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A. Ndiaye, R. German, A. Bouscayrol, M. Gaetani-Liseo, P. Venet, E. Castex 

Abstract— This paper studies how the user charging practice 

affects battery degradation over time. To achieve this objective, a 

system oriented simplified aging model based on the literature is 

proposed. The differential calculation of the capacity loss is used 

for infinitesimal variations. The model inputs are the battery state 

of charge, the battery temperature and the cumulative number of 

full equivalent cycles. The output is the battery state of health. This 

model is identified and validated with experimental aging tests 

from the Renault Zoe 41kWh battery manufacturer. The battery 

model (electro-thermal and aging) interconnects with the vehicle 

traction model complete the system model. The battery electro-

thermal and traction models are also validated with measurements 

on the studied vehicle. The Energetic Macroscopic Representation 

(EMR) formalism organizes in a unified way the interconnections 

of all the sub-system models. The impact of the charging interval 

and SoC on the battery aging is then studied. Five charging 

scenarios are studied by simulation while keeping the driving 

phases and the charging current the same. In these conditions, the 

average SoC is the main contributor for the battery aging. 

Compared to daily charge of the EV, a charge every 4 days extends 

the time to reach 80% of state of health by 36 % due to lower 

average SoC. The daily driving distance is fixed for every studied 

scenario. 

Index Terms— Electric vehicle; energetic macroscopic 

representation; Li-ion battery; charging; aging.  

I. INTRODUCTION 

Electric Vehicles (EVs) [1] [2] reduce greenhouse gases 

(GHG) emissions due to transportation and limit global 

warming [3]. However, the GHG emissions due to EVs (also 

referred as Battery Electric Vehicles in some other publications 

BEVs [4]) production are high due to lithium mining, and the 

well to tank emissions are dependent on the way the electricity 

is produced [5]. Nevertheless, there is a global life cycle 

assessment gain in term of CO2 compared to a classical thermal 

vehicle [6]. 

For EVs, the main energy source is a lithium-ion battery. 

The main technology currently used (for positive electrode) is 

the Nickel Manganese Cobalt (NMC) one [7]. In 2022, 75% of 

the battery demand for the electrified vehicles (EV or hybrid 

vehicles) is NMC [3]. Typical EVs have a driving range from 

200 km to 400 km and a long charging time (up to 12 hours) 

[8].  

As batteries represent a major cost of EVs, aging of batteries 

has been an important research topic for EVs. Batteries are 

complex storage systems based on electrochemistry. They are 

affected by many parameters such as temperature [9], State of 

Charge, cumulated cycles, etc. This results in battery aging over 

time [10]. 
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As stated in a literature review [11], different types of battery 

aging models exist. Electrochemical models are used for 

analysis, but they are difficult to connect to other subsystems 

because of the specific variables they use [12]. Empirical black 

box models need large datasets for identification [13]. The semi 

empirical models are the most used for its advantage in 

identification and interconnection. This is the type of model 

used in this paper. 

One of the aging indicators is the capacity decrease over time 

[14]. Aging of the battery is influenced by driving, charging 

[15] and parking (also called calendar ageing [16]). Charging 

can be managed to slow down battery aging. For example, 

varying charging power is studied to optimize the charging 

duration [17] or the battery lifespan [18], [19], [20]. Some 

experimental aging tests based on SoC [21], [22] have shown 

that the degradation of battery cells is faster when the SoC is 

higher.  

The objective of this paper is to study the impact of the user 

charging practice (the time interval between battery charges or 

the SoC at which the user starts charging) on battery aging in 

an EV.  

In the literature, various battery aging models have been 

developed with some missing aspects to be fully applied in the 

EV system. For example, in [23] an aging model is developed 

for large temperature span (0-55°C), but it is not in dynamic 

interaction with a traction model of an EV. In [24], an aging 

model is proposed considering the temperature and voltage but 

not the energy exchange through full equivalent cycle counting. 

In [25] an aging model is interconnected with a traction model. 

In this model the effect of cycles on aging is multiplicative. That 

means the capacity degradation is null if there is no exchange 

of energy. As a consequence, aging during parking mode cannot 

be considered in [25].  

The scientific novelty of our paper is to integrate the battery 

model with aging as a sub-system of an EV. This model is 

considering all modes (parking, driving and charging). The 

system philosophy is based on the interconnection between 

different subsystems.  

