
HAL Id: hal-04434107
https://hal.univ-lille.fr/hal-04434107v1

Submitted on 14 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Blind source separation aided characterization of the γ’
strengthening phase in an advanced nickel-based

superalloy by spectroscopic 4D electron microscopy
David Rossouw, Robert Krakow, Zineb Saghi, Catriona S.M. Yeoh, Pierre
Burdet, Rowan K. Leary, Francisco de la Peña, Caterina Ducati, Catherine

M.F. Rae, Paul A. Midgley

To cite this version:
David Rossouw, Robert Krakow, Zineb Saghi, Catriona S.M. Yeoh, Pierre Burdet, et al.. Blind source
separation aided characterization of the γ’ strengthening phase in an advanced nickel-based superalloy
by spectroscopic 4D electron microscopy. Acta Materialia, 2016, Acta Materialia, 107, pp.229-238.
�10.1016/j.actamat.2016.01.042�. �hal-04434107�

https://hal.univ-lille.fr/hal-04434107v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


lable at ScienceDirect

Acta Materialia 107 (2016) 229e238
Contents lists avai
Acta Materialia

journal homepage: www.elsevier .com/locate/actamat
Full length article
Blind source separation aided characterization of the g0 strengthening
phase in an advanced nickel-based superalloy by spectroscopic 4D
electron microscopy

David Rossouw*, Robert Krakow, Zineb Saghi 2, Catriona S.M. Yeoh, Pierre Burdet 1,
Rowan K. Leary, Francisco de la Pe~na, Caterina Ducati, Catherine M.F. Rae, Paul A. Midgley
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
a r t i c l e i n f o

Article history:
Received 24 September 2015
Received in revised form
15 December 2015
Accepted 20 January 2016
Available online 12 February 2016
* Corresponding author. Present address: Departm
Engineering, McMaster University, 1280 Main Street
Canada.

E-mail address: rossoud@mcmaster.ca (D. Rossouw
1 Present address: �Ecole polytechnique f�ed�erale de

12, 1015 Lausanne, Switzerland.
2 Present address: CEA, LETI, MINATEC Campus, F-3

http://dx.doi.org/10.1016/j.actamat.2016.01.042
1359-6454/© 2016 The Author(s). Published by Elsev
a b s t r a c t

The g0 strengthening phase in an advanced nickel-based superalloy, ATI 718Plus, was characterized using
a blind source separation applied to a four dimensional X-ray microanalysis dataset obtained by scanning
transmission electron microscopy. Selected patterns in the X-ray spectra identified by independent
component analysis were found to be spatially and chemically representative of the matrix (g) and
precipitate phases (g0) present in the superalloy, enabling their size, shape and distribution to be
determined. The three dimensional chemical reconstruction of the microstructure may provide insight
into the role of the various alloying elements in the evolution of the microstructure at the nano-scale.

© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY 4.0
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

ATI 718Plus® (718Plus) is an advanced nickel-based superalloy
that has been developed for use in aircraft and gas turbine engines.
The high strength superalloy is the product of extensive efforts to
increase the operation temperature of its predecessor, the widely
used alloy 718, to 718 þ 100 �F, without sacrificing its excellent
processability and relatively lowcost in comparisonwith other high
temperature superalloys [1]. Despite comprising a dozen or more
alloying elements, the salient microstructures of nickel-based su-
peralloys are relatively simple, consisting of a dense dispersion of g0

