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a b s t r a c t 

Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B 0 field, 

especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical 

drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI 

scanners by comparing field drift data from a large number of sites. 

Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 

major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted 

of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI 

PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabiliza- 

tion/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In 

addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient tem- 

perature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data 

were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile 

range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift 

pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed 

frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. 

Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the 

repeated protocol were compared with the corresponding first dataset using Pearson’s and intraclass correlation 

coefficients (ICC). 

Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 

scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 

0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 

transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated 

that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift 

showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and 

Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate 

days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours 

after fMRI. 

Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were rela- 

tively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent 

of drift varied across scanners which both linear and nonlinear drifts were observed. 
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. Introduction 

MRI scanners rely upon a strong magnetic field (B 0 ) in order to po-

arize the bulk magnetization of 1 H protons and generate detectable

adiofrequency (RF) signals. Magnetic field gradient pulses allow the

ncoding of position as the resonance frequency is linearly propor-

ional to the magnetic field. Hence, gradient pulses are used to make

F pulses slice-selective, to suppress unwanted signals, and to directly

ead out the location of signals during acquisition. Rapid switching of

radient fields, which is a common feature of efficient modern imaging

equences, results in the deposition of substantial amounts of energy

ithin the scanner. Eddy currents release heat between vibrating parts

n the coil system, heating up the nearby heat shield and shimming ele-

ents ( El-Sharkawy et al., 2006 ; Foerster et al., 2005 ). Although the

radient coils themselves are water-cooled, vibrations and eddy cur-

ents that they induce deposit energy elsewhere in the scanner that is

ess efficiently temperature-controlled, changing the local temperature

f conducting scanner components. Unstable internal temperature leads
3 
o temperature-dependent changes in magnetic susceptibility and thus

he B 0 field ( Foerster et al., 2005 ). 

Instability in the B 0 magnetic field can impact experiments in several

ays. Firstly, experiments often rely upon frequency-selective pulses, in-

luding for positional and chemical-shift selectivity. Secondly, detected

ignals will be distorted by short-term B 0 instabilities during the acquisi-

ion window. Thirdly, longer-term B 0 instabilities will interfere with the

ppropriate combination of signals acquired during different TRs. Typ-

cally, slice-selective pulses are applied with high bandwidth and the

ocation of signals is only minimally shifted by B 0 instability. In time-

eries fMRI, significant SNR loss due to gradient-induced heat drift can

e recovered by realignment correction ( Lange et al., 2011 ). However,

R spectroscopy (MRS) and imaging applications, which include chem-

cal exchange saturation transfer imaging (CEST) and lipid suppression,

ake use of chemical-shift-selective pulses of narrower bandwidth, and

ence will be more adversely impacted by B 0 instability ( Poblador Ro-

riguez et al., 2019 ). Thus, B 0 instability particularly impacts MRS ex-

eriments, which rely upon extensive signal averaging, leading to in-
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Table 1 

Number of participating sites and data reported. 

Sites Data reported (excluded) Repeated data ∗ 

GE 21 22 (1) 15 

Philips 23 30 (0) 20 

Siemens 36 47 (3) 25 

Total 80 99 (4) 60 

∗ No repeated data were excluded. 
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6  
oherent averaging, line-broadened, distorted peaks and reduced SNR

 Foerster et al., 2005 ; Henry et al., 1999 ; Rowland et al., 2017 ). 

The magnitude of gradient-induced B 0 field changes varies depend-

ng on the length of the applied imaging protocol and the gradient duty

ycle of the sequences, particularly when echo planar imaging (EPI) is

sed for e.g. fMRI and diffusion tensor imaging (DTI). In addition, scan-

er design characteristics including the amount and distribution of iron

sed in the passive shim elements plays a role in the B 0 field changes

 Lange et al., 2011 ). It has been reported that up to ten hours were

equired for B 0 to return to its initial value after a two-hour fMRI ac-

uisition ( Foerster et al., 2005 ). B 0 field drift changes have a particular

mpact on J -difference approaches that rely on alignment and subtrac-

ion of individual transients, as is the case for e.g. MEGA–editing of

ABA. One study reported frequency drift rates of over 1 Hz/min af-

er 8 min of fMRI ( Harris et al., 2014 ), compared to under 0.1 Hz/min

ithout prior imaging and showed drift was associated with a 16% de-

rease in the GABA + signal as measured with the respective edited MRS

cquisition. This change in metabolite signal can be explained by the

hifted position of frequency-selective editing pulses that characterize

diting, targeting the scalar-coupled GABA resonances at 1.89 ppm and

easurement of the observed signal at 3.01 ppm ( Edden et al., 2012 ). A

omparable field drift has also been observed after a 22- minute DTI ac-

uisition, which resulted in an over 3 Hz/min drift after DTI compared

o under 1 Hz/min without a previous DTI scan ( Rowland et al., 2017 ).

he narrow bandwidth of editing pulses makes frequency drift influen-

ial on both the efficiency of the editing experiment and the summation

nd subtraction of sub-spectra ( Edden and Barker, 2007 ; van der Veen

t al., 2017 ). 