As a consequence, a simplified semi empirical aging model 

is proposed here. It is derived from classical models of the 

literature. The SoC and T dependence come from [25] and the 

energy exchange effect cumulative effect comes from [21] and 

[23]. It is composed of an electrical part, a thermal part and an 

aging part. This model is interconnected with the traction model 

of EV. Usage scenarios are considered from the perspective of 

the drivers: commuting trip, parking time and charging. 
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For this integration, the Energetic Macroscopic 

Representation (EMR) formalism is used [26]. The EMR is a 

graphical representation using power flows between different 

pictograms (see Appendix A). Moreover, the inputs and outputs 

of different pictograms are imposed by the integral causality 

(outputs are delayed compared to inputs). For these reasons, 

interconnection of multi-physical subsystems is facilitated and 

organised in a systematic way. The global model is thus 

organized in this unified way to enable the right interaction 

between subsystems models.  

In section II, the global model is proposed and the 

parameters are identified from a set of experiments coming 

from an EV NMC cell manufacturer. Validations of each sub-

system with experimental results are performed. In section III, 

different scenarios are presented and studied. Battery aging is 

simulated and compared for 10 years, which corresponds to a 

classical vehicle ownership duration. Literature and industrial 

policy recommend to change an EV battery when the State of 

Health (SoH) reaches 80% to 70 % [27][28][29] where the SoH 

is defined as the ratio between the actual capacity versus the 

initial capacity at the battery Beginning of Life (BoL). A 

comparative study is performed to estimate the time to reach 

80% SoH in this paper. 

II. MODELLING OF THE BATTERY AND THE VEHICLE 

A. Battery aging model presentation 

The main aging factors associated to batteries are well 

identified in the literature [30]: 

• the state of Charge (SoC in %),  

• the temperature of the battery (TBat in K), 

• the time (in days), 

• the number of cumulated Full Equivalent Cycles (NFEC) 

since the battery production. One FEC corresponds to a 

full charge and discharge. 

A system-oriented simplified aging model with two parts (1) 

is developed from existing aging models of the literature [23], 

[31], [32]. A set of experimental results [33] is used for 

identification. They correspond to the cell (63 Ah, NMC 

technology) used in the Renault Zoe 41 kWh. They correspond 

to mild to hot conditions). As a consequence, the extracted 

model is limited to normal to hot conditions. For the first part 

of the model, three classical stress factors are considered: SoC, 

temperature and time. To build the corresponding part of the 

equation the following assumptions are used. The aging SoC 

dependency is considered to be linear as in [31]. A classic 

Arrhenius law can be used to describe the impact of the 

temperature on aging as in [23]. The time dependence can be 

composed of a fractional exponent z (between 0 and 1) as in 

[32]. This first part represents the aging due to the SoC and 

temperature of the battery at any time. A second part is added 

to consider the number of FEC for a given charging/discharging 

current. It represents the aging due to the exchange of energy 

when battery is running. Aging is the sum of these two parts 

[34]. That means that the two parts are cumulative and occur at 

the same time. It is validated in the next sections with 

experimental results. 

Closs expressed in % here. As the input variables (SoC, TBat 

and NFEC) are varying with time during an EV use, an approach 

based on a differential form is proposed in this paper such as 

[21] by adding the impact of NFEC to consider energy exchange. 

The expression of the capacity loss variation for an infinitesimal 

time dt is given below. 

𝑑𝐶𝑙𝑜𝑠𝑠𝑡→𝑡+𝑑𝑡 = 𝑑 [(𝐴 + 𝐵. 𝑆𝑜𝐶)𝑒
−𝐸𝑎

𝑘𝐵𝑇𝐵𝑎𝑡 . 𝑡𝑧 + 𝑘𝐹𝐸𝐶 . 𝑁𝐹𝐸𝐶] (1) 

where Ea is the energy of activation (eV), kB is the 

Boltzmann constant (eV) and kFEC is the capacity loss for each 

full equivalent cycle (% FEC-1). Contrary to [23], kFEC is taken 

as a constant. This simplification has to be verified with 

experimental results. To consider the history of the battery, the 

cumulated capacity loss is obtained by integrations. 