precipitates in a nickel-base g matrix. The 718Plus superalloy also
contains a blocky h phase containing niobium (Ni6Nb[Al,Ti]) which
was not present in the region selected for analysis. The superalloy
microstructure, including the size distribution and volume fraction
of the g0 phase, can be carefully controlled by tailored heat treat-
ments. In most nickel-based superalloys, the major contribution to
the retention of strength at elevated temperatures is provided by
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the unusual behavior of L12 ordered g0 (Ni3Al) precipitates, whose
presence in the microstructure increases dislocation drag, resulting
in a considerable increase in flow stress with increasing tempera-
ture [2]. Given the pivotal role the ordered g0 phase plays in su-
peralloy metallurgy, and its profound influence on the high
temperature strength and creep resistance of nickel superalloys, it
is of vital importance to characterize the size, shape, volume frac-
tion and composition of the g0 phase to better understand the
structure-property relationships in superalloys. Here, we use a
novel combination of electron tomography, spectroscopy and ma-
chine learning techniques to characterize a 718Plus superalloy,
providing access to 3D spatially resolved chemical information at
the nanoscale.

The investigation of fine-scale microstructural features inherent
in superalloys demands an analytical materials characterization
technique capable of nanometer spatial resolution. The 3D atom-
probe tomography (APT) technique has contributed to a deeper
understanding ofmicrostructural transformations in superalloys, as
well as a better understanding of the relationship between the alloy
chemistry, microstructure, and mechanical properties [3]. Howev-
er, despite some notable strengths, APT has several draw backs: the
field evaporation of the material during analysis is destructive, the
specimen may break under the high electric fields, atomic resolu-
tion can only be attained along the depth scale, the analyzed vol-
ume (typically 10 � 10 � 100 nm3) is small, and compositional
variations in evaporation fields lead to local magnification artefacts.
le under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).
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Electron tomography (ET), performed in the transmission electron
microscope (TEM), can also be a powerful method for characterizing
superalloys, andmaybe complementary technique toAPTbecause ET
is a (nominally) non-destructive technique with an inherently larger
fieldof view. The general principle of ET is to combinemathematically
a systematic set of electron microscope images, containing different
views of an object, into a 3D reconstruction of the object [4]. For the
superalloy sample needle analyzed here, images obtained by high
annular dark field scanning transmission electron microscopy
(HAADF STEM) of the needle did not contain appreciable composi-
tional contrast. We therefore combined electron tomography and
energy-dispersive X-ray (EDX) spectroscopy techniques, entailing so
called ‘4D’ microscopy, to analyze the superalloy microstructure,
seeking to reconstruct the 3D chemical distribution of the superalloy
with nanometer spatial resolution. The proposed method is feasible
due to recent advances in instrumentation, including improved X-ray
detection efficiencyand theuse ofmodern computer systemscapable
of handling and processing large datasets.

The 3D structural characterization of nanoscale materials by
electron tomography is a mature technique in the physical sciences
[5,6]. Early examples of 4D spectroscopic characterization [7,8]
were limited by low signal collection efficiencies, and only in the
last few years has improved instrumentation led to a number of
examples of 4D electron microscopy appearing in the literature.
Examples include the 3D elemental mapping of a 28 nmmetal gate
transistor [9], a lithium ion battery cathode [10] hollow metal
nanoparticles [11,12], and simultaneous electron energy loss spec-
troscopy (EELS) and EDX tomography of an AleSi alloy [13]. Once a
4D dataset is acquired, a number of methods can be used to
reconstruct a 3D chemical volume. For example, selected element
mapsmay be reconstructed to obtain 3D element distributions [13],
or each energy channel in a spectrum may be reconstructed to
obtain a 4D volume with a full spectrum at each voxel [14]. Here,
using an alternative approach, we reconstruct a limited number of
machine learning derived components to obtain their relative
weightings in 3D. Machine learning techniques have been used
previously to identify and image different phases in multi-phase
materials from 2D projections [15e17]. If the components extrac-
ted from a given EDX dataset are physically interpretable, as has
been shown recently in the case of coreeshell nanostructures [18],
and their spatial weightings satisfy the projection requirement,
then their reconstruction may provide a simplified and clearer
representation of the material's composition.