Given the particular impact of field drift on MRS, much work has

ought to mitigate the impact of field drift on data through both

rospective and retrospective approaches. The line-broadening and SNR

osses caused by incoherent averaging of signals acquired with dif-

erent B 0 frequencies can be addressed to a large extent by retro-

pective frequency correction during post-processing, which is now a

onsensus-recommended step in all MRS processing ( Near et al., 2020 ;

ilson et al., 2019 ). Corrections via residual water signals, creatine

eferencing, spectral registration and non-water-suppressed methods

ave comparable efficacy on frequency correction ( Ernst and Li, 2011 ;

elms and Piringer, 2001 ; Keating and Ernst, 2012 ; Near et al., 2015 ;

an der Veen et al., 2017 ; Waddell et al., 2007 ; Wilson, 2019 ). In

he residual water method, frequency shift and phase offset are cor-

ected using the maximum water modulus and phase of the first point

n the FID. In creatine referencing, the creatine peak is fitted to the

eal part of a Lorentzian using global nonlinear least squares with con-

trained parameters to achieve frequency and phase alignment. Spec-

ral registration uses a representative average as a reference and fits

ther signal averages to this reference in the time domain using nonlin-

ar least squares minimization. Non-water-suppressed acquisition tech-

iques such as metabolite cycling offer the ability to improve frequency

lignment in post-processing steps by aligning the high SNR water peak

n each transient, but these acquisition methods have yet to be incorpo-

ated as product on clinical MRI systems. Nonetheless, many negative

mpacts of B 0 field drift cannot be removed by post-processing. 

Prospective approaches such as a feedback-based interleaved refer-

nce scan (IRS) method utilize the water reference signal for a real ‐time

pdate of the carrier frequency of RF pulses and analog-to-digital con-

erter ( Edden et al., 2016 ; Henry et al., 1999 ; Lange et al., 2011 ;

hiel et al., 2002 ). This feedback mechanism updates the water reso-

ance on the basis of individual transients to prevent the water reso-

ance from drifting in order to achieve drift correction. The IRS-based

ethod has also been implemented in MRS imaging sequences for field

rift and localization error correction ( Ebel and Maudsley, 2005 ; Tal and

onen, 2013 ). A more recent study proposed to obtain a localized ref-

rence using outer volume suppression localization and selective wa-

er excitation ( Lee et al., 2018 ). This method prevents the saturation-

nduced SNR loss that happens in PRESS-based IRS navigators while
4 
lso using the water peak as the reference for frequency drift correction.

ifference-edited MRS, which relies upon accurate subtraction of large

ignals to resolve smaller ones, is particularly impacted by field drift,

nd the elimination of subtraction artifacts is an enduring challenge

 Evans et al., 2013 ; Near et al., 2020 ; Waddell et al., 2007 ; Wilson et al.,

019 ). Water suppression pulses are often applied with narrow band-

idths in order to preserve signals around 4 ppm, and the size of the

esidual water signal can change dramatically after drift. The use of

requency-selective pulses is even more integral to edited MRS meth-

ds ( Mullins et al., 2014 ), and if the resonant frequency of signals drifts

way from the nominal frequency of editing pulses, losses in editing

fficiency arise. 

Frequency drift during either MRS or EPI-based acquisitions has

arely been studied especially on a large-scale multi-site and multi-

endor manner. Published works are mostly single-site and single-

canner studies which may not be representative to other scanners due

o the use of different protocols and study design ( Foerster et al., 2005 ;

arris et al., 2014 ; Rowland et al., 2017 ). The amount of frequency drift

s scanner-dependent and related to the scanner’s gradient coil system

nd cooling hardware that may vary across scanners. Such impact of

rift may be reduced using prospective or retrospective frequency cor-

ection methods. However, efficacy of such corrections is poorly char-

cterized and the impact of line-broadening, lineshape distortion, sub-

raction artifacts, and accuracy of frequency-selective pulses on spectral

ata collected from multiple scanners remains unclear. In this study, a

tandardized protocol was developed and shared across different sites

ith scanners from various vendors to study the impact of gradient-

nduced frequency drift and the consistency of drift within scanner. The

im of the standardized protocol was to reduce the number of confound-

ng variables, allowing objective analysis of how EPI scanning influences

requency drift and how this may impact MR spectral analysis. By col-

ecting data from a large number of sites worldwide, we aimed to es-

ablish a benchmark of the ‘typical’ levels of drift and to assess the need

or real-time field-frequency locking ( Henry et al., 1999 ). Each acquired

ataset consisted of two sets of PRESS scans immediately before and af-

er an EPI acquisition to characterize the B 0 field drift. 

. Methods 

.1. Scanner details 

Site recruitment was initiated from previous multi-site studies in-

olving imaging centers focusing on neurological and psychologi-

al research with 3T scanners worldwide ( Mikkelsen et al., 2017 ;

ikkelsen et al., 2019 ), and subsequently extended through advertising

n social media. Eighty sites with 99 scanners were recruited (GE = 22,

hilips = 30, Siemens = 47) and supplied data, of which 60 sites sub-

itted two datasets acquired on separate days. Four sites with PET/MR

canners participated. See Table 1 for details. 

.2. Data acquisition 

Sites were instructed to use a spherical or cylindrical water-dominant

hantom, and a phased-array head or head-and-neck RF coil (between 8

nd 64 channels). Scanning was performed following a period of at least

h of scanner idle time (ideally the first scan of the day) to avoid any
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Table 2 

Scanner information for all datasets (n = 99). 