𝐶𝑙𝑜𝑠𝑠0→𝑡 = ∫ 𝑑𝐶𝑙𝑜𝑠𝑠

𝑡

0

 (2) 

The differential is expressed with partial derivatives and 

variations of each model variables (during t→t+dt). Contrary 

to [21] and [31], the total differential is used here, instead of the 

partial differential in function of time. 

𝑑𝐶𝑙𝑜𝑠𝑠(𝑡→𝑡+𝑑𝑡) =
𝜕𝐶𝑙𝑜𝑠𝑠
𝜕𝑆𝑜𝐶

𝑑𝑆𝑜𝐶 +
𝜕𝐶𝑙𝑜𝑠𝑠
𝜕𝑇𝐵𝑎𝑡

𝑑𝑇𝐵𝑎𝑡 +
𝜕𝐶𝑙𝑜𝑠𝑠
𝜕𝑡

𝑑𝑡

+
𝜕𝐶𝑙𝑜𝑠𝑠
𝜕𝐹𝐸𝐶

𝑑𝐹𝐸𝐶 

(3) 

The analytical expressions of partial derivatives are deduced 

from (1), they are given below. 

{
 
 
 
 

 
 
 
 

𝜕𝐶𝑙𝑜𝑠𝑠
𝜕𝑆𝑜𝐶

= 𝐵. 𝑒
−𝐸𝑎

𝑘𝐵.𝑇𝐵𝑎𝑡 . 𝑡𝑧

𝜕𝐶𝑙𝑜𝑠𝑠
𝜕𝑇𝐵𝑎𝑡

=
𝐸𝑎

𝑘𝐵. 𝑇𝐵𝑎𝑡
2 . 𝑒

−𝐸𝑎
𝑘𝐵.𝑇𝐵𝑎𝑡(𝐴 + 𝐵. 𝑆𝑜𝐶)𝑡𝑧

𝜕𝐶𝑙𝑜𝑠𝑠
𝜕𝑡

= (𝐴 + 𝐵 𝑆𝑜𝐶)𝑒
−𝐸𝑎

𝑘𝐵.𝑇𝐵𝑎𝑡 𝑧 𝑡𝑧−1

𝜕𝐶𝑙𝑜𝑠𝑠
𝜕𝐹𝐸𝐶

= 𝑘𝐹𝐸𝐶

 (4) 

 

A discretization of the law (1) is given with Δt the time step 

of the aging model (100 s) (5). This is infinitesimal compared 

to the aging time (~10 years).  

𝛥𝐶𝑙𝑜𝑠𝑠𝑡→𝑡+∆𝑡 =
𝜕𝐶𝑙𝑜𝑠𝑠
𝜕𝑆𝑜𝐶

𝛥𝑆𝑜𝐶 +
𝜕𝐶𝑙𝑜𝑠𝑠
𝜕𝑇𝐵𝑎𝑡

𝛥𝑇𝐵𝑎𝑡 +
𝜕𝐶𝑙𝑜𝑠𝑠
𝜕𝑡

𝛥𝑡

+
𝜕𝐶𝑙𝑜𝑠𝑠
𝜕𝐹𝐸𝐶

𝛥𝐹𝐸𝐶 

(5) 

The cumulated aging (2) is also discretized with a sum. 

𝛥𝐶𝑙𝑜𝑠𝑠0→𝑛∆𝑡 =∑𝛥𝐶𝑙𝑜𝑠𝑠𝑖

𝑛

𝑖=1

 (6) 

As a consequence, the expression of the current degraded 

capacity of the battery (%) can be expressed as follows. In the 

battery this value is called the SoH.  

𝑆𝑜𝐻(𝑡 = 𝑛∆𝑡) = 100 −∑𝛥𝐶𝑙𝑜𝑠𝑠𝑖

𝑛

𝑖=1

 (7) 

where 100% is the normalized value of the fresh capacity. 

The value of the degraded capacity is one of the most important 

variables for EV simulation (for example for driving range 

estimation). It is smoothed with a low pass filter. The SoH is 

the output of the aging model. 

