sequence can not be encoded using the 
current SV. Moreover, not all the items of the inserted 
sequence are added in SV, but only those that are not 
present in the same order. Finally, since the probability to 
find common ordered items between SV and the current 
sequence becomes high as the building process advances, 
SV size becomes stable regardless of the size of the 
database. 
   In order to prove the efficiency of IBM in extreme 
cases, we have performed a test with a sequence cT of the 
following form: (H,W,H,W,H,W, … ,H,W) of size 200, 
composed of repeated series of H and W items. This type 
of sequence may increase the size of the data structure. 
This experiment aims first to demonstrate that this 
situation does not affect the processing costs.  The second 
goal is to evaluate the loss of storage performance. 
   Tests have been done with datasets composed of 
600,000 and 1,000,000 sequences. Indeed, no variation of 
processing costs has been detected. This is because, 
according to the sequence vector generation algorithm 
(section 3.2), the items (H or W) that are not located in 
other sequences are put at the end of SV. Therefore, 
unless repeated series are actually frequent in the 
database, the probability to have long repeated series of 
HW in the middle of SV is very low. Then, using the data 
structure for candidate generation and frequent patterns 
will not be affected, because the items H,W put at the end 
of the structure would never been accessed. 
   Concerning the storages costs, we have estimated and 
experimentally testes the loss of performances. For a 
dataset composed of 600,000 sequences, the size of SV 
varies from 265 to 328 values, with the new inserted test 
cT sequence. Then the size of the Boolean Map is equal 
to: 328*90,000 = 29.52 Mega Bytes, and 3.69 MB for the 
Bit Map. This corresponds to about 19% more storage 
cost compared to the case without cT. 

   For a dataset composed of 1,000,000 sequences, the 
size of SV varies from 370 to 415 values. The size of the 
Boolean Map is equal to: 415*160,000 = 66.40 Mega 
Bytes, and 8.30 Mega Bytes for the Bit Map. This 
represents 10% more storage cost. 
   The theoretical loss and the experimental memory 
measurements are given in figure 12 and 13. 
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Figure. 12.  Memory Loss Analytical Performances 
 
   In figure 12, the theoretical loss is estimated by: 
 

SizeMapevious
SizeMapNewloss
__Pr

__
−=  

 
   Previous_Map_Size stands for the Boolean or Bit Map 
without insertion of the test sequence, and 
New_Map_Size stands for the Boolean or Bit Map with 
insertion of the test sequence. Here we can notice that the 
size of the bit map is increased to roughly 19% with a 
dataset composed of 600,000 sequences, and 10% with 
1,000,000 sequences. Here, the loss is less important for 
the dataset composed of 1,000,000 sequences than for 
600,000 sequences (figure 12). This is because the more 
SV is long and the more the items composing a sequence 
have a higher probability to be found in SV. This also 
explains the gap performances between IBM and IBM2 
with SPAM and PrefixSpan when the size of the dataset, 
and thus the size of SV, become greater. 
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Figure. 13.  Comparison of Storage Performances  

   Figure 13 gives the experimental measurements of 
memory consumption using datasets without cT test 
sequence insertion (600,000 seq. and 1,000,000 seq.) and 
with cT insertion (600,000 test seq. and 1,000,000 test 
seq.). 
   Here we can notice that the insertion of the cT test 
sequence have a repercussion in the allocated size for 
IBM and IBM2, especially for a dataset composed of 
600,000 sequences. But the variation of the memory 
allocation becomes insignificant with a higher SV size 
(with a dataset composed of 1,000,000 sequences). 
  The processing time for both datasets remains the same 
as in figure 9 and 10, since the items H,W located at the 
end of SV are never accessed. 
 
5. Conclusion and perspectives 
 
This paper presents a new algorithm IBM and a variation 
IBM2. The aim of this algorithm is to find all frequent 
sequences in item sequences. It has been applied to 
discover all frequent activity sequences in the time use 
database within an urban environment. IBM only makes 
one scan of the database and provides efficient data 
structure optimizing memory space occupancy, and 
access costs. The use of the specified index provides 
another optimization of comparisons during candidate 
counting. 
The proposed algorithm allows complying with a new 
demand in the field of transport analysis. It is appropriate 
for large size databases with a low number of distinct 

items. The experiments have shown that IBM and IBM2 
provide better performances than existing algorithms in 
most cases. Better response time is reached, while a very 
low memory is consumed. 
    Experimental results show that IBM2 outperforms 
IBM, which in turns outperforms SPAM and PrefixSpan 
for large and very large databases. But depending on the 
size of the dataset, IBM would be a better choice than 
IBM2 for very large database. 
   Notice that the proposed data structure for IBM and 
IBM2 algorithms and especially the SV vector could be 
used for other purposes as similarity search between 
sequences and sequence clustering.  Therefore, we plan to 
use this data structure for efficient sequence clustering 
and similarity analysis. Another perspective is to apply it 
to different application contexts, as the analysis of 
traversal patterns in web usage mining [10], or DNA 
mining, and finally to extend the algorithm to customer 
sequence databases. 
   In the context of the activity-mobility survey, we will 
explore the mining of spatial sequences (such as 
trajectories) and the extension to multidimensional 
sequential patterns as in [13]. Indeed, each daily activity 
program is described using many attributes related to the 
individual like age, socio-professional category, etc. In 
addition, the sequence items may also have attributes as 
transport mode, duration, geographical location etc. This 
is still a challenging research issue. 
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