2. Experimental

2.1. Materials

The 718Plus material studied was provided by Rolls-Royce
Deutschland Ltd. & Co KG (RRD). The initial ingot was triple vac-
uum melted for high cleanliness and forged into a billet product.
The subsequent sub-solvus forging and heat treatment processes
were developed by RRD in cooperation with Otto Fuchs KG: Pre-
solution: 843 �Ce871 �C/16 h, Solution: 954 �Ce982 �C/1 h and
Aging: 788 �C/2 he8 h/FCþ 704 �C/8 h; each finished by an air cool.

2.2. Sample preparation

The specimen was extracted from the mid-radius section of a
fully heat treated forging using electric discharge machining and
standard metallographic techniques were used to polish the sur-
face. The sample was then mounted on a stub for scanning electron
microscope (SEM) imaging and focused ion beam (FIB) milling. The
FIB milling step was performed in a Helios FIB/SEM at 30 kV ion
acceleration voltage to produce a needle geometry approximately
400 nm in diameter at the base. The needle was attached to the top
of a copper post approximately 1 mm in diameter and inserted into
a Fishione 2050 on-axis single tilt holder prior to scanning trans-
mission electron microscope (STEM) analysis. The purpose of pre-
paring a needle geometry was to enable the acquisition of a full
180� tilt EDX series without shadowing of the detector occurring
and to avoid problems associated with an increase in projected
specimen thickness with tilt. Fig. 1(a) shows a low magnification
high-angle annular dark field (HAADF-STEM) image of the FIB
milled needle sample and the area selected for spectroscopic
analysis close to the needle tip.

2.3. Data acquisition

EDX datawere acquired using a FEI Osiris (S)TEM equipped with
a high brightness ‘XFEG’ electron source and high efficiency X-ray
detector system, comprised of four detectors in close proximity to
the sample and symmetrically disposed around the optic axis of the
microscope. The (S)TEM was operated at 200 kV in scanning mode
(STEM), whereby the beam was focused to a spot approximately
1.5 nm wide and images were acquired by scanning the probe in a
raster over a region of interest at 3 nm increments. EDX spectrum
images were acquired at 5� tilt increments from�30� toþ150�, and
the gun lens was adjusted to produce a large current (7.8 nA) in a
small probe for increased X-ray generation rate and reduced
acquisition times (20 ms dwell time per pixel).

3. Results

3.1. 2D element mapping

Fig. 1(a) displays the superalloy needle prepared for 4D spec-
troscopic analysis. All the major peaks are identified in the summed
EDX spectrum (Fig. 1(b)) and are as expected from the billet
composition (Table 1). Prior to quantification of the EDX spectrum,
all the element X-ray K lines, with the exception of the AleK line,
were found to satisfy the so-called ‘thin film’ criterion (further
details are provided in the supplementary information). The
calculated composition, using a standard-less CliffeLorimer
method contained in the Tecnai Imaging and Analysis software (FEI
Company), is therefore expected to have an accuracy of 5% or better.
The EDX quantification is in good agreement with the billet
composition as shown Fig 1(c).

Prior to analysis of the 4D dataset, conventional analysis was
performed on the first spectrum image acquired with the needle
at �30� tilt. Fig. 2(a) displays the HAADF STEM image of the needle
approximately 170 nm and 230 nm in diameter at the top and
bottom of the image respectively. Despite providing a useful mea-
sure of the specimen geometry, it is readily appreciated that there is
very little compositional information contained in the HAADF im-
age. The compositional information is instead contained in the EDX
signals acquired at each pixel location in the STEM image. Selected
maps, 100 � 200 pixels in size, of the major alloying elements are
shown in Fig. 2(bej). The expected microstructure of the nickel-
based superalloy, comprised of a dense dispersion of g0 pre-
cipitates in a g matrix, is clearly evident. The element maps show
that the round g0 precipitates are richer in nickel, aluminum, tita-
nium and niobium than the surrounding g matrix. The EDX maps
also show that the needle has a cap rich in titanium and niobium,
representing a separate phase in the specimen. The oxygen signal is
concentrated close to the surface of the needle, perhaps indicating
the presence of an oxide on the surface. However, great care must
be takenwhen interpreting the element maps of low energy X-rays
(further analysis is provided in the discussion section).

