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Abstract—This paper proposes a V2G charging scheduling
scheme for energy invoice minimization of railway station park-
ing lots hosting plug-in electric vehicles. Using a two layer
optimization technique the daily load profile of the railway station
is reduced in order to increase the load factor and minimizing
the annual energy invoice (AEI) of the station. Binary linear
programming is used as second layer for charging/discharging
scheduling problem. The final results shows interests of using the
proposed approach conducting its impact on minimizing annual
optimum subscribed power, maximum demand power and annual
energy invoice.

Index Terms—Plug-in electric vehicle, vehicle-to-grid, binary
linear programming, railway stations

I. INTRODUCTION

The Growth of electrified vehicles in transportation sector
in the near future increases the grid load demand, where the
energy management systems can reduce the negative impacts.
As the electric vehicles charging infrastructure are mainly
connected to the distribution networks, downer side network
infrastructure are mostly affected by negative impacts, e.g.
harmonic increment, voltage drop, power losses and peak
power augmentation [1]. These effects also could be variable
in presence of bidirectional power flow due to the vehicle-
to-Grid (V2G) functionality of grid integrated vehicles (GIV)
[2]. Hence the impact of latter situation should be simulated
and its impacts have to be estimated, where possible solutions
should be proposed to reduce the negative effects.

Charging coordination to the off-peak hours and V2G
technology are introduced as the possible solutions for impact
reduction of massive electric vehicle charging demand on
the distribution grid [3]. The main objectives for charging
coordination problems include losses minimization, voltage
regulation [4], frequency regulation [5], peak power shaving
[6] and reactive power control [7] [8].

V2G technology is introduced as the possibility of power
injection to the grid by plug-in electric vehicle using their

This work is a part of V2G project supported in part by ADEME (French
Environment and Energy Management Agency), SNCF (French National
Railway Network), GEREDIS Deux-Sèvres (Distribution System Operator of
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unused battery stored energy [3]. It can provide more degree of
freedom for energy management purposes compare to charging
coordination strategies as the bi-directionality of the power is
also controllable [9].

In the literature, different scheduling and coordination prob-
lems are proposed. The methods are mainly based on either op-
timization methods or artificial intelligence methods. Dynamic
programming is proposed in [10] [11] for the maximization
of load factor. A simulated annealing approach is introduced
in [12] for energy resource scheduling of distribution grid
containing distributed generation and V2G units. Convex op-
timization method in form of global scheduling problem is
proposed by [13].

In this study V2G scheduling problem is analyzed in order
to provide individual schedule to the electric vehicles and
make the global management of a small EV fleet possible
for the aggregator unit. Charging of the electric vehicles will
be provided in different places such as home charging, office
charging, commercial centers and transport stations. This
work is representing the impact of non-controlled charging
of electric vehicles inside the station parking lots on railway
station energy consumption, while an energy management
strategy is proposed to reduce the charging impacts on annual
electricity bill of the station. Different charging rates are
available in the station such as normal charging (3 kW), fast
charging (23 kW) and rapid charging (43 kW), where different
possible charging scenarios are simulated based on passengers
commuting statistics in the morning and evening.

Non-controlled charging impacts have been estimated for
1 to 20 electric vehicles available in the parking lots. These
impacts have two different aspects; economic and technical
where both have been analyzed. The objective of the energy
management is reducing the annual energy invoice (AEI) of
the station. AEI of railway station has three components: Sub-
scription, Consumed energy and Subscribed power exceeding
component. Subscribed power is a fixed power which is asked
by railway station (consumer) to have it at its disposal. This
power is either constant over a year or variable for different
tariff periods. In this case study, a constant one is chosen based
on actual contract of railway station. Comparing to the annual
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consumption, choosing high value of subscribed power leads
to extra payment on subscription component while, low value
causes increment on subscribed power exceeding component.
Hence an optimization framework is necessary to explore
the optimum energy invoice while providing services to the
costumer (electric vehicles).

A two layer optimization approach is proposed where in the
first layer, optimum subscribed power and load profile will be
calculated using nonlinear convex optimization. Afterwards,
based on optimized load profile limited to the optimized
subscribed power the charging/discharging scheduling will be
calculated using binary linear programming for each single
vehicle. These schedules will be transmitted to the vehicles in
order to control their charging demand. Finally the advantages
using proposed approach are presented in economic benefit
over annual invoice.

The rest of the paper is organized as follow. In section II
case study and charging scenarios are introduced. In section
III, the problem formulation for two layer of optimization are
conducted and finally the results are discussed in section IV.