Site 

ID 

Scanner 

model 

Software 

release 

Year of 

install 

Average hours of 

operation per day 

Gradient max. 

amplitude (mT/m) / 

slew rate (T/m/s) 

Mean absolute frequency offsets (Hz) 

Pre-fMRI 

Post-fMRI 

(5:20 min) 

Post-fMRI 

(30:00 min) 

G01a † GE Discovery MR750 DV26 2010 12 50 / 200 0.30 0.16 1.66 

G02a † GE Discovery MR750 DV26 2019 1 50 / 200 0.14 0.19 1.66 

G03a † GE Discovery MR750 DV26 2014 9 50 / 200 0.05 0.16 1.47 

G04a † GE Discovery MR750 DV26 2010 11 50 / 200 0.08 0.68 2.46 

G05a GE Discovery MR750 DV26 2009 8 50m/ 200 0.14 1.11 3.44 

G06a GE Discovery MR750W DV25 2013 6 44 / 200 0.46 3.46 5.88 

G07a GE Discovery MR750 DV26 2011 8 50 / 200 0.05 0.50 2.28 

G08a GE SIGNA Premier RX27 2020 2 80 / 200 0.31 1.68 11.18 

G09a † GE SIGNA Premier RX27 2018 8 80 / 200 0.13 0.76 4.11 

G10a † GE SIGNA UHP 3T R27 2020 5 100 / 200 0.25 0.83 3.52 

G11a † GE SIGNA PET/MR MP26 2016 5 44 / 200 0.36 2.20 4.20 

G12a GE Discovery MR750 DV25.1 2011 6 50 / 200 0.11 0.16 1.22 

G15a † GE Discovery MR750 DV26 2010 13 50 / 200 0.31 0.20 0.63 

G16a † GE Discovery MR750 DV26 2012 6 50 / 200 0.06 0.65 2.97 

G17a † GE Discovery MR750 DV25 2010 8 87 / 200 0.13 0.57 2.20 

G18a † GE SIGNA PET/MR MP26 2014 4 44 / 200 0.30 1.00 1.20 

G19a † GE Discovery MR750 DV26 2011 8 50 / 200 0.28 0.52 2.45 

G20a GE Discovery MR750 DV26 2012 10 50 / 200 0.06 0.42 1.77 

G21a # GE SIGNA Premier RX27 2019 10 80 / 200 n/a n/a n/a 

G23a † GE Discovery MR750 DV26 2016 5 50 / 200 0.04 0.50 2.56 

G24a † GE Discovery MR750 DV26 2012 6 50 / 200 0.14 0.54 2.34 

G24b † GE Discovery MR750 DV26 2013 6 50 / 200 0.06 1.04 3.75 

P01a † Philips Achieva R5.6.1 2018 6 40 / 200 1.80 1.77 3.17 

P01b † Philips Ingenia R5.6.1 2018 6 45 / 200 0.94 2.81 3.40 

P02a † Philips Achieva R5.3.1.3 2012 14 80 / 100 1.42 3.63 5.63 

P02b † Philips Ingenia R5.3.1.3 2015 8 45 / 200 0.65 1.75 2.70 

P03a † Philips Achieva R5.6.1 2018 4 40 / 120 0.64 7.19 8.28 

P03b † Philips Ingenia R5.6.1 2016 8 45 / 120 1.12 1.53 2.82 

P04a Philips Achieva TX R5.6 2010 8 40 / 200 1.26 4.61 17.01 

P05a † Philips Achieva dStream R5.7.1 2009 9 80 / 200 2.67 5.91 15.72 

P06a Philips Ingenia R5.4.1.1 2016 8 45 / 200 1.14 1.42 1.56 

P06b Philips Achieva R5.3.1.2 2010 8 80 / 100 1.97 1.47 6.88 

P06c Philips Ingenia Elition R5.6.1 2018 8 45 / 220 1.02 1.69 1.96 

P07a † Philips Ingenia R5.3.1.3 2017 6 80 / 200 0.13 0.45 4.96 

P08a † Philips ingenia Elition R5.6.1 2020 3 45 / 220 0.93 4.23 3.62 

P09a Philips Ingenia R5.4.1 2019 7 n/a 1.50 1.00 4.09 

P10a Philips Ingenia R5.4.1 2016 8 80 / 200 0.07 0.44 5.65 

P11a † Philips Achieva R5v30.02 2012 5 40 / 200 2.06 6.23 16.82 

P12a † Philips Ingenia R5.6.1 2019 5 45 / 220 0.87 0.09 5.66 

P13a † Philips Achieva dStream R5.6.1 2008 10 80 / 200 1.83 2.14 6.06 

P15a † Philips Ingenia Elition X R5.6.1 2019 6 45 / 220 0.74 0.74 4.63 

P16a Philips Ingenia Elition X R5.6.1 2020 2 45 / 220 1.05 0.23 8.07 

P17a † Philips Ingenia CX R5.6.1 2019 2 40 / 200 1.40 0.63 1.67 

P18a † Philips Ingenia R5.6.1 2012 9 33 / 200 0.83 2.43 7.69 

P18b † Philips Ingenia R.5.61 2015 8 33 / 200 1.43 1.49 3.15 

P18c † Philips Ingenia Elition X R.5.61 2018 9 45 / 200 1.35 2.50 2.10 

P19a † Philips Achieva R5.4.1 2015 4 40 / 200 0.42 0.49 1.67 

P20a † Philips Achieva dStream R5.4.0.1 2013 10 40 / 200 3.46 4.49 13.86 

P22a Philips Achieva dStream R5.7.1 2020 8 45 / 200 0.44 0.72 5.82 

P23a † Philips Achieva R5.4.1 2008 15 40 / 200 2.55 2.10 2.43 

P24a Philips Achieva R5.6.1 2010 8 n/a 1.43 1.69 3.77 

P25a Philips Achieva R3.3.2 2012 4 40 / 200 2.29 2.93 3.83 

S01a † Siemens Prisma VE11B 2016 4 80 / 200 0.07 0.21 0.49 

S02a # Siemens Vida XA20 2020 12 60 / 200 n/a n/a n/a 

S03a † Siemens Prisma VE11C 2018 9 80 / 200 0.09 0.90 2.02 