The 2D EDX element maps provide a qualitative picture of the



Fig. 1. (a) A HAADF STEM image of the FIB prepared needle specimen. The region of interest is indicated by the white box. (b) The integrated EDX spectrum of the acquired 4D
dataset. (c) A comparison of the major element composition of the analyzed volume to the billet composition.

Table 1
The composition of the billet 718Plus superalloy [1].

Element Al Ti Cr Fe Co Ni Nb Mo W C þ B þ P

wt. % 1.45 0.75 18.0 9.5 9.1 Bal. 5.4 2.7 1.0 <0.05
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distribution of g0 in the g matrix, but due to the spatial overlap of
the two phases in projection, their chemical composition cannot be
distinguished easily. Furthermore, it is of interest to know the size,
shape and spatial distribution of g0 in the matrix, but this infor-
mation is masked in the 2D projection. Such information can,
however, be recovered from a tomographic reconstruction. One
could proceed in this regard by performing tomographic re-
constructions of selected elements from their maps. However, it is
the distribution of the different phases present that is of greater
interest here. In an attempt to identify andmap the different phases
present, a machine learning algorithm, independent component
analysis (ICA), was performed on the entire 4D dataset.

3.2. Independent component analysis

ICA is a blind signal separationmethod [19] that, in combination
with principal component analysis (PCA), has been applied recently
to EELS [17] and EDX [15,18,20] spectrum image data to find the
compositions and distributions of multiple phases present in het-
erogeneous systems. The ICA algorithm solves the blind signal
separation by assuming the signals to be a linear mixture of some
unknown, mutually independent spectral components. Fig. 3
shows a summary of the blind signal separation analysis per-
formed on the EDX tilt series using the HyperSpy software package
[21]. First, PCA was used to reduce the dataset dimensionality to a
limited number of components that account for most of the vari-
ance in the data. This was done by visual assessment of the so called
‘scree plot’ in Fig. 3(a), which displays the statistical variance of
each component in descending order of magnitude. The plot fea-
tures a distinct ‘elbow’ separating the first five components, labeled
PC#0 to PC#4, from the remaining components, which account for
a small proportion of the variability and are likely noise (see sup-
plementary information). The first five components were retained.
Second, ICA was used to compute the statistically independent
spectral components (ICs) IC#0e4 (Fig. 3(b)) and their spatial
loading (Fig. 3(c)) from the PCA components using the FASTICA
algorithm [22] as implemented in Scikit learn [23]. The five IC
spectra and their spatial loading at �30� tilt are shown in Fig. 3(c).
IC#0 is rich in Ni and is concentrated in g0 and to a lesser extent in g.
IC#1 contains strong Cr, Fe and Co peaks and is concentrated in the
matrix. IC#2 only contains Cu K and L peaks and is uniformly
distributed over the needle. It is interpreted as spurious signal from
the supporting copper pillar or elsewhere. IC#3 contains a strong O
peak and is concentrated on the needle surface. Finally, IC#4 con-
tains a Ni-L peak. The spatial distribution of IC#4 is a close match to
IC#0, however a slight reduction of intensity is observed towards
the center of the needle. We interpret this component as repre-
senting the stronger absorption of Ni-L relative to NieK X-rays,
causing the Ni-L to drop out as a separate component. All the K lines
of the major alloying elements (Ni, Cr, Fe, Co) in the independent
component spectra are positive, although they are not constrained
to be so. IC#1 contains negative AleK,TieK, Nb-L and NbeK peaks.
These seemingly unphysical negative lines appear because the
matrix spectra are composed of a linear combination of IC#0 and
IC#1. When appropriately weighted, the negative lines result in a
reduced amount aluminum, niobium and titanium in the matrix
spectra.
3.3. 3D reconstruction