II. CASE STUDY AND ASSUMPTIONS

It is estimated to have numerous electric vehicles in the
cities by near future. These vehicles need to be charged for
their next trips. Considering the scenario of peoples who use
the train for their daily commuting to works, the parking of
railway stations will be a potential location to host future
electric vehicles. Knowing that, the railway transportation
organizations are thinking to propose innovative solutions
concerning different steps of this new implementation in the
railway stations. It starts from designing of charging stations
inside the parking and the charging possibilities and offers to
the customers.

The railway stations in France are one part of future smart
grid projects with possible interactions between grid and the
customers. Based on their contract they are connected to the
distribution grid through a MV/LV substation (20 kv/0.4 kV).
In this paper one of the railway stations in Paris has been
considered as case study in order to propose charging solutions
and analyze the impacts of different charging scenarios. The
objective is to minimize the AEI using electric vehicles as
controllable charge. In addition to that thanks to the Vehicle-
to-grid technology the reversibility of energy flow from EVs to
the grid would be also possible. The daily load profile (DLP)
of the railway station is illustrated in Fig. 1. It shows a peak
of consumption during morning and evening peak hours, the
time when the passengers get train for work and home motives.
This two peak intervals are considered also as the peak hours
of PEV being in parking lots of the station (Fig. 2). Using
a normal distribution, the arrival/departure time of the PEVs
to/from the station are modelled with parameters in Table I.

The idea in this study is at first evaluate the uncontrolled
charging impacts of PEVs with these mobility behavior on the
railway station consumption for different charging scenarios
and secondly evaluate the contribution of a V2G charging
scheduling algorithm to the AEI minimization using a two
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Fig. 1. Daily load profile of understudying railway station.
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Fig. 2. Arrival/departure time histogram to/from the railway station.

TABLE I
ARRIVAL/DEPARTURE TIME NORMAL DISTRIBUTION’S PARAMETERS

Distribution µ (hh:mm) σ (minutes)

Arrival time 08:00 20
Departure time 18:00 40

layer optimization approach. Four charging scenarios are
considered as base case in order to evaluate the algorithm
performance.

A. Normal charging (Scenario 1 (S1))

It is supposed to have normal charging rate of 3 kW for
all the vehicles demanding for the energy. This mode is the
priority for vehicles having long station time.

B. Mixed charging (Scenario 2 (S2))

Mixed charging is considered by distribution of 40% normal
charging, 40% rapid charging and 20% accelerated charging.

C. Accelerated charging (Scenario 3 (S3))

In this scenario, all PEVs in the stations will be charged by
23 kW charging rate. This takes approximately one hour for
a completely empty battery of 20 kWh.

D. Fast charging (Scenario 4 (S4))

All the PEVs will be charged by rapid charging mode with
the power of 43 kW in this scenario. The impact of this
charging mode can be crucial to the internal grid installation.



III. PROFBLEM FORMULATION

An algorithm based on two layer optimization is discussed
here. Annual energy invoice minimization (AEIM) algorithm
at first minimizes the subscribed power of the station based
on future energy consumption provision. Afterwards, using
a convex optimization method the daily load profile of the
station will be recalculated for the aim of minimizing the AEI.
This DLP will be called as reference load profile and will be
used as reference for second layer optimization. The second
layer uses a Binary Linear Programming (BLP) algorithm
in order to reschedule the charging procedure of PEVs in
the station. The algorithm will take just zero sand ones as
its possible values for the optimization variables which lead
to calculation time reduction comparing to the continuous
linear programming algorithms. The flowchart of the proposed
algorithm is brought in Fig. 3, where it shows the flow of
data and process simultaneously. The different parts of this
algorithm will be explained thoroughly afterwards.

A. Optimizing subscribed power (Psub)

The subscribed power is contracted one time per year
and should be carefully chosen. Comparing to the annual
consumption, choosing high value of subscribed power leads
to extra payment on subscription component while, low value
causes increment on subscribed power exceeding component.
Hence choosing appropriate subscribed power leading to opti-
mum invoice needs to have a priori knowledge on amount
and manner of consumption. Having a typical annual load
profile, optimum subscribed power can be found via a convex
optimization problem.
The yearly energy invoice is calculated using following for-
mula [14].

