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Abstract To address the new challenges arising from the
higher penetration of renewable energy in electrical grid,
Demand Side Management (DSM) and Demand Response
(DR) aim to involve the residential as well as industrial con-
sumers in the grid equilibrium. Ensuring benefits for both
utility and users requires the consumers sensitivities to be
understood and then included in the Energy Management
System (EMS). For this purpose, the cost is the predomi-
nant and most often only factor taken into account in the
literature, although in the residential sector other concerns
influencing electricity consumption behaviour has been ob-
served. This paper presents an EMS based on a neighbour-
hood of consumers modelled at the level of their appliance
and incorporating 6 consumption profiles along three sensi-
tivities: cost, environment and appliances shifting comfort.
A multi-agent optimization is lead by a central aggregator
but performed locally by the household using multi-pass Dy-
namic Programming (DP), thus ensuring privacy protection
for the stakeholders.

1 Introduction

Environmental concerns lead to an increasing part of renew-
able energies in the energy mix, therefore challenging the
production-consumption equilibrium of the electrical grid.
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To address this issue, reconsidering the way electricity is
managed is a necessity: to balance the uncertainties on the
production side, the focus is nowadays on the consumption
through DSM and especially DR [1]. It aims therefore to
reduce the relative unforeseeable character of the load, ei-
ther with (e.g., [2]) or without storage. The incentives are
most often monetary and many DR programs focus therefore
on minimizing the households’ electricity bills (e.g., [3]).
However, it should not be the only mean considered: solely
through diffusion of good practices alert during peaks in the
south of France for example, the Ecowatt project mentioned
in [4] shows the pluralism of possible trigger for involve-
ment.

The necessity of taking into account this multiplicity
of consumers’ sensitivities beyond the scope of economics
consideration is underlined by the feedback on smart-grids
project in Europe over the past 14 years [5]. Consumer’s
engagement is particularly under focus, as their role defi-
nition is observed to be unclear - the cost-benefit share for
each is imprecise - thus reducing their involvement in new
grid model. The challenge is not only technical but also re-
quires a multi disciplinary approach relying on electrical
engineering as well as sociology and economy. Segmenta-
tion of consumers profiles is therefore of primary impor-
tance and underlined by the diversity of research on this
particular subject: relying on surveys, [6] shows the het-
erogeneity of consumers’ engagement through 6 profiles,
[7] suggest a segmentation of consumers’ lifestyles based
on their electricity consumption, to cite but two. Once un-
derstood, sensitivities and preferences need to be included
in an energy supervisor [8]. To tackle the problematic of
privacy for the consumers, the most suitable approach is
decentralized: Each household is then in charge of calcu-
lating its own optimized consumption through the smart-
meter [3, 9–11]. Following up with this type of approach,
[9] suggests a two level game between utilities and con-



2 ELECTRIMACS 2019 – Salerno, Italy, 21st-23rd May 2019

sumers, including a global involvement parameter. Also re-
lying on game theory, [11] tested various pricing scheme
while studying the impact of temporal preferences, incorpo-
rating a weighting coefficient for the optimization to focus
on the cost or on the shifting time. [10] proposes a multi-
objectives optimisation aiming to minimize the cost and the
delay of appliances in a Peak to Average Ratio (PAR) con-
strained grid, while incorporating consumers sensitivities on
delay acceptance. If one or two factor is taken into account,
the literature does not offer any research on the considera-
tion of whole profiles, to imagine a more complete represen-
tation of the socially observed sensitivities.

The aim of this article is therefore to investigate a new
day-ahead supervisor for residential consumption, incorpo-
rating three sensitivities: economics, environment, and shift-
ing comfort. Firstly are presented the mathematical frame-
work and the function used to perform the optimisation, as
well as the relevant indicators. The study case on which
the simulation is based and the corresponding algorithm are
then described. The last part introduces the simulation of
the interaction between the different profiles, focusing on 6
stakeholders. Finally, after a brief summary, we present an
overview on the remaining challenges.

