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Abstract: Stainless steel 304 (SS304) experiences corrosion when it is exposed to a saline atmosphere,
which attains severity due to its high surface wettability. Topographical modification of metallic
surfaces is an effective route to reduce wettability and thereby mitigate liquid-mediated corrosion. In
this work, topographical modification of stainless steel 304 flat surface in the form of micropillars
was done (pillar width: 100 µm, inter-pillar distance: 100 µm and height: 80 µm). Micropillars were
fabricated by a chemical etching process. Wetting and corrosion of the micropillars was studied over
long-time duration in comparison with flat surface, before and after intermittent and continuous
exposures to saline water for 168 h. Wetting was characterized by measuring the static water
contact angle on the test surfaces and their corrosion by electrochemical polarization tests (electrolyte:
3.5 wt.% sodium chloride solution). The relationship between the nature of wetting of the test surfaces
and their corrosion was examined. Micropillars showed predominantly composite wetting over a
long time, which imparted an effective resistance against corrosion over a long time to the SS304
surface. When compared to the flat surface, the corrosion rates of the micropillars were lower by two
orders of magnitude, prior to and also upon long-time contact with the NaCl solution. Micropillars
lowered corrosion due to composite wetting, i.e., solid-liquid-air interface that reduced the area that
was in contact with the NaCl solution. The efficiency of corrosion inhibition (η) of micropillars was
88% before long-time contact, 84% after intermittent contact, and 77% after continuous contact with
NaCl solution. Topographical modification in the form of micropillars that can impart composite
wetting is an effective route to induce long-term anticorrosion ability to the SS304 surface.

Keywords: 304 stainless steel; micropillars; wettability; corrosion; saline water

1. Introduction

Micropatterning of metallic surfaces is an effective route to lower liquid-mediated
corrosion [1]. Micropatterns can offer efficiency of corrosion inhibition that is comparable
to those that are obtained by chemical modification of metallic surfaces [1]. Micropatterns
have several advantages over conventional approaches that mitigate corrosion such as thin
films/coatings, electroplating, paints, and inhibitors, e.g., absence of interface between
surface and corrosive media, devoid of complex chemical processes, easy to design and
fabricate patterns of varying geometries (i.e., shape/size), multifunctionality (e.g., drag
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reduction, antifouling, anti-frosting/icing, and antifriction [2–4]). The advantages of
micropatterning of surfaces, in detail, are given in [1].

Metallic micropatterns that have been reported to effectively reduce liquid-mediated
corrosion include: microcell structures that are fabricated on aluminum surfaces by laser
direct writing technique [5], patterns of micro-holes that are generated by laser ablation on
nickel surfaces [6], micro-holes that are created on 316LVM stainless steel wires by focused
ion beam (FIB) method [7], textures on SS316L that are produced by Nd:YAG nanosec-
ond laser [8], chemically-etched microchannels on 304 stainless steel surfaces [9], and
laser-textured and heat-treated aluminum 7075 alloy [10]. However, these studies [5–10]
report one-time testing of corrosion of micropatterns. Recent work on hydrophobic SS304
microgrooves reports that micropatterning provides long-term antiwetting and long-term
anticorrosion abilities [1]. Long-term examination of wetting and corrosion of micropatterns
is important as it provides insights for application purposes. Using additive manufacturing
technology, metallic parts with micropatterns can be fabricated in one-step. Figure 1 shows
micropillars on a copper part printed in a single step by FluidFM 3DP method [11]. Addi-
tive manufacturing of micropatterns having anticorrosion capabilities can be easily realized
on metallic surfaces without resorting to post-manufacturing machining/processing.
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Figure 1. Micropillars on a copper part printed in a single step by FluidFM 3DP method [11].