B. SoC and temperature dependence identification 

Experimental aging results from the literature are available in 

[33]. They correspond to the battery cells used in the 41 kWh 

Renault Zoe (LG Chem NMC 63 Ah). As any aging battery test, 

the test time (300 days) is much shorter than the battery lifetime 

(~10 years). They are used to extract the parameters of the 

capacity evolution with time. In the next sections, the extracted 
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models will be used for simulation during several years. The 

hypothesis is that the SoH behaviour stays the same until 70% 

of SoH. For the cells we are studying aging behaviour is steady 

until that limit [33]. This indicates that the ageing mechanism 

is dominated by the surface electrolyte interface growth and can 

be described by a single equation [35]. As a consequence, using 

shorter time aging test for identification is possible. The 

experimental results presented in Fig. 1 correspond to calendar 

aging. Calendar aging is particular kind of accelerated aging 

test where: 

• no current is implied (ΔFEC=0, ΔSoC=0), 

• the temperature is maintained constant with a thermal 

chamber (ΔTBat=0). 

Consequently, the expression presented in (1) can be simplified 

as it is described as follows. 

𝐶𝑙𝑜𝑠𝑠(𝑡) = (𝐴 + 𝐵 𝑆𝑜𝐶)𝑒
−𝐸𝑎
𝑘.𝑇   𝑡𝑧 (8) 

This experimental test is used to identify the parameters A, B, 

Ea and z. A global data fitting is performed between the 

proposed model and experimental results to obtain the model 

parameters presented below. 

Table 1 Identified aging law parameters due to SoC, TBat and t. 

Parameter Name Value Unit 

Aging order z 0.56 --- 

Aging SoC constant A 942 % d-z 

Aging SoC dependence B 68.3 % d-z
 (%SoC) -1 

Arrhenius activation energy Ea 0.26 eV 

Boltzmann constant kB 8,62.10-5 eV K-1 

The capacity are normalized in % and d refer to days. Different 

indicators are used to quantify the accuracy of the model. First, 

in Fig. 1 the determination coefficient (R²) is added. Its value is 

independent whether CLoss or SoH is represented.  

𝑅2 = 1 −
∑(𝑆𝑜𝐻𝐸𝑥𝑝 − 𝑆𝑜𝐻𝑀𝑜𝑑𝑒𝑙)

2

∑(𝑆𝑜𝐻𝐸𝑥𝑝 − 𝑆𝑜𝐻𝐸𝑥𝑝)
2  

(9) 

where 𝑆𝑜𝐻𝐸𝑥𝑝 is the experimental State of Health, 𝑆𝑜𝐻𝑀𝑜𝑑𝑒𝑙 is 

the predicted SoH and 𝑆𝑜𝐻𝐸𝑥𝑝 is the average value of the 

experimental SoH. 𝑅2 is better when SoC is high (0.99) than 

when aging constraints are low (~0.8). The relative errors are 

presented in Fig. 2. The average value of the relative error is 

0.23 % for SoH. 

This part of the aging model has been identified for a large 

span of SoC (5% to 90%) and of temperature (25°C to 45°C). 

This covers the majority of an EV use case in mild to hot 

weather conditions. 

 

 

Experiment 

Model 
SoC=90%  

SoC=40%  

SoC=5%  

SoC=90%  

SoC=40%  

SoC=5%  

R²=0.98 

R²=0.89 

R²=0.79 

R²=0.99  

R²=0.93  

R²=0.79  

 
Fig. 1 Identification with experimental calendar aging results  

 

 

 

SoC=90%  SoC=40%  SoC=5%  

 
Fig. 2 Relative error on capacity for calendar aging 

 

C. kFEC identification  

Experimental aging tests have been conducted with cycles 

(charging and discharging) by the battery cell manufacturer. In 

these experiments: 

• current is running (ΔFEC≠0, ΔSoC≠0, ΔTBat≠0), 

• the ambient temperature is maintained constant with a 

thermal chamber. 

Two ambient temperatures have been tested (25°C and 

45°C). The cell SoC (Fig. 3.a) and the self-heating during a 

cycle (Fig. 3.b) are estimated from the manufacturer test 

procedure description given below [33].  

• Charging: 21.6 A until UCell = 4.05 V then 13.0 A until 

UCell = 4.16 V. 

• Constant voltage: 4.16 V until current reaches 3.2 A. 

• Discharge: 32.5 A until UCell = 2.5V.  

As the SoC goes from 0% to 100 % and back to 0%, a test 

cycle corresponds to a Full Equivalent Cycle (FEC). One FEC 

takes around 7 hours to be achieved. The experimental results 

of the manufacturer (Fig. 4) are used for kFEC identification by 

data fitting, considering the other parameters of the aging model 

identified in Table 1.  