2 Proposed approach

2.1 Problem formulation

The objective of the presented EMS is, for a day ahead, to
calculate the adequate electricity consumption of the stake-
holder considering his objectives and taking into account his
constraints (technical as well as social). In this paper, the
management is decentralized and the households are there-
fore assumed to be able to manage their consumption either
in a manual (as proved efficient in [12] for example) or an
automatic way through their smart home appliances.

The simulation is based on a whole set of real appli-
ances, divided into four groups : Flexible, On-Off, cycle,
fixed. The framework of multi-agent system is used here
with an aggregator from one side, and the users (consumers)
on the other side, communicating through smart-meters. The
convergence of the optimization process is assured by the
form of the objective function and the strategy space, rep-
resenting all the possible strategies for a given user. In the
context of a game theory approach shown in a previous work
[13], provided that the strategy space is closed, bounded, and
convex, the optimization will converge to the Nash equi-
librium if the function is convex. Due to type cycle appli-
ances, this set is still closed and bounded, but not convex:
the uniqueness of the equilibrium is not assured, thus re-
quiring a stop criterion. In this study, the Peak-to-Average
Ratio (PAR) is used as objective for the grid and its evolu-
tion serves as stop criterion.

Given the information sent by the aggregator -here the
grid load over the day- a household n minimizes its objec-
tive function (1) that incorporate its sensitivities (through the
function ρn, as explained in the subsection 2.2) as well as the
objective of the grid. The consumption of this dwelling for
a time step t is noted xn

t and the peak reduction goal is inte-
grated through the minimization of the quadratic total load
of the neighbourhood.

min Un(X) =
T

∑
t=1

(1−ρ
n(t))

(
xn

t +
N

∑
j=1, j 6=n

x j
t

)2

(1)

Furthermore, social and technical constraints linked to the
use of each appliance are taken into account. For type cycle
appliances, the consumption is defined over a fixed amount
of time step, and its beginning is optimized within an al-
lowed time interval set by each user. On-Off and flexible
appliances are also optimized in an allowed time interval,
the only difference being the possible power steps at each
time step, only constraint by the fixed daily energy amount
associated to the considered appliance. Finally, the last con-
straint is the power limit, set for each user during the mod-
elling phase, that can not be exceeded by the total load.

2.2 Sentivities

According to socio-economic studies [6, 14], consumers are
not all engaged in the same way in energy management.
Their involvement depends on different motivational fac-
tors. To achieve a representation of this diversity, three main
motivating factors has been defined through social sciences.
They answer the following questions: Is the user bill re-
duced? (Cost) Is the user ecological footprint reduce? (En-
vironment) Is the user comfort preserved? (Comfort). These
are translated in the previous equation (1) through functions
φ n and weighing coefficients αn balancing their predomi-
nance according to each user’s profile. The global preference
ρn is therefore expressed, for a time step t, as:

ρ
n(t)=α

n
price ·φ n

price(t)+α
n
Env ·φ n

Env(t)+α
n
Comf ·φ n

Comf(t) (2)

with,∀n ∈ J1,NK, αn
price +αn

Env +αn
Comf = 1

∀n ∈ J1,NK, {αn
price,α

n
Env,α

n
Comf} ∈ [0,1]

(3)

Each motivational factor φ is defined over time, according
to grid information such as the price of the energy, ψ(t), for
φPrice, and the ratio of renewable energy in the production
PartREN for φEnv. The values are normalised between 0 and
1 to make them consistent with the definition of the pref-
erence. As only a small cluster of users is considered, cost
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of energy, production of renewable energy and comfort are
assumed to be uncorrelated.

φ
n
price(t) = 1− ψ(t)−ψmin

ψmax−ψmin
(4)

φ
n
Env(t) = 1−

PREN(t)−PREN
min

PREN
max −PREN

min
(5)