Stainless steel 304 (SS304) has application in structures/architecture, food processing,
biomedical, automobile, and aerospace industries [12]. SS304 is resistant to chemicals
due to the presence of chromium element. However, it is prone to corrosion in salt-
water due to the presence of aggressive chloride ions [13,14]. High surface wettability
of the steel aggravates salt-water corrosion [1,13,14]. Hence, by reducing the surface
wettability of the steel, its corrosion by salt-water can be reduced. Consequently, its
performance can be enhanced in humid/marine environments. Micropatterning of metallic
surfaces for anticorrosion functionality can be easily realized due to flexibility in the
geometrical design of micropatterns that can impart composite wetting. Hydrophobic
SS304 microgrooves, anisotropic in their geometry and wetting nature have shown long-
term anticorrosion ability against saline water [1]. In this work, micropatterns in the
form of micropillars, isotropic in their geometry and wetting nature, fabricated on SS304
flat surfaces were examined for their long-time wettability characteristics and corrosion
response over a long time, when exposed to saline water. The objective was to identify the
effectiveness of micropillar topography on SS304 to reduce corrosion in saline water, over
long-time duration.

2. Materials and Methods

As-received SS304 steel surfaces were polished using emery sheets (grit size: 80,
120, 220, 400, 600, 1000, and 2000). Subsequently, the surfaces were subjected to diamond
polishing. The polished surfaces were cleaned with acetone. Using a 3D optical profilometer
(WYKO NT1100, Champaign, IL, USA), the roughness of the surfaces was measured. The
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average surface roughness (Ra) of the polished surfaces was 0.015 µm. These surfaces
were taken as the reference surface and are referred to as flat surface. The flat surface and
topographically-modified flat surface in the form of micropillars were taken as the test
surfaces. Data on the wettability and corrosion behaviour of SS304 flat surface is referred
from [1].

2.1. SS304 Micropillar Surfaces

Square shaped micropillars (MP) were fabricated on SS304 flat surfaces by chemical
etching. MP was fabricated by PCM Crafts Pvt Ltd., Bengaluru, India [9]. In the first step,
the cleaning of SS304 flat surfaces was conducted using acetone, followed by distilled water,
and subsequently dried (Figure 2a). Next, a photoresist was coated on the flat surfaces via
spin coating at the speed of 500 rpm, at 25 ◦C with a stay time of 30 s. A square micropattern
design was engraved on the photoresist using a laser (Figure 2b). An etchant solution
of ferric chloride mixed with water in equal proportion was prepared and was kept for
2 h to stabilize. Hydrofluoric acid was added to the prepared solution in the ratio of 1:10.
Subsequently, the flat surfaces with their photomasks were dipped in the etchant solution
(Figure 2c). Areas on the flat surfaces that were not covered by photomasks got chemically
etched, leaving behind micropillars on top of the flat surfaces (Figure 2d). The fabricated
MP was thoroughly cleaned with acetic acid mixed with deionized water in the proportion
of 1:10, to remove photoresist that was sticking on the surface (Figure 2e).
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Figure 2. Fabrication of micropillars on SS304 flat surface using a chemical etching method. (a) SS304
flat surface, (b) square micropattern design engraved on the photoresist coated on the flat surface,
(c) flat surface with photomask dipped in an etchant solution, (d) micropillars on top of the flat
surface, and (e) micropillars upon removal of photomask.

An image of MP that was taken by an optical 3D profilometer (WYKO NT1100,
Champaign, IL, USA) is shown in Figure 3a. The spatial distribution of micropillars (unit
cell) and geometrical parameters of MP, namely pillar width (Wp ≈ 100 µm), inter-pillar
distance (Dp ≈ 100 µm), and pillar height (Hp ≈ 80 µm) are shown as schematics in
Figure 3b,c. A scanning electron microscope (SEM) image of MP that was taken after
fabrication is shown in Figure 3d and an optical microscope image is shown in Figure 3e.
Using the optical profilometer, the roughness (Ra) was measured on top of the surfaces of
the micropillars. The average value of the surface roughness (Ra) was 0.018 µm.
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Figure 3. (a) Image of micropillar surface (MP) taken by a 3D optical profilometer. (b) Spatial
distribution of micropillars on the flat surface (unit cell). (c) Geometrical parameters of MP: pillar
width (Wp ≈ 100 µm), inter-pillar distance (Dp ≈ 100 µm) and pillar height (Hp ≈ 80 µm). (d) SEM
image of MP taken after fabrication. (e) Optical microscope image of MP.

