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The term Industry 4.0 has become increasingly pervasive in the context of industrial
manufacturing and it has been considered the fourth industrial revolution (Henning [1]).
The industrial transformation in the fourth industrial revolution is fueling the shift to Smart
Manufacturing. By integrating advanced technologies like Industrial Internet of Things
(IIoT), Big Data, Cloud Computing, Artificial Intelligence (AI), manufacturing will become
intelligent and independently perform complex tasks such as predictive maintenance
of machines, monitoring and optimizing the quality of products, see [2–5] for example.
According to [6], the application of the IIoT in Smart Manufacturing could lead to a decrease
in: production costs by 10–30%, logistics costs by 10–30% and quality management costs
by 10–30%. It is now at the center of Industry 4.0 and attracts a lot of interest from
governments, enterprises, and researchers for implementing Smart Manufacturing, see [7]
for more details. Recently, an extensive review of technologies for smart manufacturing
systems has been conducted in the research of Alcácer and Cruz-Machado [8].

A vital characteristic of the IIoT is that sensors are embedded in all the components
related to the manufacturing process. These sensors act as the “senses” for collecting
data from the supply, production, storage, distribution, and consumption of products
for development in industrial supply chain analysis and optimization, product quality
control, and active maintenance [9,10]. Thanks to the data from these processes, advanced
computing technologies now perform efficiently and bring intelligence to manufacturing
with AI technology. It brings countless advantages to Smart Manufacturing, involving
optimization of all stages of the manufacturing process, reducing waste, and creating new
smart products and services with high quality. AI technology now plays the role of a “brain”
for Smart Manufacturing.

Towards Smart Manufacturing is a long-term and not straightforward process. It
requires deep insight into a multiplicity of advanced and modern technologies that are
integrated into this process. This Special Issue aims to offer a systematic overview of this
research field and provide innovative developments with respect to the current challenges
and opportunities for the applications of artificial intelligence in smart manufacturing.
It provides a leading forum for disseminating the latest results of theoretical research,
technological development, and applications of AI in Smart Manufacturing.

The aim of this Special Issue is to highlight innovative developments with respect
to the current challenges and opportunities for the applications of artificial intelligence
in smart manufacturing. Topics include but are not limited to the following: real-time
monitoring with machine learning and deep learning; artificial intelligence for predictive
maintenance; artificial intelligence for smarter cybersecurity; production scheduling with
reinforcement learning; artificial intelligence and robotics in smart manufacturing; IoT-
enabled smart manufacturing; digital twin-driven smart manufacturing.

This Special Issue uncovers fundamental principles and recent developments in the
applications of artificial intelligence in smart manufacturing. The Special Issue contains
19 papers. It attempts to cover the issues related to key enabling technologies for smart
manufacturing such as product quality inspection based on deep learning, remaining
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useful life prediction for predictive maintenance based on deep learning, Machine Vision
Systems, intelligent recommender system, Intelligent Decision-Making of Scheduling
for Dynamic Permutation Flowshop via Deep Reinforcement Learning, Real-Time and
Explainable Process Monitoring, Intelligence-Driven Decision Support System. These
contributions represent an advance in the state-of-the-art of key enabling technologies for
smart manufacturing [11–29]. The richness and diverseness of the papers submitted to
this Special Issue confirm the importance of applications of AI in Smart Manufacturing.
The hope is that the research ideas, results and achievements will inspire active researchers
in this field and will contribute to the further development of this important domain.
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