S03b † Siemens Biograph mMR VE11P 2017 5 45 / 200 0.53 0.81 2.26 

S03c † Siemens Trio VB17 2006 4 45 / 200 0.04 0.60 0.87 

S04a † Siemens Skyra VE11C 2015 8 45 / 200 1.80 0.34 7.71 

S05a † Siemens Prisma VE11C 2018 4 80 / 200 0.03 0.05 0.56 

S06a ∗ Siemens Prisma VE11E 2019 8 40 / 200 0.03 0.22 0.93 

S07a † Siemens Biograph mMR VE11P 2019 8 45 / 200 0.46 0.41 2.71 

S07b † Siemens Prisma VE11E 2015 11 80 / 200 2.63 2.18 9.48 

S08a † Siemens Prisma VE11C 2016 5 80 / 200 0.02 0.02 0.35 

S09a † Siemens Verio VB17 2009 5 45 / 200 0.49 1.66 1.87 

S10a Siemens Prisma VE11C 2020 3 80 / 200 0.02 0.02 0.34 

S11a † ∗ Siemens Prisma VE11C 2017 6 80 / 200 0.09 0.09 0.74 

S11c † ∗ Siemens Prisma VE11C 2015 3 80 / 200 0.09 0.11 0.22 

S12a Siemens Skyra VE11E 2014 6 45 / 200 1.91 0.83 11.68 

S13a ∗ Siemens Prisma VE11C 2015 6 80 / 200 0.02 0.02 0.43 

S13b ∗ Siemens Prisma VE11C 2015 6 80 / 200 1.13 0.92 4.54 

S13c ∗ # Siemens Connectom VD13D 2015 6 300 / 200 n/a n/a n/a 

S14a Siemens Skyra VD13A 2011 5 45 / 200 1.08 2.09 5.44 

( continued on next page ) 

5 
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Table 2 ( continued ) 

Site 

ID 

Scanner 

model 

Software 

release 

Year of 

install 

Average hours of 

operation per day 

Gradient max. 

amplitude (mT/m) / 

slew rate (T/m/s) 

Mean absolute frequency offsets (Hz) 

Pre-fMRI Post-fMRI 

(5:20 min) 

Post-fMRI 

(30:00 min) 

S15a † Siemens Trio VB19a 2007 5 45 / 200 0.02 0.90 1.71 

S15b † Siemens Prisma VE11C 2002 10 80 / 200 0.11 1.49 3.90 

S16a ∗ Siemens Skyra VE11C 2012 9 45 / 200 0.47 1.65 3.23 

S17a ∗ Siemens Skyra VE11C 2019 3 45 / 200 0.19 0.38 4.74 

S18a ∗ Siemens Tim Trio VB17A 2009 8 45 / 200 0.03 0.14 0.21 

S18b Siemens Skyra VE11C 2012 5 45 / 200 0.47 2.49 2.48 

S19a ∗ Siemens Prisma VE11C 2014 8 80 / 200 2.46 1.56 8.15 

S20a † Siemens Prisma VE11C 2018 3 80 / 200 2.13 1.49 7.50 

S21a † Siemens Prisma VE11C 2015 8 80 / 200 0.03 0.04 0.34 

S22a ∗ Siemens Prisma VE11C 2018 8 80 / 200 2.18 1.54 7.62 

S22b ∗ # Siemens Skyra VE11C 2020 12 45 / 200 n/a n/a n/a 

S23a ∗ Siemens Prisma VE11C 2016 8 80 / 200 1.66 1.24 5.70 

S24a † Siemens Prisma VE11C 2016 8 80 / 200 2.30 2.25 11.39 

S25a † Siemens Prisma VE11C 2016 8 80 / 200 0.04 0.10 0.13 

S26a † ∗ Siemens Prisma VE11C 2016 8 80 / 200 0.41 0.44 2.25 

S27a † Siemens Prisma VE11C 2019 8 80 / 200 2.49 1.67 9.70 

S27b † Siemens Skyra VE11C 2019 8 45 / 200 0.19 1.00 6.54 

S28a ∗ Siemens Skyra E11-A 2015 17 45 / 200 1.03 0.70 5.59 

S29a † Siemens Prisma VE11E 2017 8 80 / 200 0.02 0.10 0.62 

S30a † Siemens Prisma VE11C 2018 9 80 / 200 0.06 0.26 0.82 

S31a Siemens Prisma VE11c 2015 9 80 / 200 2.36 1.67 8.13 

S33a ∗ Siemens Prisma VE11C 2016 9 80 / 200 0.05 0.06 0.51 

S37a † Siemens Prisma VE11C 2016 3 80 / 200 0.08 0.64 0.33 

S38a † Siemens Prisma VE11C 2016 9 80 / 200 0.23 0.76 2.54 

S40a ∗ Siemens Prisma VE11C 2017 8 80 / 200 0.08 0.13 0.94 

S40b ∗ Siemens Prisma VE11C 2015 8 80 / 200 3.29 2.36 10.21 

S99a ‡ Siemens Prisma VE11C 2019 7 80 / 200 1.00 0.96 4.32 

† indicates repeated protocol was performed. 
∗ indicates chiller/eco mode was off. If not specify, the setting was in default. 
# indicates data have been excluded due to noise artefact or headers unable to be read. 
‡ indicates reassigned site ID for P21a. 
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rift confounds due to unintended heating effects from prior scanning.

hantoms were acclimatized in the scan room for the same period and

ositioned in the isocenter. Each site was required to submit a minimum

f one dataset and suggested to repeat the protocol on a different day

or a second dataset if possible. Phantom data files were shared securely

nd analyzed by the co-authors at the Johns Hopkins University School

f Medicine with local IRB approval. 