In the literature, the comfort of the user is proportional to
the amount of energy consumed at a time t defined prior to
optimisation, as in [11]. However, this definition is incom-
plete. Indeed for storage appliance, the comfort is linked to
the time at which the power can be consumed by the user,
not at which the power is stored. E.g. for the electrical ve-
hicle (EV), the comfort is linked to its state of charge at a
chosen hour. This definition of the comfort is also source of
problem when several appliances are aggregated. A wash-
ing machine may consume as much power as a dryer but
switching them in time is cause for discomfort. In this paper,
the comfort is therefore related to the shifting of cycle ap-
pliances, in a comparable manner to [15]. The motivational
factor φ Comf

n,a is defined for each appliance a of a user n: equal
to 1 during the preferred execution of the appliance (here the
forecasted time resulting from section 3.1.1) and is set to de-
crease linearly around this time interval, as shown in Fig. 1.
For storage appliance the motivational factor is equal to 0,
as the time constraints set by the user are already taken into
account by the algorithm presented in section 3.2.
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Fig. 1 Preference construction for one appliance, with (a) the preferred
power vector, (b) the corresponding motivational factor φ Comf

n,a .

2.3 Indicators

2.3.1 Global satisfaction of the user

The satisfied energy is defined, for the non-fixed appliances
( nf), the product of the energy with the preference: it is
therefore higher for energy consumed when his preference is
higher. The ratio of the satisfied energy and the total energy

consumed by one user represent its satisfaction Sn. Its evo-
lution δSn is then calculated, with Sn

0 the satisfaction before
optimisation.

Sn =
εn

nf
En

nf
=

∑t ∑a ρn
a (t) · xn

t,a · τ
∑t ∑a xn

t,a · τ
δSn = Sn−Sn

0

(6)

2.3.2 Relative difference of the electricity bill

Assuming the price of energy ψ(t) is not constant, the daily
bill of one user is defined as Cn. Its evolution after optimi-
sation is measured through δCn , with Cn

0 the electricity bill
before optimisation. The relative difference is positive for a
lesser bill after optimisation.

Cn =
T
∑

t=1
ψ(t) ·

(
A
∑

a=1
xn

t,a

)
δCn =

Cn
0−Cn

Cn
0

(7)

2.3.3 Relative difference of renewable consumption

The part of renewable energy consumed by one user, εn
REN,

is assumed to be proportional to the part of renewable energy
on the grid, PartREN. Then the relative difference δεn

ENR is
defined to measure the evolution of the renewable energy
consumed by each user after optimisation.

εn
REN = ∑

T
t=1 ∑a PartREN(t) · xn

t,a · τ

δεn
ENR =

εn
ENR− εn

ENR,0

εn
ENR,0

(8)

2.3.4 Evolution of shifting delay

As previously stated, the comfort is relevant only for the
Acycle shifting appliances. To measure the satisfaction re-
garding the comfort, the mean shifting delay after optimi-
sation is therefore computed:

∆ tn
shift =

∑a(tstart
a − tstart,0

a )

Acycle (9)

2.3.5 Grid indicators

As the objective for the grid is the peak reduction, two cor-
responding indicators are measured before and after optimi-
sation: The PAR and the Square Euclidean Distance (SED)
using (10), where Xk = ∑

N
n=1 xn

t .PAR =
maxt(Xt)

X̄t

SED = ∑
T
t=1(Xt − X̄t)

2
(10)
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3 Study case

3.1 Modelled population

3.1.1 Load modelling

As explained in section 2.2, information on each appliance is
needed to perform the optimisation according to the comfort
of each user. The demand of the population must therefore
be modelled with a sufficient temporal resolution to encom-
pass them all. Among the reviewed models [16], the bottom-
up approach is selected as it gives access to the contribu-
tion of each appliance. In this category, the model CREST
V.2 [17] is chosen. This model builds the load curve of one
user by summing the demands due to each appliance at a
timestep of 1 min, for the UK residential sector. The gas de-
mand due to heating is also modelled. In addition, an open-
source tool is provided by the authors. This model has been
used in a demand-side management context to build input
data in [15] for example. For this paper, the model has been
slightly modified, for the French residential electrical de-
mand is more thermosensitive than the English one. In fact,
in France [18], 50% of the dwellings use electricity to heat
water, and 36% use electricity to heat the house. To account
for this difference, part of the power flow due to heating (air
and water) is therefore rerouted to the electrical demand.
Furthermore, the statistical data are updated using data from
the French national housing survey (ENL - Enquête National
Logement) carried out by the National Institute of Statistics
and Economic Studies (INSEE).