The general model presented in (1) is used. The aging model 

is simulated with a fixed step size of 100 s (5)-(6).  

The extracted kFEC value is 98.0 10-3 % FEC-1. The R² 

coefficient is calculated and presented in Fig. 4. The best value 

is 0.91 and the lower one is 0.82. The relative error on C is given 

for each point in Fig. 5. 

The proposed model is close to the experimental SoH results 

(Fig. 4) It allows us to combine the effect of varying SoC, 

temperature and FEC with 2.20 % average relative error on the 

SoH.  

The model has been identified for mild to hot temperatures 

(25°C to 45 °C) from experimental test of a manufacturer. As a 

consequence, the proposed battery aging model is restricted to 

these orders of temperature to have the announced accuracy. 

Studying cold temperatures would need other tests. 
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 a)  

b)  

Tamb=45°C  

Tamb=25°C  

Tamb=45°C  

Tamb=25°C  

Ambient temperatures  SoC (%) 

Cell temperature 

 
Fig. 3 SoC Estimated SoC a) and temperature b) evolution for an FEC  

 

 

T=45°C  

T=25°C  

Experiment 

Model 
R²=0.82 

R²=0.91  

SoH (%) 

 
Fig. 4 Identification with accumulated FEC 

 

 

T=45°C  

T=25°C  

 
Fig. 5 Relative error on capacity as a function of the FEC 

D. Aging model validation 

To validate the aging model another aging test from the same 

document has been used [33]. It has not been used for 

identification. It is based on the cycle presented in Fig. 3a 

except that the charging phase at C/3 is replaced by a constant 

power at 43 kW which corresponds to a fast DC charge (Fig. 6). 

The coefficient of determination is 0.89 and the average relative 

error on SoH is 2.24 % (Fig. 7). 

 

 

Experiment 

Model 

T=25°C  
 Pcharge=43 kW  
 

R²=0.89 
 

 
Fig. 6 Validation of the aging model with a fast recharge cycle 

 

  
Fig. 7 Relative error for capacity with a fast recharge cycle 

E. Simplified Battery Electro-Thermal model  

The battery of the studied vehicle is composed of the cells 

presented before. The cells are assumed to be the same and to 

have the same behaviour (no dispersion). The battery electro-

thermal model is simplified. The battery is described as an 

equivalent large cell. The configuration of the battery is 96 cells 

in series and two branches in parallel. The battery electro-

thermal model is derived from [9] and is presented in Fig. 8. 

The parameters are the following: 

• the Open Circuit Voltage (OCVBat), 

• the Equivalent Series Resistance (ESRBat), 

• the thermal capacitance of the battery (CThBat), 

• the thermal resistance of the battery (RThBat). 

Table 2 gives the values of the battery parameters. The 

battery electro-thermal model is organized with EMR.  

As a consequence, the model is organized with power 

variables and the integral causality is compulsory. Equations of 

a battery electro-thermal model have been developed in [9].  

Table 2 Parameters of the battery electro-thermal model [36] 

 Parameter Name Value Unit 

 Battery config. (nSCells series x 

nPCells parallel) 

nSCells x 

nPCells 

96 x 2 cells 

Battery nominal voltage uBatNom 345.6 V 

Battery capacity CAhBat 126 Ah 

Battery ESR (@ 25°C, 50% 

SoC) 

ESRBat 78.2 mΩ 

Battery mass mBat 305 kg 

Battery thermal resistance RThBat 23.0 mK.W-1 

Battery thermal capacitance CThBat 202 kJ.K-1 

 

The SoC and OCVBat equations are expressed in a classical 

way. 

𝑆𝑜𝐶(%) = 𝑆𝑜𝐶𝐼𝑛𝑖𝑡 −
100

3600. 𝐶𝐴ℎ𝐵𝑎𝑡
. ∫ 𝑖𝐵𝑎𝑡 𝑑𝑡

𝑡

0

 
(10) 

𝑂𝐶𝑉𝐵𝑎𝑡 − 𝐸𝑆𝑅𝐵𝑎𝑡 ∙ 𝑖𝐵𝑎𝑡 = 𝑢𝐵𝑎𝑡 (11) 

For EMR, the variables must be power variables (flow and 

effort). In the thermal domain, the flow variable is the entropy 

flow (qS in W/K) and the power variable is the temperature (T 

in K). The heating power P is the product of those two variables. 
𝑃 = 𝑞𝑆. 𝑇 (12) 

The electro-thermal battery model presented in fig. 4 is 

simplified. The endo/exo-thermic effects [37] are neglected in 

our battery model. The heating power is considered to come 

only from Joule effect. 