2.2. Wettability Test

The wettability test was conducted by measuring the static water contact angle (CA)
on the flat and MP surface. Before each measurement, using acetone and distilled water, the
test surfaces were cleaned and subsequently dried. Measurements were conducted using a
contact angle goniometer (Data Physics OCA15EC, Filderstadt, Germany), by placing water
droplets (distilled water, droplet volume 5 µL) on the test surfaces. CA values reported are
averages from ten measurements (error ± 2◦).

2.3. Electrochemical Polarization Test

Potentiodynamic polarization tests were conducted with saline water as the elec-
trolyte (3.5 wt.% NaCl solution), using an electrochemical workstation (Autolab, Metrohm,
The Netherlands). Working electrodes were the test surfaces, reference electrodes were
Ag/AgCl, and the counter electrode was platinum. Prior to testing, the test surfaces were
dipped in saline water (contact area 1 cm2) for 60 min to attain steady state open circuit
potential. Subsequently, corrosion tests were conducted and polarization curves were
recorded (scan rate: 1 mV/s; potential range for each test surface was ±0.1 V relative to its
open circuit potential [1]). From the curves, the corrosion potential (Ecorr) and corrosion
current density (icorr) were determined. Using Stern–Geary relation [15], the corrosion rates
were estimated.

2.4. Long-Time Exposures to NaCl Solution

Long-time exposure to NaCl solution was conducted under two conditions:

(i) Intermittent exposure: saline water droplets were dispensed on the test surfaces (kept
inclined at 45◦, industrial weathering tests [16]) at the rate of 1 droplet/s, using a
droplet generator, for 168 h.

(ii) Continuous exposure: flat and MP samples were immersed in saline water for the
duration of 168 h, separately.

The CA was measured at the interval of every 24 h for 168 h. Before measuring CA,
the test samples were subjected to drying in an open atmosphere for 30 min [1].
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A corrosion test of the flat surface and MP was conducted before and after long-time
exposures to 3.5 wt.% NaCl solution (i.e., saline water). Before conducting the corrosion
test, all test samples (i.e., those subjected to long-time exposures and that which was not
exposed) were cleaned with acetone and dried in open atmosphere for 15 min. The test
samples namely, flat surface and MP were characterized for their wetting and corrosion
behavior on one sample for each test condition, respectively (i.e., prior to, intermittent,
continuous exposures to NaCl solution). The CA values that are reported are averages
from ten measurements. The surfaces that were used to measure contact angles, were
subsequently subjected to corrosion test (one test was conducted for each condition of
exposure to NaCl solution).

3. Results & Discussion
3.1. Wetting Behaviour

Chemical modifications of metallic surfaces prevented contact with corrosive fluids
and thus acts as a barrier to chemicals, e.g., thin films, coatings, electroplating, paints, etc.
Contrarily, in topographically-modified surfaces, e.g., micropatterned surfaces, the surfaces
remain in contact with corrosive fluids, and hence their wettability directly influences
their corrosion. The contact angle of water drop (CA) on a surface is an indicator of the
wettability of the surface.

The measured CA value of the flat surface and MP as a function of exposure time
to NaCl solution (t), for intermittent exposure and continuous exposure, are shown in
Figure 4a,b, respectively. Figure 4 also shows representative pictures of the water droplets
on the test surfaces, taken before and after long-time exposures to NaCl solution. The CA
values of the flat surface and MP, measured prior to (0 h), and after intermittent contact
and continuous contact with NaCl solution (168 h) are given in Table 1.
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Figure 4. Measured contact angle value (CA) of the flat surface and MP as a function of exposure
time to the NaCl solution (t ≈ 168 h): (a) intermittent exposure and (b) continuous exposure. Insets in
(a,b) show images of water droplets on the flat surface, taken before and after long-time contacts with
NaCl solution, in the corresponding conditions of exposure. Images of water droplets on micropillar
surface (MP): (c) before long-time exposure, (d) after intermittent exposure and (e) after continuous
exposure to NaCl solution.
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Table 1. Water contact angles (CA) of the flat surface [1] and micropillar surface (MP) prior to and (I)
after intermittent contact and (II) after continuous contact with NaCl solution. θr values (θr = contact
angle prior to long-time exposure—contact angle after long-time exposure) of the flat surface [1] and
MP: (I) after intermittent contact and (II) after continuous contact with NaCl solution.