Raw data were exported in GE P-file (.7), Philips .data/.list and

DAT/SPAR and Siemens TWIX (.dat) formats as these formats contain

he unaveraged information and, hence, allow for frequency and phase

f individual transients to be observed. Data were uploaded to a secure

nline repository. Scanner details (i.e., date of scan, scanner vendor and

odel, software version, year of installation, estimated hours of use per

ay, coil, maximum gradient amplitude and gradient slew rate) were re-

orted. Additional metrics including the course of the gradient temper-

ture during the experiment and the number and bulk weight of passive

hims were suggested to be included if available. 

.3. Scanning protocol 

Unsuppressed water data were acquired from the phantom, using

RESS localization with real-time frequency stabilization/adjustment

witched off, before and after a BOLD-weighted fMRI sequence. Stan-

ardized protocols were generated for GE, Philips and Siemens scan-

ers consisting of: 1) minimal preparatory imaging; 2) pre-fMRI PRESS

TR/TE = 5000/35 ms; FA = 90 °; 64 transients; no water suppres-

ion; voxel size = 2 × 2 × 2 cm 

3 ; second-order shim; scan dura-

ion = 5:20 min); 3) BOLD-weighted EPI based on the ADNI-3 proto-

ol ( Weiner et al., 2017 ) (TR/TE = 3000/30 ms; 197 dynamics; EPI

actor/echo train length = 31/64, Inter-echo times (echo spacing) 0.5

s (GE and Philips) / 0.72 ms (Siemens) and FOV = 217 ×217 mm 

2 

Philips and Siemens) / 220 ×220 mm 

2 (GE), duration = 10 min); and
6 
) post-fMRI PRESS (same parameters as for pre-fMRI PRESS except 360

ransients and duration = 30 min). 

In addition, one GE site repeated the protocol with an extra-long

cquisition, consisting of 16-min pre-fMRI PRESS (192 transients) and

71-minute post-fMRI PRESS (2048 transients) to investigate the time

equired for the frequency offset to reach a plateau. Except for the num-

er of transients, all other parameters remained unchanged. 

.4. Data analysis 

Data analyses were performed using MATLAB (R2020b, MathWorks,

atick, USA), including eddy-current correction ( Klose, 1990 ) using the

rst acquired transient as a reference, zero-filling to yield an apparent

pectral resolution of 0.24 Hz/point and Fourier transformation. The

nsuppressed water peak in each transient of the pre- and post-fMRI

RESS spectra was modeled in the frequency domain using a Voigt line-

hape function ( Marshall et al., 1997 ) with a linear baseline to extract

he water peak center frequency from each transient. Full-width half-

aximum (FWHM) and the integral of the water signal were measured

nd reported to assess the change of lineshape. To compare frequency

rift before and after fMRI, the mean absolute water peak frequency

ffset was calculated for each acquisition. Frequency offset was calcu-

ated as the difference between each transient’s observed water signal

requency and the frequency of the first transient. The median drift is

he median across the 95 datasets, of the mean offset throughout each

easurement. Drift rate was measured pre-fMRI and over the same time

eriod (5:20 min) of post-fMRI. The average drift rate is a mean across

he 95 datasets which was calculated for each from the difference be-

ween the first and the last frequency offsets in Hz divided by the du-

ation of the scan in minutes. Pearson’s correlation coefficients ( r ) and

wo-sided paired t-tests were calculated between the mean absolute fre-

uency offsets before and after fMRI for correlation and distribution
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Fig. 1. a) Individual transients pre- and post-fMRI PRESS (plotted in blue and 

red, respectively) from one of the highest drift datasets. The frequency offset 

derived from modeling the water signals is plotted (middle). Three hundred sixty 

averages correspond to 30 min total scan duration. Panel (b) shows water offset 

traces for all 95 scanners before and after fMRI for GE (green and light blue), 

Philips (orange and brown) and Siemens (blue and purple). Panel (c) shows the 

pre-fMRI PRESS traces and the same period (5:20 min) for post-fMRI traces. 
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nalyses. Spearman’s rank correlation coefficients ( 𝜌) were measured

or the correlation of operating hours and years of usage with frequency

ffsets. Differences on operating hours and years of usage among ven-

ors were tested using Kruskal-Wallis test. A p-value less than 0.05 was

onsidered statistically significant. 