𝑞𝑆1 =
𝐸𝑆𝑅𝐵𝑎𝑡 𝑖𝐵𝑎𝑡

2

𝑇𝐵𝑎𝑡
 

(13) 

 

 

O
C

V
B

a
t (

S
o
C

) 

ESR
Bat

 

T
Amb

 

RThBat 

P
heat

= qS1. TBat T
Bat

 

C
ThBat

 

PInt=  

qS2. TBat 

PExt= qS3. TBat PExt= qS4. TAmb 

uBat 

i
Bat

 

 
Fig. 8 Structure of the simplified electro-thermal model 
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The classical differential equation (14) used for the evolution 

of the temperature is re-organized in an integral form. This is to 

meet the integral causality (compulsory in EMR), as shown in 

(16). TBatInit is the initial temperature inside the battery.  

𝑑𝑇𝐵𝑎𝑡
𝑑𝑡

=
𝑃𝐼𝑛𝑡
𝐶𝑇ℎ𝐵𝑎𝑡

 (14) 

 with 𝑃𝐼𝑛𝑡 = (𝑞𝑆1 − 𝑞𝑆3). 𝑇𝐵𝑎𝑡 (15) 

⇔ 𝑇𝐵𝑎𝑡 = 𝑇𝐵𝑎𝑡𝐼𝑛𝑖𝑡. 𝑒
 
1

𝐶𝑇ℎ𝐵𝑎𝑡
∫ (𝑞𝑆1−𝑞𝑆3
𝑡
0 )𝑑𝑡

 (16) 

The equations associated with the thermal resistance 

calculate the entropy flows qS3 and qS4. TAmb is the ambient air 

temperature. 

𝑞𝑆3 =
𝑇𝐵𝑎𝑡 − 𝑇𝐴𝑚𝑏
(𝑅𝑇ℎ𝐵𝑎𝑡). 𝑇𝐵𝑎𝑡

 (17) 

𝑞𝑆4 =
𝑇𝐵𝑎𝑡 − 𝑇𝐴𝑚𝑏
(𝑅𝑇ℎ𝐵𝑎𝑡). 𝑇𝐴𝑚𝑏

 (18) 

Fig. 9 shows the EMR of the presented electro-thermal 

model of the Renault Zoe battery. Then, the simulated 

temperature is compared with the battery temperature measured 

inside a Zoe for a 22 kW charger during 1h (Fig. 10). The 

experimental temperature is recorded through 12 sensors placed 

by the manufacturer inside the battery of the Renault Zoe during 

charging. The results are presented with the average and 

extreme values of the 12 temperatures measured. At each 

moment of the test, there is a +/- 1°C dispersion. This dispersion 

seems to be related with sensors offsets, as it is present since 

the beginning of the test (the car was at total rest for 5 hours 

before the test). As a consequence, an average thermal model is 

justified for the study of the Renault Zoe battery. The average 

error of the model with the battery temperature is 0.25 °C. 

When normalized with the temperature variation during the test 

(+ 5.34 °C), it gives a relative error of 4.7 %.  

A comparison was also made for the electrical part. The 

model battery voltage has been compared with experimental 

measurements in the Renault Zoe (Fig 11). The mean relative 

error on the battery voltage is lower than 1 %. 
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Fig. 9 EMR of the battery electro-thermal model  

 

 

Experiment 
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Fig. 10 Zoe battery temperature evolution during a 22 kW charging 
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Fig. 11 Comparison of model and experiment for uBat 

F. Vehicle traction, charger and parking model 

The traction model has been developed, organized with 

EMR and validated in [38] for the Renault Zoe. The parameters 

of the model are given in Table 3.  