Surface

Contact Angle (◦) θr (◦)

Prior to Long-Time
Contacts I II I II

Flat 77.7 69.1 68.2 8.6 9.5
MP 131.7 129.6 128.9 2.1 2.8

Wetting of water droplets on micropatterned surfaces is usually explained by two
classical theoretical models, the Wenzel model and the Cassie–Baxter model [17]. According
to these models: (i) water droplet in the Wenzel state, due to solid-liquid interface, wets the
top of surface features and the area between them, i.e., complete wetting, and (ii) water
droplet in Cassie–Baxter state, due to solid-liquid-air interface, wets the top of surface
features, with air trapped in between the surface features, i.e., composite wetting. There
exists a critical angle of transition from the Wenzel state to Cassie–Baxter state (θC), above
which a water droplet on a micropatterned surface attains Cassie–Baxter state. θC can be
theoretically estimated for micropillars, as given by Equation (1) [18].

Cos θC = (f − 1)/(r − f) (1)

where, θC is the critical angle, r is the roughness parameter (ratio of the actual total surface
area and planar surface area), and f is the solid fraction (ratio of the actual wetted surface
area and planar surface area). Roughness parameter (r) for square shaped micropillars can
be estimated by using Equation (2) [19].

r = 1 + 4 (WpHp)/P2 (2)

where, Wp is the micropillar width, Hp is the micropillar height, and P is the pitch (distance
between the centers of two adjacent micropillars). The solid fraction (f) for square shaped
micropillars is given by Wp

2/P2 [19]. In the present case, for MP: Wp is 100 µm, Hp is
80 µm and P is 200 µm. The roughness parameter (r) is 1.8, solid fraction (f) is 0.25, and θC
is 118.9◦. The measured CA vales of MP are higher than the estimated θC value (Table 1).
The Cassie–Baxter contact angle (θCB) can be theoretically estimated using Equation (3) [19].

Cos θCB = f (Cos θ + 1) − 1 (3)

where, θ is the contact angle of the flat surface. For the MP surface, the estimated θCB before
long-time exposures, after intermittent exposure, and continuous exposure are 134.1◦,
131.3◦, and 131◦, respectively. The measured CA values of MP (Table 1) are slightly lower
than those that were estimated theoretically (θCB). Theoretical estimation considers perfect
geometry, i.e., square shaped micropillars with sharp edges. However, in the present case,
most of the micropillars do not have sharp edges rather they have round edges (Figure 3),
which is due to the fabrication process, i.e., chemical etching. Sharp edges strongly pin
water droplets, and so CA have larger values [20]. Thus, having round edged micropillars,
MP shows CA values that are lower than those that are estimated theoretically (θCB). Taken
together, the results indicate that water droplets on MP experience composite wetting, with
some wetting of micropillars over their sides, owing to their round edges.

The CA values of the flat surface prior to, and after intermittent contact and continuous
contact with NaCl solution are <90◦ (Table 1) indicating that the flat surface is hydrophilic.
The CA values of the test surfaces decrease with the increase in the exposure time (t).
A reduction in CA for the test surfaces due to long-term exposures (θr = contact angle
prior to long-time exposure—contact angle after long-time exposure), is given in Table 1.
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When compared to the θr values of the flat surface, the θr values of MP are 4-times lower
for intermittent exposure, and 3.4-times lower for continuous exposure. Upon long-time
exposures, the flat surface experiences rapid increase in wettability, indicated by its higher
θr values. MP has long-term antiwetting ability as indicated by its lower θr values.

3.2. Corrosion Behaviour

Corrosion parameters (Ecorr, icorr, and corrosion rate, CR) of the flat surface [1] and
MP, before and after long-time contacts with NaCl solution are given in Tables 2 and 3,
respectively. Figure 5 shows Tafel plots of the test surfaces.