.4.1. Repeated protocol 

Sites were encouraged to repeat the acquisition protocol on a dif-

erent day to investigate consistency and reproducibility of frequency

rift characteristics. Pearson’s correlation coefficients and intraclass cor-

elation coefficients (ICC) were calculated for the mean absolute fre-

uency offsets between the two runs. ICC calculation was based on a

wo-way mixed model using absolute agreement. The median values

nd interquartile ranges of the mean absolute frequency offsets across

ll datasets and within vendors are shown in violin plots with p-values

rom the paired t-tests. Datasets from the first and second day were

lotted against each other to allow visualized observation for consis-

ency between the two runs. All statistical analysis was performed using

 (RStudio: Integrated Development for R. RStudio, PBC, Boston, MA)

 R Core Team 2020 ). 

.5. Convolution of frequency drift and simulated spectra 

To visualize the impact of the observed frequency drifts on a typical

-min in vivo MRS protocol, a synthetic in vivo-like spectrum was gener-

ted using FID-A ( Simpson et al., 2017 ) density-matrix simulations and

he modeling results from a recent analysis of short-TE spectra in Os-

rey ( Oeltzschner et al., 2020 ; Zollner et al., 2021 ), including weighted

ignals from 18 metabolites (TE = 35 ms; 2 kHz spectral width; 2048

omplex samples; 2 Hz linewidth). The simulated spectrum was con-

olved with the frequency trace from the first 64 TRs of the phantom

can. The convolution involved Fourier transform and shifting the zero-

requency component to the center to replicate the simulated spectrum.

requency shifts from the 64 pre-and post-fMRI PRESS transients were

pplied and re-averaged to obtain the final spectra. The simulated spec-

ra with maximum and minimum drifts across all datasets were plot-

ed to observe how extreme frequency drift affect signal intensities. The

aximum amplitude of the 2.01 ppm NAA singlet was determined to

ompare the change of signal intensity of the synthetic ‘drift-affected’

pectra before and after fMRI. Additionally, the impact of linear drift

from 0 to 50 Hz range) was demonstrated for two scenarios. First,

hese synthetic drift time-courses were convolved into the same sim-

lated short-TE spectrum, and the NAA peak height reported. Second,

he offset dependence of GABA editing efficiency was simulated in FID-

 using 15 ms editing pulses and TE 68 ms, and the change of relative

ABA signal integral was reported as a function of linear drift. 

. Results 

Of the data collected from 99 scanners, 4 were excluded from the fi-

al analysis due to unexpected artifacts or corruption of data that were

nable to be processed. Thus, data from 95 scanners were ultimately

nalyzed. No data were excluded from the repeated scans. Table 1 sum-

arizes the numbers of sites and datasets. Table 2 summarizes scanner

etails. The average estimated scanner operation time per day was 7.2 ±
.9 hours (no differences across vendors: 𝜒2 = 0.071; p = 0.965), and the

verage age of scanner was 5.5 ± 3.8 years (no differences across ven-

ors: 𝜒2 = 4.458; p = 0.108). Low correlations were observed between

perating time ( r = 0.17/0.13) and age of scanner ( r = 0.026/0.19)

ith pre-/post-fMRI frequency drift respectively, all p > 0.05. The me-

ian (IQR) FWHM of the water signal was 2.43 (0.01) Hz (GE: 1.90

0.02) Hz, Philips: 2.29 (0.03) Hz, Siemens: 2.78 (0.02) Hz) for pre-fMRI

RESS and 2.44 (0.02) Hz (GE:2.02 (0.03) Hz, Philips: 2.25 (0.03) Hz,

iemens: 2.76 (0.02) Hz) for post-fMRI. The median (IQR) integral was

.03 (2.1E-5) (GE: 0.029 (3E-4), Philips: 0.033 (2E-4), Siemens: 0.025
7 
3E-4)) for pre-fMRI PRESS and 0.03 (9.5E-5) (GE: 0.025 (3E-4), Philips:

.028 (2E-4), Siemens: 0.033 (1E-4)) for post-fMRI PRESS. 

.1. Frequency drift 

Individual spectra from one of the highest-drifting scanners, before

nd after fMRI, are shown in Fig. 1 a with frequency drift traces. The

requency drift traces are overlaid for all 95 initial scans in Fig. 1 b.

canners drifted by up to 7 Hz over 320 s before fMRI, and by up to

6 Hz within 30 min after 10 min of fMRI. Frequency drifts for the first

20 s before and after fMRI are shown in Fig. 1 c. Violin plots of the

ean absolute frequency offsets for all scanners are shown in Fig. 2 a.

efore fMRI, the median (IQR) was 0.44 (1.29) Hz. Mean drift across all

canners increased to 0.83 (1.29) Hz after fMRI for the first 5:20 min,

nd further increased to 3.15 (4.02) Hz for the full 30-min run. Average

rift rates were 0.29 Hz/min and 0.43 Hz/min before and after fMRI,

espectively. Due to the non-linear drift behavior of a few scanners, the



S.C.N. Hui, M. Mikkelsen, H.J. Zöllner et al. NeuroImage 241 (2021) 118430 

0

5

10

15

M
ea

n 
A

bs
ol

ut
e 

F
re

qu
en

cy
 O

ffs
et

s 
/ H

z

p < 0.05

p < 0.05

p < 0.05

Pre-fMRI Post-fMRI 
(First 5:20)

Post-fMRI
(Full 30:00)

Philips (n=30)
GE   (n=21)