Cost =

5∑
j=1

(djEj) +

5∑
j=1

(K.Tj

√∑
(∆Pj)2) + α.Psub (1)

Ej =

∫ tbj

taj

LP (t)d(t) (2)

Where the first component is for consumed energy Ej , with
its price dj , in e/kWh during 5 different periodical tariffs j.
The second components is for penalty of subscribed power
exceeding with T , the reduction coefficient for each tarif and
K the price of subscribed power (Psub) exceeding in e/kW.
∆P is the amplitude of Psub exceeding averaged during 10
minutes intervals. Finally, the third components which is the
subscription part with base rate value of α in e/kW/year. LP is
representing the load profile of the station where its variation
should be controlled in order to minimize the invoice. The
optimum subscribed power of the under studying station is
obtained using a convex optimization as 69 kW. Note that this
subscription is considering the annual consumption without
PEVs load demand.
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Figure 1.  Flowchart of AEIM algorithm. 
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Fig. 3. Flowchart of AEIM algorithm

B. Energy invoice optimization

In this part optimizing the invoice using optimized sub-
scribed power and actual load profile is addressed. In fact
the load profile leading to minimum invoice will be found.
This load profile will be considered as reference for charg-
ing/discharging scheduling problem in next section. This part
is considered as the first layer of optimization.

min
RLP (t)

Cost (3)

Subject to: ∫ tbj

taj

DLP (t)d(t) =

∫ tbj

taj

LP (t)d(t) (4)



Now RLP (t) is the reference load profile which can mini-
mize the invoice. This reference is considered in scheduling
problem.

C. Formulation of PEV scheduling problem

Charging scheduling problem of N PEVs are formulated as
a vector in time with elements equal to the 10 minutes time
step over a day, which is equivalent to a row vector with size 1
by 144. This is called day sample times as k. The question to
be answered is how coordinate the charging, no charging and
discharging commands between plug-in time steps to achieve
the objective of the coordination. For this reason EV i

cp(t)
is defined as charging profile of PEVs with sample time
coefficients of ak as BLP variables and charging rate of CRi.
This charging rate is positive for charging and negative for
discharging and the value is defined by the charging scenarios.{

EV i
cp(k) = [a1, a2, ..., ak]× CRi

i = [1, N ] ∈ N. (5)

In equation (6), Capi(k) represents the distance between RLP
and actual LP . In fact, the purpose is to minimize this distance
in order to minimize the energy invoice which is already
minimized by RLP.

Capi(k) = LP (k)−RLP (k) (6)

γi(k) = −
∣∣Capi(k)

∣∣ (7)

Ci(k) =
(
γi(k) + CRi(k)

)
× ak (8)

k = [1, 144] ∈ N (9)

ak = [0, 1] (10)

In order to prevent trivial answer of 0 for binary linear
programming minimization problem, the coefficient γi(k) is
defined. Finally for optimization problem, Ci(k) is defined as
objective function.

Minimize
a1,..,ak

T∑
k=1

Ci(k)

Subject to:

(11)

T∑
k=1

Aeq(k).ak = SOCi
need (12)

T∑
k=1

A(k).ak ≤ SOCi
max (13)

T∑
k=1

−A(k).ak ≤ −SOCi
min (14)

Constraint (12), ensure the energy need of each single PEV
during its plug-in interval. Constraints (13) and (14) gaurantee
the charging scheduling within possible range of SOC varia-
tion. Where SOCi

min is considered as 20% to minimize the

battery depth of discharge and SOCi
max is equal to 100%, the

constraint for departure of all PEVs.

Aeq =
Capi(k)

|Capi(k)| (15)

Aeq = [−1, 1] ∈ Z (16)

For principle formulation of linear programming the Aeq is
the coefficient of linear equality constraints where for this
problematic, its values are -1 for discharging, 0 for idle mode
and 1 for charging mode. Finally, the matrix A for non-equality
constraints is defined as follow:

A =


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

×

Aeq(1) 0 · · · 0

0 Aeq(2) · · · 0
...

...
. . .

...
0 0 · · · Aeq(k)


D. Optimum schedule for ith PEV

After each iteration of the optimization algorithm in order
to calculate the charging schedule of ith PEV a factor of SOC
progress as SOCi

sign(k) is defined.

SOCi
sign(k) = [ak]×


Aeq(1) 0 · · · 0

0 Aeq(2) · · · 0
...

...
. . .

...
0 0 · · · Aeq(k)


Where the final optimized charging profile of concerned PEV
considering its charging rate CRi, will be as follow:

EV i
cp(k) =

[
SOCi

sign(1), · · · , SOCi
sign(k)

]
×
[
CRi

]
(17)

E. Updated functions for next PEVs

In order to calculate the charging profile of next PEVs
(based on their arrival time) the functions LP (k) and Capi(k)
should be updated considering the optimized charging profile
of previous PEVs.