Having identified the first five independent component spectra
present above the noise in the 4D dataset, their 3D distributionwas
reconstructed from their spatial loadings over the 180� tilt series.
First, the IC#0 maps were aligned manually using the Midas align
utility in the IMOD software package. The same alignment was used
for all five ICs. Next, the aligned tilt-series stacks were recon-
structed in 3D using a simultaneous iterative reconstruction tech-
nique (SIRT) (implemented in the ASTRA toolbox [24]). Slices of the
3D SIRT reconstructions are displayed in Fig. 4. Common among all
component reconstructions is a radial intensity gradient from the
center to the surface of the needle. The gradient is likely due to the
absorption of X-rays in the sample, which would be greatest for X-
rays originating from the center of the needle, since these X-rays
have the longest combined path length inside the sample when



Fig. 2. (a) A HAADF STEM image of a region close to the tip of the needle. (bej) 2D element maps of the major alloying elements extracted from EDX spectra.
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averaged over the 180� tilt series acquisition. The g0 precipitates are
clearly visible as bright circles in the nickel rich IC#0 and IC#4
reconstructions. IC#1 has a ‘Swiss-cheese’ appearance, with the
holes in the location of the g0. IC#2, containing Cu K and L peaks,
shows a smooth, homogeneous distribution, as one might expect if
spurious in origin. Also apparent is the oxide shell in IC#3.
3.4. g0 3D morphology

The particle size, distribution, morphology and volume fraction
of the g0 strengthening phase are all important contributors to the
mechanical properties of the superalloy. These critical microstruc-
tural constituents can be designed and controlled by the addition of
alloying elements and appropriate heat treatments. A statistical
summary of the size and shape of the segmented g0 geometries in
the sample analyzed is provided in Fig. 5. Further details on the
segmentation methods are provided in the supplementary section.
The particle diameter is defined as the mean length of the three
principal axes of the fitted ellipsoid (Fig. 5(d)), the nearest neighbor
distance is the distance between neighboring g0 ellipsoid centroids
(e), and the sphericity is the ratio of the surface area of a sphere to
the surface area of the fitted ellipsoid of equal volumes (f). The g0

size distribution approximately follows a positively skewed log-
normal distribution centered at 26 nm with a standard deviation
of 8.9 nm. The skewness is in contradiction to the negatively
skewed size distribution predicted by LifshitzeSlyozoveWagner
(LSW) theory for coarsening processes [25], which has formed the
basis of more recent and sophisticated models that have been
successfully applied to predict the growth of g0 in nickel based
superalloys [26]. This measured particle size distribution may
therefore indicate that the alloy is in a transient coarsening state,
which is consistent with previous work demonstrating that g0

coarsens more slowly after thermal aging in 718Plus than in alloy
718 [27]. However, caution should be exercised as the limited
spatial sampling in the acquired spectrum images (3 nm/pixel),
combined with limitations in the tomographic reconstruction and
segmentation steps when using a relatively large tilt increment,
may compromise the accurate reconstruction of small g0 pre-
cipitates. Their absence in the detected distribution may be suffi-
cient to alter the shape of the secondary phase size distribution
from positively to negatively skewed, and therefore we cannot
confidently comment on the kinetics of the g0 formation. The mean
g0 nearest neighbor distance is measured to be 37 ± 3 nm. The
estimated volume fraction of g0 may also suffer from limited spatial
sampling and beam broadening effects, but nevertheless, we arrive
at a coarse estimate of a 20 vol.% g0 volume fraction from the
segmented reconstruction.

Fig. 6 displays the measured g0 diameter in this study compared
to those found in the literature for different aging times [26e29].
Lohnert et al. [28] described the LSW-like growth of g0 in 718Plus by
measuring an average g0 diameter of 17, 30 and 33 nm for 2, 8 and
12 h aging times respectively at 788 �C. Similar findings were made



Fig. 3. (a) A scree plot of the fifty principal components. (b) Independent component weightings (IC#0eIC#4) at �30� tilt and their corresponding component spectra (c).