Table 2. Corrosion potential (Ecorr), corrosion current density (icorr), and corrosion rate (CR) of the
flat surface [1] and micropillar surface (MP) before long-time contacts with NaCl solution.

Surface
Before Long-Time Contacts

Ecorr (V) icorr (A/cm2) CR (mm/Year)

Flat Surface −0.5121 11.16 × 10−6 166 × 10−4

MP −0.0217 1.35 × 10−8 1.01 × 10−4

Table 3. Corrosion parameters (Ecorr, icorr, and corrosion rate, CR) of the flat surface and micropillar
surface [1] (MP) after long-time contacts with NaCl solution.

Surface
After Intermittent Contact After Continuous Contact

Ecorr (V) icorr (A/cm2) CR (mm/Year) Ecorr (V) icorr (A/cm2) CR (mm/Year)

Flat Surface −0.2703 26.6 × 10−6 311 × 10−4 −0.2789 26.9 × 10−6 313 × 10−4

MP −0.0249 1.76 × 10−8 1.31 × 10−4 −0.0273 2.57 × 10−8 1.82 × 10−4

Compared to the flat surface, MP has (i) higher values of Ecorr, (ii) lower values of
icorr, and (iii) lower CR values (lower in magnitude by two orders). Considering the CA
values (Table 1) and the CR values (Tables 2 and 3) of the test surfaces, it is seen that as the
CA values decrease, the CR values increase. In magnitude, CA values of the test surfaces
have the trend such that the values before long-time contact > after intermittent contact >
after continuous contact. The CR values of the test surfaces have the trend such that the
magnitude before long-time contact < after intermittent contact < after continuous contact.
These results indicate that the wettability of the test surfaces influences their corrosion.
After long-time contacts with NaCl solution, the CA values of test surfaces decrease due
to capillarity that is caused by the formation of pits [1]. In comparison to the flat surface,
MP has higher CA values and, therefore, lower CR values, at all the test conditions. The
CA values of MP reduced by 1.6% and 2.12% after intermittent contact and continuous
contact, respectively. The CR values of MP showed 29.7% and 80.19% increase when
compared to the CR value before long-time contacts, respectively. The CA values of the
flat surface decreased by 11% and 12.2% after intermittent contact and continuous contact,
respectively [1]. The CR values of flat surface showed 87.3% and 88.5% increase when
compared to the CR value before long-time contacts, respectively [1]. Dependence of CR on
CA, as observed in the present work, has been reported for other metallic patterns [1,5,7–9].

Microscopic images of surfaces of MP taken after corrosion tests are shown in Figure 6.
The corrosion products that dislodged from the top region of micropillars are seen at the
bottom in the vicinity of micropillars. This is more evident from the images that were taken
at higher magnification (yellow arrows, Figure 6d,e). From these two figures, it is also
seen that some wetting of micropillars has occurred over their sides that are adjacent to
the top (shown by red arrows), which is due to their round edges. These observations
reveal that wetting by the fluid occurs predominantly in a composite state, while it also
wets the sides of micropillars near their top region, and that the fluid has not come in
contact with the bottom area in between the micropillars. These observations corroborate
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the wetting and corrosion test results. Based on the observation that some wetting occurs
at the sides of micropillars, it can be inferred that the solid fraction (f) of MP will be >0.25
(theoretically estimated value), but remains <1 (f is 1 for flat surface). Due to smaller area
that comes in contact with the corrosive fluid, MP has CR values that are significantly lower
than those of the flat surface. Surface wetting directly depends on area that is in contact
with a fluid [1,21–23]. Under composite wetting conditions, air that is trapped in between
micropillars prevents entry of corrosive fluid and electrochemical activity [1,5,8–10].
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Figure 6. Scanning electron microscopic images of MP surfaces taken after corrosion tests: (a) before
long-time exposure, (b) after intermittent exposure, and (c) after continuous exposure to NaCl
solution. (d,e) are high magnification images of (b,c). Yellow arrows show corrosion products
dislodged from the top region of micropillars. Red arrows show wetting of micropillars over their
sides adjacent to the top. (Scale bar: 100 µm).
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At lower potentials, such as those in the present work, the flat surface shows formation
of metastable pits (Figure 7a) [1]. Figure 7b shows metastable pits on the top of a micropillar
in MP, after continuous contact with NaCl solution.
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Figure 7. Representative SEM pictures: (a) surface of flat sample [1] and (b) surface of a micropillar
(MP), after corrosion test (upon continuous contact with 3.5 wt.% NaCl solution).