Siemens (n=44) 

a

r = 0.55 
p < 0.05

Pre-fMRI / Hz

P
os

t-
fM

R
I /

 H
z

b

0 1 2 3

1

3

5

7

Fig. 2. a) Violin plots of mean absolute frequency offsets for all 95 scanners (me- 

dian (solid line) and IQR (dashed line)); data from GE (green), Philips (orange) 

and Siemens (blue) are plotted. P-values show the mean values are significantly 

different before and after running the fMRI sequence. Panel (b) shows a scatter- 

plot between pre-fMRI and early post-fMRI (first 5:20 min) with the confidence 

interval shaded in grey, in which a moderate correlation was observed. 
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Fig. 3. Frequency offsets from day 1 against day 2 a) before fMRI and b) after 

fMRI, for GE (green), Philips (orange) and Siemens (blue). Inserts show only 

those traces that remain within the gray box on the primary plot to allow for 

visualization of the lower-drift traces. 
rift rate was not determined across the full 30-min run. t-tests indi-

ated that drift was significantly increased ( t = -4.09, p < 0.05) after

MRI across all scanners. Correlation analysis indicated moderate corre-

ation between drift across the first 64 transients before and after fMRI

 r = 0.55, p < 0.05), as shown in Fig. 2 b. 

.2. Second acquisition from repeated protocol 

Sixty scanners repeated the protocol on a different day. Frequency

ffsets recorded on two separate days before fMRI are correlated in

ig. 3 a. The same plot is shown for post-fMRI data in Fig. 3 b. Within

hese sixty scanners, the median (IQR) frequency drift before fMRI was

.31 (1.09) Hz and 0.33 (1.14) Hz, for the first and repeated datasets,

espectively. The mean absolute frequency offsets for each session were

ompared pairwise within-site for repeatability and correlation. ICC and

earson’s coefficients were 0.85 and 0.75, respectively, indicating good

greement and correlation between sessions for pre-fMRI datasets. Post-

MRI, median frequency drifts on the two days were 2.55 (3.06) Hz and

.88 (2.98) Hz, with ICC and Pearson’s coefficients being 0.95 and 0.90,

espectively. 

.3. Intensity changes in simulated spectra between minimum and 

aximum drifts 

Simulated spectra convolved with 64-transient water frequency drift

races (the highest and lowest drift case for each vendor before and after

MRI) are shown in Fig. 4 . The intensity of the 2.01 ppm NAA singlet in

he maximum-drift cases is reduced by 5%, 28% and 28% for GE, Philips

nd Siemens before fMRI, respectively, and by 26%, 44% and 18% after

MRI, respectively. The impact of linear drift (of up to 50 Hz range) on

he NAA peak height is shown in Fig. 5 a. Since drift does not impact

oise levels, these peak signal losses represent predicted losses of SNR.

he effective change in GABA editing efficiency seen with linear drift is

hown in Fig. 5 b. Note that this Fig. reports integral, which is unaffected

y lineshape convolution, to isolate this aspect of drift. 

.4. Frequency drift in an approximately three-hour long acquisition 

The frequency offsets for a single 171-min post-fMRI PRESS experi-

ent (2048 transients) are shown in Fig. 6 . Gradients and bore temper-

tures returned to their initial state within ~10 min. The mean absolute
8 
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Fig. 4. Comparison of simulated spectra with frequency offsets applied between minimum and maximum drift for pre- and post-fMRI PRESS data. The minimum-drift 

case for each vendor (50% opacity) is overlaid with the maximum-drift case (opaque). 
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requency offset was 13.9 ( ± 6.45) Hz and reached up to 21.5 Hz. The

verall drift rate was 0.12 Hz/min but dropped to 0.03 Hz/min for the

ast 16 min (the last 196/2048 transients), suggesting the frequency drift

pproached equilibrium almost three hours after the EPI sequence. The

ite (G03a) provided this long acquisition data had amongst the lowest

ean absolute drift in pre- and post-fMRI cases for the regular protocol,

nd a below average drift rate as shown in table 2 . 

. Discussion 

This is a large multi-site study to date that has characterized the

evels of B 0 field drift in 3T MRI scanners. Results suggest that operating

ime and age of scanner have no significant correlations with frequency

rift. Lineshapes of the acquired water signals are consistent in terms of

heir FWHM and integral. 

.1. Average frequency drift does not severely impact spectral data 

The levels of B 0 field instability that are tolerable vary between ex-

eriments, but for the majority of MRI and MRS methods, mean offsets

elow 1 Hz do not have any significant impact. Including the median-

rift case observed in this study, spectra are virtually indistinguishable

rom minimum-drift spectra because this level of instability is small com-

ared to the typical in vivo linewidth. Moreover, the line-broadening

ffect seen on less stable scanners can readily be addressed using retro-

pective frequency correction recommended in recent consensus on MRS

ata processing ( Near et al., 2020 ; Wilson et al., 2019 ). This is necessary

ven for extremely stable scanners, since it also addresses frequency and

hase instability arising from subject motion. 

Although the drift is significantly greater after fMRI, it typically re-

ains in the same order of magnitude. The previous observation of field

rift associated with a single run of fMRI ( Harris et al., 2014 ), over 1

z/min, is above average, although falling within the range of results
9 
een here. For a majority of scanners, although a single fMRI run does

esult in a less stable scanner, the extent of that impact is moderate,

nd the benefits of performing fMRI early in multimodal imaging pro-

ocols (particularly task-related fMRI to identify functional regions for

RS assessment) probably outweigh the detriment to MRS. However, it

s important to consider that the heating effects of imaging sequences

re additive, and although a single 10-min fMRI scan has limited ef-

ects, MRS performed after several runs of such scans or other EPI-

ased sequence such as DWI ( Lange JMRI 2011 ) might be more seri-

usly impacted. Furthermore, the variation among sites suggests test-

ng drift on a specific scanner is worthwhile prior to establishing a

rotocol. 