Fig. 4. Ortho-slices of the reconstructions of independent components IC#0e#4 (aee).
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by Srinivasan et al. for aging times of 0.1, 1, 10 h [29]. These data are
in good agreement with the g0 diameter measured in this study
with the alloy aged for 8 h. For comparison a LSW-model curve was
fitted to the data.

3.5. Composition

Upon close inspection of the IC spatial weightings, we observe
that the weight of IC#1 drops to zero in the discontinuous g0 pre-
cipitate regions, and both IC#0 and IC#1 have non-zero weightings
in the continuous matrix region. The nickel-based g matrix in
718Plus is expected to be enriched in the d-block solutes, including
similarly sized Cr, Fe and Co [30]. This solute enrichment is reflected
in IC#1, which contains strong Cr, Fe and Co peaks. We therefore
assign IC#0 as representative of the g0 phase, and a weighted linear
mixture of IC#0 and IC#1 as representative of the g matrix phase.
We find good agreement between the compositional quantification
of IC#0, calculated using the standard-less CliffeLorimer method
contained in the Tecnai Imaging and Analysis software (Fig. 7(b)),
and the composition of g0 in a similar ALLvac 718Plus alloy obtained
by APT [31]. To quantify the gmatrix, we calculated themode of the
IC#0 to IC#1 ratio in the reconstructed matrix volume
(IC#0:IC#1 ¼ 1.12), and quantified the linearly weighted spectrum,
labeled IC#01, using CliffeLorimer method as described above



Fig. 5. (aec) Segmentation and visualization of the g0 strengthening phase (a) before and (bec) after ellipsoid fitting. The distribution of the diameter (d) nearest neighbor distance
(e) and sphericity (f) of the g0 in the analyzed volume.
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(Fig. 7(c)). We notice that, unlike IC#1, the combined spectrum
IC#01 does not contain negative aluminum, titanium and niobium
lines. We find a surprisingly good overall agreement between IC#0
and IC#01 and the atom probe composition of g0 and the matrix
respectively (Fig. 7(b and d)).
3.6. Volume fraction

If the compositions of the various phases in the alloy are known,
their relative fractions can be calculated using a lever-rule based
approach as shown by Blavette et al. [3]. If, for example, the element
concentration differences between the g matrix (cg) and both the
overall billet composition (c0), as well as the g0 phase compositions
(cg0) are plotted on orthogonal axes, the slope of the line of best fit
passing through the origin gives themolar fraction of g and g0 in the
alloy. Here, the compositions of g, g0 and the billet were extracted
from components IC#0, IC#01 and the billet composition respec-
tively (Table 1), and the h composition was extracted from a



Fig. 6. A comparison of the measured coarsening of g0 from the literature to this work.
The error bar for this work spans the standard deviation (8.9 nm) of a fitted log normal
curve to the g0 size distribution shown in Fig. 5(d). The black line is a fitted curve
following a LSW-type relationship.

Fig. 7. A comparison of the composition of components IC#0 (a,b) and IC#01 (c,d) to APT determined compositions of the g0 and g phases in 718Plus.

Table 2
The experimentally determined compositions (in at.%) of the individual phases
present and the overall billet composition used in the Blavette calculation.

Phase/Element Al Ti Cr Fe Co Ni Nb Mo

g0 (IC#0) 7 2 5 6 7 70 3 0
g (IC#01) 1 0 26 15 13 44 0 1
h 4 4 2 3 7 68 12 0
Billet 3 1 20 9 9 53 3 2
Blavette method 2 1 18 11 11 53 3 1
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separate EDX scan of a single h particle in the g matrix. Trace
alloying elements were omitted from the analysis. A summary of
the compositions input into the calculation is provided in Table 2.