Stainless steels, in their early stage of corrosion, experience damage of passive film by
chloride ions, which cause nucleation of metastable pits [24]. Thereupon, re-passivation
occurs [24,25]. At potentials higher than the passivation potential, stable pits form which
break down passive film [26]. Stable pits are larger in size than metastable pits. For
example, stable pits of 50 µm diameter have been observed on 304 L austenitic steel upon
contact with 3.5% NaCl [27]. It has been reported that the potential for pitting, above which
formation of stable pits occur (Epit), is higher for micropatterns when compared to their flat
surfaces [5,8].

Using Equation (4), the efficiency of corrosion inhibition (η, %) of MP was estimated [1,28].

η = [[icorr (flat) − icorr (MP)]/icorr (flat)] × 100 (4)

η (%) of MP prior to and after long-time contacts with NaCl solution are given in Table 4.
MP effectively inhibits saline water corrosion with η values ≥ 77%.

Table 4. Corrosion inhibition efficiency (η) of micropillar surface (MP) prior to and after long-time
contacts with NaCl solution, estimated using Equation (4).

Surface

Efficiency of Corrosion Inhibition (η), %

BeforeLong-Time
Contacts

After Intermittent
Contact

After Continuous
Contact

MP 88 84 77

The corrosion of SS304 in saline water is severe because of its high surface wettability.
By changing the nature of wetting of the steel surface from hydrophilic to composite wetting
via topographical modification in the form of micropillars, its corrosion can be readily
reduced. An increase in the contact angle or hydrophobicity of micropatterns depends on
the (i) dimension of geometrical parameters of their surface features and (ii) the roughness
on top of their surface features, as is briefly mentioned in Table 5.
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Table 5. Dependence of hydrophobicity on (i) dimension of geometrical parameters of surface features
of micropatterns (i.e., micropillar or ridge of microgrooves) and (ii) roughness on top of their surface
features. Increase in hydrophobicity of micropatterns decreases liquid mediated corrosion.

Parameter Hydrophobicity Ref.

Width
increase in width increases contact area, i.e.,

solid fraction, and decreases
hydrophobicity

[1,9]

Inter-pillar gap or Inter-ridge gap

increase in gap decreases contact area, i.e.,
solid fraction, and increases

hydrophobicity. This occurs until a certain
increased value, beyond which, water

droplets penetrate the gap between
surface features

[5,9]

Height
increase in height often demonstrates

increase in water contact angle and
increases hydrophobicity

[1,29]

Roughness increase in roughness decreases contact
area and increases hydrophobicity [1,30,31]

4. Conclusions

In this investigation, an SS304 surface was topographically-modified in the form of
micropillars. The micropillar surface was examined for its antiwetting and anticorrosion
abilities for long-time duration. The conclusions drawn from the work are:

• SS304 flat surface is hydrophilic in nature, i.e., high surface wettability, due to which
its surface gets severely affected by salt-water corrosion.

• The micropillar surface, due to predominant composite wetting, has long-term anti-
wetting ability because of the presence of solid-liquid-air interface.

• The antiwetting ability of micropillar surface imparted long-term anticorrosion ability
to the steel surface. The micropillar surface significantly lowered corrosion against
saline water when compared to the flat surface, due to its smaller area of contact with
the corrosive fluid.

• The micropillar surface can provide high efficiency of corrosion inhibition against
saline water (η ≥ 77%) over long-time duration, when exposed intermittently and
continuously to NaCl solution.

Topographical modification of SS304 surface in the form of micropillars has immense
potential in mitigating liquid-mediated corrosion over a long time duration.
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