LP i+1(k) = LP i(k) + EV i
cp(k) (18)

Capi+1(k) = LP i+1(k)−RLP (k) (19)

F. Constraints for PEV’s Energy need

The PEVs which will arrive with low SOC rate have extra
constraints that are introduced in form of two algorithms. If
the number of admissible charging samples Nb.+, is less than
required charging sample time of a PEV (T i

c ), the Aeq will be
updated until respecting the PEVs charging need constraint.
This is considered in form of following algorithm.{

Nb.+ Aeq > 0
Nb.+ Aeq < 0

(20)

In addition, when a PEV arrives with SOC less than
minimum SOC of the scheduling algorithm constraint, the
constraint (13) will be updated by following algorithm in order
to enforce the schdueling algorithm to start by charging the
concerned PEV instead of discharging its battery.
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Fig. 4. SOC evolution comparison for a case of 10 PEVs.

Algorithm 1 Charging need check in Aeq vector

1: if T i
c > Nb.+ then

2: Put 1 in vector Aeq where
3: Aeq × Capi(k) has smallest value.
4: else
5: end if

Algorithm 2 Updating Minimum SOC constraint
if SOCi

arrival < SOCi
min then

2:
∑T

k=1−A(k).ak ≤ 0
else

4: end if

IV. RESULTS AND DISCUSSION

For a case study of 10 PEVs in Scenario 1, the variation of
state of charging due to charging by the proposed approach
is compared with non-controlled case in Fig. 4. The arrival
time and departure time of each PEV is indicated to show the
respecting of users satisfaction having fully-charged battery at
departure time for all PEVs. Due to the peak of consumption
during the morning the PEVs arriving sooner have been asked
to provide V2G for peak power reduction of the station. For
the other PEVs charging coordination is applied in order to
minimize the impact of charging on peak to average ratio of
the DLP and consequently reducing AEI.

The performance of proposed approach is evaluated using
three indicators. Maximum power of yearly load profile is
considered as the first indicator in order to represents the effec-
tiveness of the scheduling scheme compare to non-controlled
scenarios (Fig. 5). As it is illustrated, the maximum power
is linearly increasing by PEV number increment for all non-
controlled scenarios. S2 shows a stochastic variation as it has
stochastic number of PEVs shared between 3 charging modes.
S3 and S4 have reletively the same ∆Pmax as the 10 minutes
averaged power are considered in AEI calculation. However,
for most of optimum scenarios the value of ∆Pmax remained

relatively constant and it shows the effective performance of
AEIM algorithm for peak-to-average reduction of station’s
consumption.

∆Pmax = PwithPEV
max − PwithoutPEV

max (21)

Optimum subscribed power is the second indicator where

IV. RESULTS 
In this part the results will be brought. 
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Fig. 5. Comparison of maximum power increment.

the impact of scheduling scheme leads to subscribed power
reduction (Fig. 6). A sharp increment is occurred after 5
PEVs for most of non-controlled scenarios, while for optimum
scenarios the optimum Psub can remain as 69 or 70 kW upto
hosting 20 PEVs (the actual horizon), the subscribed power of
actual contract without PEVs.

Finally, the AEI of the station is presented for all the
scenarios in Fig. 7. A slight increment of AEI for optimum
scenarios is representing the energy part of the AEI, while the
considerable differences betwwen non-controlled and optimum
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Fig. 6. Comparison of optimum Psub.

Fig. 7. Comparison of AEI for all scenarios.

scenarios is evident. This difference is comming from the im-
pact of AEIM on peak power reduction and subscribed power
optimization. Comparing the worst case, S4, the contribution
of AIEM leads to approximately 20% reduction of AEI for 20
PEVs scenario.

V. CONCLUSION

In this study, contribution of AEIM algorithm to peak power
reduction and AEI minimization of a railway station, hosting
upto 20 PEVs, were presented. The proposed algorithm is
able to minimize the peak power using V2G ability of PEVs
parked during the day inside the railway station parking lots. In
addition, charging scheduling is applied in order to minimize
the annual energy invoice of the station. The minimization of
the invoice is conducted using subscribed power minimization,
subscribed power exceeding minimization, and PEVs charging
during low cost hours. As in this case study the electricity

price during the most of the plug-in intervals was constant, the
impact of later factor was not evident. However, peak power
reduction and exceeding minimization leads to minimizing
upto 20% of AEI of the station. As the future works this
algorithm would be updated for real-time applications and
share of the same amount of V2G between all PEVs and
priority based V2G service participation.
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REFERENCES

[1] L. Pieltain Fernandez, T. Roman, R. Cossent, C. Domingo, and P. Frias,
“Assessment of the impact of plug-in electric vehicles on distribution
networks,” Power Systems, IEEE Transactions on, vol. 26, no. 1, pp.
206–213, Feb 2011.
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