.1.1. Cooling and frequency drift 

While gradient cooling systems return gradient temperatures to equi-

ibrium relatively rapidly, they do not fully prevent the dissipation of

nergy to elsewhere within the scanner. Cooling of other scanner parts,

anifested as field drift, may require a much longer time to be sta-

ilized. Therefore, in addition to considering the implications for se-

uence ordering within a protocol, one must also consider what the

canner was doing in the previous imaging session(s). For this reason,

t has been suggested that running MRS scans ‘from cold’ will result in

he greatest scanner stability especially before running B 0 field sensi-

ive sequences. Any system feature that alters the gradient temperature

uring downtime (e.g., overnight to reduce energy consumption) may

ake pre-fMRI scans less stable than at typical daytime equilibrium; an

quilibration period immediately after startup is recommended for such

canners. 
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Fig. 5. Impact of linear drift. Panel (a) shows the change in simulated NAA 

signal height as a function of the range of linear drift. Panel (b) shows the simu- 

lated GABA integral changes as a function of the same linear drift, due to editing 

efficiency losses. 
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.2. Frequency drift is largely consistent and reproducible within individual

canners 

Over the duration of typical experiments (~10 min), the drift ob-

erved is relatively linear. Some scanners do show smooth changes of

rift rate, e.g., appearing to reach a heating/cooling equilibrium and

eturning towards the initial center frequency. Philips scanners also il-

ustrate some behavior that is not smooth, presumably reflecting auto-

atic changes in an external cooling system. This dip appears between

0 and 20 min after fMRI in about two-thirds of Philips scanners. Al-

hough the extent of the dips varies, it does not seem to be related to

he model or the age of the scanners. Types of cooling systems may be

f interest for further study. The patterns of drift seen are also relatively

eproducible (ICC » 0.9), and even smooth non-linearities in behavior

re mostly reproduced in repeat measurements. This suggests that main-

aining consistent scan order within protocols will reduce the variance

n drift observed. This is common practice in studies, but particularly

here acquiring the full protocol is in doubt, e.g., in studies of low-

ompliance groups, randomization of scan order is sometimes imple-
10 
ented. Change of SNR has been demonstrated using simulated in vivo

pectra convolved with frequency traces. Results suggest that the rela-

ive change of NAA and GABA signals are minimal within 1 Hz as of

ower than the median drift in a typical 5-min MRS. 

.3. Limitations 

One disadvantage of the data visualizations in Figs. 1-3 is that they

ver-emphasize the outlier sites with large drift and tend to conceal

he sites displaying very little drift. Frequency drift induced by gradient

eating is a known issue, however, readings from sensors for gradient

emperature monitoring have not been widely reported, while the num-

er and locations of them also vary across vendors. Temperature read-

ngs are archived in log files, which can be retrieved retrospectively after

he scan. However, the files consist of a lot of other information for the

can that make temperature retrieval more complicated. Furthermore,

radient temperatures are stored in time series and users would have to

atch the time of the scan with the data in log files. Real-time gradi-

nt temperature monitoring would be helpful, but it is not an available

ption for all scanners. Passive shim elements play a key role in heat

issipation. However, the number and bulk weight of passive shim in-

talled are poorly reported as many of the sites that participated in this

tudy found the information inaccessible. Finally, other studies have re-

orted phantom temperature could be increased by approximately 1–

.5°C during a 30-min turbo spin-echo sequence ( Graedel et al., 2015 )

nd approximately 1°C during a one-hour long steady-state free pre-

ession sequence ( El-Sharkawy et al., 2006 ). Although phantom tem-

erature variation might have slight influence on water frequency that

ould, to first order, be common across all vendors, phantom heating

nduced by absorption of the RF energy is neglected. Human body tem-

erature should be largely consistent throughout the scan and the effects

f heating from RF is minimal. 

.4. Conclusion 

While previous studies have established that scanner drift occurs,

nd that it can have a negative impact on the quality of data acquired

 Evans et al., 2013 ; Harris et al., 2014 ; Rowland et al., 2017 ; Tsai et al.,

016 ),these studies have been carried out on a single scanner. It has

ot been clear to what extent these issues are generalizable to all MR

canners, or whether such issues have become over-emphasized. Over-

ll, the results of this study are encouraging. Median levels of drift are

ow for cold scanners, and moderate to severe drift only appears after

PI in a small number of scanners. The implications of instability in the

ain magnetic field are very different for different imaging and spec-

roscopy sequences. It is helpful to consider the quantitative results of

his study in the context of these effects. Real-time field-frequency lock

or MRS acquisition is suggested to avoid drift related data instability

specially after multiple long EPI acquisitions including fMRI and DTI

hen field drift is much more pronounced and for multi-center collab-

rations in which data are obtained from different scanners. In conclu-

ion, this study measured field drift before and after 10 min of fMRI/EPI

n 95 3T scanners using the MRS water signal. 
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shows the change of frequency offsets after fMRI. 
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A subset of the data presented in this work has been made

vailable on the NITRC portal in the “Big Drift ” project reposi-

ory ( https://www.nitrc.org/projects/bigdrift/ ) for benchmark and fur-

her analyses. It is distributed freely under the Creative Commons

ttribution-NonCommercial-ShareAlike license. Community members

re encouraged to make use of this resource for developing and opti-

izing frequency drift related methods. 
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