The g0 volume fractionwill depend on the thermal history of the
718Plus superalloy and on the amount of h phase present as both
phases are competing for the same solute atoms (Nb, Al, Ti). Fig. 8
shows a secondary ion image of the 718Plus microstructure, ob-
tained using a FEI Helios FIB/SEM, revealing elongated h pre-
cipitates surrounded by a precipitate free zone (PFZ), as well as a
fine dispersion of round g0 less than 100 nm in size. The h phase
precipitation depends strongly on thermomechanical history,
starting microstructure, degree of deformation introduced and
temperature. Commonly a PFZ of up to 300 nm can be found around
the circumference of h particles. This gives an indication as to how
far solute atoms can travel to form h. Given an average h thickness
of 300 nm and an h volume fraction content of about 10 vol.%, as
estimated from Fig. 8, the depleted volume can occupy up to 30
vol.% of the alloy. For the analysis we assume that solute atoms
cannot travel long distances, which seems justified due to the
occurrence of PFZ and can be explained by the sluggish diffusion of
Nb, which is the major solute atom here. Evidently, the sub-solvus
forging and the applied pre-solution heat treatment leads to sig-
nificant h precipitation, lowering the availability of solute atoms for
the subsequent aging step that is used to adjust g0 precipitation.We
therefore apply the Blavette method twice, once for precipitation of
h in 30% of the volume and then for g0 for the remaining 70 vol.%.

A linear trend line was used to find a least squares fit to the
phase composition difference data for each precipitate and the
molar fraction of the phases present was calculated from the fitted



Fig. 8. Secondary ion image of the 718Plus microstructure, revealing elongated plate-
like h precipitates surrounded by a PFZ, as well as a fine dispersion of round g0 less
than 100 nm in size.
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lines (Fig. 9). The calculated molar fraction of the g0 and h phases in
the respective subset were found to be 38 at.% and 36 at.%. Cor-
rected for the spatial independence, molar fractions for g, g0 and h
in this alloy are 61 at.%, 28 at.% and 11 at.%, respectively. If we as-
sume the density of the g, g0 and h phases in 718Plus to be 8.616,
8.277 and 8.582 g/cm3, we arrive at the coarse volume fraction
estimates of 62, 27 and 11 vol.% respectively. The discrepancy be-
tween the lever-rule derived g0 volume fraction and the tomo-
graphic reconstruction volume estimate of g0 (27 vs. 20 vol.%) may
be in part due to the limited spatial sampling in the data acquisi-
tion. Small g0 particles may not be reconstructed faithfully, thus
leading to an underestimate of the g0 volume fraction in the
reconstructed volume. Furthermore, the reconstructed volumemay
not accurately reflect the average volume fraction of g0 in the alloy.
Srinivasan et al. [29] analyzed superalloy samples aged for 0.1, 1.0
and 10.0 h at 788 �C and found increasing g0 volume fractions of 0.2,
5 and 15 vol.% respectively. If the different aging times are taken
into account, the trends in these data are consistent with our
measurements. The calculated overall composition (the molar
fraction weighted phase composition sum) is also in good
Fig. 9. A graphical representation of the Blavette method for determining phase fractions in t
fractions for (g, g0 , h) of (61, 28, 11) at%.
agreement with the overall billet composition (Table 2).

4. Discussion

In this section, a justification of the methodology used and the
implications and limitations of the results and further interpreta-
tion is provided. Included is a discussion on the use of ICA, EDX
quantification and the composition of g0. All of these steps involve
some bias and error to varying degrees, and as such they must be
performed with care.