Since the CREST does not consider electrical vehicles
(EV) and to add more flexibility to the load curve, a fleet of
electric vehicles has been modelled. Normal distributions of
travels and of arrival time were used for the modelling, as
proposed in [19], and the loads due to the fleet were added
to the output of the CREST using french statistical data on
EV ownership.

3.1.2 Sensitivity modelling

The goal of this work is to demonstrate the effectiveness
of a new approach to differentiate users’ utility based on
their sensitivities towards factors. Therefore, 6 main pro-
files have been modelled and described in Tab. 1. Each sixth
of the total population (N = 100) is given a different pro-
file. To achieve diversity in each sub-population, random-
ness around the target value is performed (+/-10% around
50%, and 20% below 100%). To ensure a realistic compar-
ison between the different profiles, one dwelling among the
modelled population has been duplicated 6 times, one in
each profile group. For the simulation, there are therefore
six dwelling with the same appliances, and same consump-
tion but with different sensitivities.

Table 1 Profile distribution of the 100 households

Profile Cost Envir. Comf. Size

1 - Cost 80-100% - - 17
2 - Environment - 80-100% - 17
3 - Comfort - - 80-100% 17
4 - Cost & Envir. 40-60% 40-60% - 17
5 - Cost & Comfort 40-60% - 40-60% 16
6 - Envir. & Comfort - 40-60% 40-60% 16

3.1.3 External factors

The external factors influencing the consumption included
in this paper are the price and the production of renewable
energy. Their evolution over the considered day is presented
on Fig. 2(a) and Fig. 2(b) respectively. The price is an actual
two-step Time Of Use pricing currently used in France, and
the ratio of REN in the total electrical production feeding
the grid is retrieved from the french electricity transmission
system operator RTE [20].
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Fig. 2 Evolution of (a) the electricity price and (b) the ratio of REN in
the production over the day

3.2 Algorithm

As introduced in section 2.1, the stakeholders calculate their
optimal consumption path in a sequential and asynchronous
way, therefore interacting only with the aggregator. For writ-
ing simplicity in this paper, X is a K×N matrix containing
the consumption of the N player for each of the K step of
time X(:, i) = [x1,i, · · · ,xk,i, · · · ,xK,i]. The process of interac-
tion between the households and the aggregator is the two
stage algorithm 1: On the upper level, the aggregator is in
charge of calculating the total load on the grid after each lo-
cal optimization and sending it to the next household until
the stop criterion is fulfilled. On a local level, the stakeholder
receives the total load on the grid and then optimizes his con-
sumption according to his utility function and with respect
to his constraints, before sending it back to the aggregator.
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Algorithm 1 Global algorithm
1: round← 0 . Round counter
2: eq← 0 . Dummy for equilibrium
3: par← 0 . Peak to Average Ratio
4: TotalLoad← ∑

N
n=1 X(:,n)

5: while eq 6= 1 and par 6= PAR(X) and round≤ rmax do
6: par← PAR(X)
7: for n← 1 to N do
8: eq(n)← 0
9: if TotalLoad 6= TotalLoad∗ then

10: GridState← TotalLoad−X(:,n)
11: Fixed consumption is stored as X(:,n)
12: for each type cycle, on-off, then flexible appliance do
13: n uses DP to solve (1) for the K time slots depend-

ing on GridState
14: n adds the best reply to X(:,n)
15: end for
16: else eq(n)← 1
17: end if
18: TotalLoad∗← TotalLoad
19: X∗(:,n)← X(:,n)
20: TotalLoad← ∑

N
i=1 X(:,n)

21: end for
22: round← round+1
23: end while

4 Simulation and results

4.1 Grid perspective

The results concerning the evolution of the total load on
the grid are presented on Fig. 3(a), and the related indica-
tors are gathered in Tab. 2. The PAR is effectively decreased
(−20%), and it is noticeable how the fluctuation of the load
is drastically attenuated (−79%). It is therefore interesting
to analyse the other part of the objective, i.e. the evolution
of the consumers satisfaction.

Table 2 Simulation results for the grid

Indicator Initial Optimized Evolution

PAR [1] 2.18 1.74 −20%
SED [1010 kW2] 25.1 5.33 −79%

4.2 Consumers perspective

The indicators per group of consumers and per observed
dwelling are respectively gathered in Tab. 5 and Tab. 4. Dur-
ing the optimisation, the mean satisfaction amongst con-
sumers increased of 17.2%. An example of the evolution of
the load of one dwelling, for which the cost sensitivity is
0.99, is represented in Fig. 3(b): the observed decreased in
expenditure (6.6%) is the highest amongst the consumers.
Each group of consumers increases its indicators with re-
spect to its main objective (bold emphasis). Furthermore, on
both tables, the observed consumers who do not improve

their satisfaction are the ones with the highest comfort sen-
sitivity (profile 3) and therefore leaving their consumption
practically unchanged, as requested.

Table 3 Indicators evolution for the 6 groups of consumers

Group Satisfaction Cost REN Comfort
δSn [%] δCn [%] δεn

ENR [%] ∆ tn
shift [h]

Profile 1 50.8 5.8 -24.3 2.41
Profile 2 15.5 -1.0 7.0 1.97
Profile 3 -0.4 1.9 -18.8 0.04
Profile 4 23.2 6.5 -17.5 6.03
Profile 5 10.2 3.0 0.0 2.25
Profile 6 2.7 -0.6 0.0 0.60

Table 4 Indicators evolution for the 6 observed Dwellings

Profile Satisfaction Cost REN Comfort
δSn [%] δCn [%] δεn

ENR [%] ∆ tn
shift [h]

Dwelling 1 99.0 6.6 -31.8 9.25
Dwelling 2 10.6 0.0 4.9 1.58
Dwelling 3 0.0 0.0 0.9 0.33
Dwelling 4 21.0 5.4 -10.9 8.17
Dwelling 5 0.4 6.6 -31.7 9.17
Dwelling 6 4.3 0.0 4.7 1.42

On both the global and local results, it appears therefore
that single profiles (1 to 3) are correctly taken into account:
the proposed scheme incorporates indeed the various objec-
tives by balancing the load in relation to the sensitivities of
the considered stakeholder. The simulation validate there-
fore the approach to model various profiles but requires fur-
ther investigation regarding the definition of sensitivities. In-
deed, the resulting difficulty concerns the mixed-objectives
profiles: with profile 4 and 5, the cost objective displaces the
two others (REN and comfort) as most of the forecasted con-
sumption is in a high-price/high-REN-ratio period. Incen-
tive to shift the consumption according to price is therefore
considerable, as the following increase in satisfaction will
also be substantial, even for low price-sensitive consumers.
It requires therefore to include the state of the forecasted
consumption regarding external factors while defining the
metrics, to account for this effect.

5 Conclusion and perspectives

This paper proposes a decentralized EMS taking into ac-
count the consumers preferences and sensitivities while par-
ticipating to the grid objective that is to reduce the load
peak. Through the example of 6 predefined profiles using a
set of 3 sensitivities - price, environment and shifting com-
fort - it achieves a higher flexibility without diminishing the
consumers’ satisfaction - a way to ensure their involvement
in the grid equilibrium. Considering various appliances, the
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Fig. 3 Evolution of the total load on the grid (a) and evolution for the dwelling 1 (b), a price sensitive consumer.

observed PAR reduction is of 20% and the mean satisfaction
for the consumers increased up to 17.2%. It will be there-
fore interesting to investigate the influence of the parameters
on each other and furthermore, to look at the distribution of
the effort through the modelled population given the stated
profile repartition. In this study, the decrease of the PAR is
assumed to be the only goal of the grid manager, however,
the final state of the grid in terms of voltage plan obtained
through this kind of management strategy is worth further
investigation.

Other form of utility function are currently under in-
vestigation, but in the long run, facing the complexity of
real profiles, further study to retrieve them through a socio-
economic approach should be conducted in order to have
the adequate input for the proposed EMS formulation. With
time, knowing the stakeholders and their sensitivities, this
could be a methodology to follow in order to get a more ac-
curate prediction. A learning loop would be then adequate
to adapt the model to a given population and learn from it.
Such approach constitute also an opportunity to change the
way electricity is billed and how new contracts are defined,
which then requires an adequate economical model to de-
fine the financial counterpart for those taking part in the grid
equilibrium.
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