4.1. Independent component analysis

The use of ICA greatly simplified the qualitative analysis of the
multi-phase needle composition, providing a quick identification of
phases present in the alloy. The compositions of components IC#0
and IC#01 are in good agreement with APT compositions of the g0

and g matrix phases respectively. ICA has separated Cu as a
component (IC#2), which is believed to be spurious, likely origi-
nating from the Cu support post. This separation demonstrates that
ICA may be helpful for the quantification of copper containing al-
loys, as the spurious copper signal may be separable from true
signal from the sample, provided the copper shows spatial in-
homogeneity. Similarly, the separation of a surface oxide layer
(IC#3) may aid the quantification of a bulk oxide. This outcome
provides a simpler interpretation of the extracted components than
PCA of EDX spectra, which are often difficult to interpret [32]. A
further advantage of the use of the combination of PCA and ICA is
noise reduction. The component maps, by the very nature of ICA,
inherently have reduced noise compared to element maps extrac-
ted from X-ray peak intensities or peak areas [14], which is
important for subsequent 3D reconstruction and segmentation.

4.2. EDX quantification

Performing quantitative X-ray microanalysis is known to be a
non-trivial exercise and can be particularly challenging when
analyzing second phase precipitates in a multicomponent system.
Furthermore, the undesirable effects of electron beam broadening
and X-ray absorption in the sample are expected to be appreciable
in the relatively thick needle. However, thicker samples are desir-
able for 3D volumetric analysis, to capture sample features
he superalloy. The fitted lines have slopes of (0.38, 0.36), which lead to calculated molar
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sufficiently. Thus a compromise between the two factors must be
made. In order to capture a statistically significant number of g0

precipitates in the matrix, a sample thickness of approximately
200 nm was deemed suitable. Over a sample thickness of 200 nm,
an experimental convergence semi-angle of 15 mrad results in a
purely geometric beam spread of 6 nm in diameter at exit surface of
the sample. In addition, elastic scattering of the electron beam in
the sample results in further broadening, calculated to be 18 nm
midway through a 200 nm thick foil of pure nickel at 200 kV. While
the broadening is likely to deteriorate the quality of both the 2D
spectrum images and the tomographic reconstructions, its effect
may be limited due to the full 180� acquisition, which will average
the beam spread over the needle volume. The effects of X-ray ab-
sorption on EDX quantification are described in more detail in the
supplementary section.

4.3. Composition of g0

Of particular interest is the extraction of the g0 composition from
the superalloy, which is obscured in conventional 2D analysis due
to the signal mixing of X-rays from the surrounding matrix. In this
study, the ICA treatment of the EDX spectrum image tilt series
appears to have captured the composition of g0 in component IC#0.
Furthermore, we have obtained the spectrum of the matrix, IC#01,
by linearly combining IC#0 and IC#1. The reconstructed voxel in-
tensities of IC#0 centered in the g0 phase show appreciable varia-
tion from one g0 to the next (SI Fig. 1(b)). It appears as though the
main contribution to this variation is due to X-ray absorption,
causing signals emerging from the center of the needle to have
reduced intensity upon detection. It has been shown elsewhere
that the composition of the g0 precipitates in a similar superalloy
system can vary with size [33], however, the compositional varia-
tion was found to extend over a much larger range of precipitate
sizes than those studied here.

5. Conclusions

The application of the ICA blind signal separation method has
proven to be a powerful method for obtaining information on the
phases present in an advanced nickel-based superalloy, in partic-
ular the g0 strengthening phase. Traditionally, heterogeneous
nanoscale materials are difficult to quantify because analytical
signals from the different phases present can overlap in projection
and detection. However, under the right conditions, blind signal
separation algorithms can separate the mixed signals into the
separate components that may be representative of the individual
phases present. At the same time, the decomposition of a large
dataset into a limited number of components reduces the size of
the dataset, which can significantly speed up data analysis and the
3D reconstruction of the phases present in the material. In this
work, the composition of the ICA component spectra representing
the g and g0 phases are in excellent agreement with APT data. It is
likely that the technique described here may be used on a variety of
materials systems. Primarily, it is best to analyze a sample thin
enough such that the detected X-ray signals meet the thin-film
criterion. For tomography, this implies that a compromise must
be met in the choice of sample thickness analyzed. The analyzed
volume should be thin enough to satisfy the thin film criterion, but
also thick enough to enable sufficient sampling of a 3D volume to
justify the use of tomography.
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