Table 3 Parameters of the studied EV [39] 

 Parameter Name Value Unit 

 

Aerodynamic drag coefficient cX 0.333 --- 

Front surface  S 2.25 m² 

Vehicle mass+ 2 passengers MTot 1600 kg 
Air volumic mass φAir 1.3 kg/m3 

Road friction f0 220 N 

Wheel radius rWheel 0.30 M 
Gearbox coefficient kGear 9.34 --- 

Traction efficiency ηTract 0.86 --- 

To simplify the traction presentation, the electric drive 

(machine, control and power electronics) is grouped with the 

gearbox and the wheels. In EMR it is represented as a multi-

physical (electro-mechanical) energy conversion element with 

a fixed power efficiency (𝜂𝑇𝑟𝑎𝑐𝑡
𝑘 ). The value of k depends on 

the power direction.  

 
{
𝑖𝐷𝑟𝑖𝑣𝑒 = 𝜂𝑇𝑟𝑎𝑐𝑡

𝑘
𝑉𝐸𝑉  𝑓𝑊ℎ𝑒𝑒𝑙
𝑢𝐵𝑎𝑡

𝑓𝑊ℎ𝑒𝑒𝑙 = 𝑓𝑊ℎ𝑒𝑒𝑙𝑅𝑒𝑓

 

k=1 if traction mode 

k=-1 if regenerative braking 

(19) 

where iDrive, VEV, UBat and fWheel are the drive current, the vehicle 

velocity, the battery voltage and the wheel force. 

The brake and the traction force of the wheels are coupled 

together on the wheels. fTot is the total force due to traction and 

braking.  

 𝑓𝑇𝑜𝑡 = 𝑓𝑊ℎ𝑒𝑒𝑙𝑠 − 𝑓𝐵𝑟𝑎𝑘𝑒 (20) 

The chassis is an energy accumulation element. It is 

expressed with the integral causality.  

 𝑣𝐸𝑉 =
1

𝑀𝑇𝑜𝑡
∫ 𝑓𝑇𝑜𝑡 − 𝑓𝑅𝑒𝑠𝑑𝑡
𝑡

0

 (21) 

The road is a source of resistive forces. Resistive forces (fRes) 

are composed of the road friction f0 and the aerodynamical 

forces. Slope is not considered here, as we study normalized 

cycles, but it can be added easily. 

 𝑓𝑅𝑒𝑠 = 𝑓0 +
1

2
𝑐𝑥𝑆𝜑𝐴𝑖𝑟𝑣𝐸𝑉

2 (22) 

In order to study a driving scenario in the following parts, a 

driving cycle should be used. As a consequence, the reference 

speed as a function of time is the input of the vehicle simulation 

(vVehRef). With EMR, the control structure is deduced by mirror 

effect. For all control variables, Ref refers to a reference value. 
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Fig. 12 Implementation of the full EV model by using EMR 

 

As the chassis presents a delay in (21) (integral), a controller 

(C(s)) should be used. 

 𝑓𝑇𝑜𝑡𝑅𝑒𝑓 = 𝑓𝑅𝑒𝑠𝑀𝑒𝑠+𝐶(𝑠). (𝑣𝑅𝑒𝑓 − 𝑣𝑀𝑒𝑠) (23) 

The coupling is inverted with a distribution element. 

  {
𝑓𝑤ℎ𝑒𝑒𝑙𝑠𝑅𝑒𝑓 = 𝑘𝐵𝑟𝑎𝑘𝑒 . 𝑓𝑇𝑜𝑡𝑅𝑒𝑓

𝑓𝐵𝑟𝑎𝑘𝑒𝑅𝑒𝑓 = (1 − 𝑘𝐵𝑟𝑎𝑘𝑒). 𝑓𝑇𝑜𝑡𝑅𝑒𝑓
 (24) 

The braking strategy generates a factor kBrake which distributes 

the wheel force between electrical (traction/brake) and 

mechanical brake (24). When braking is activated, 60% of the 

braking is electrical. 

 {
𝑘𝐵𝑟𝑎𝑘𝑒 = 1 𝑖𝑓 𝑓𝑇𝑜𝑡𝑅𝑒𝑓 > 0 (𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒)

𝑘𝐵𝑟𝑎𝑘𝑒 = 0.6  𝑖𝑓 𝑓𝑇𝑜𝑡𝑅𝑒𝑓 ≤ 0 (𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑚𝑜𝑑𝑒)
 (25) 

Although this EV traction model is simplified, the average error 

with experimental results of battery current is 2% [38] . 

The mode selector is a switching EMR element and allows to 

choose if the vehicle is in charging, driving or parking mode.  

The charger is represented here by an equivalent source driven 

by a Constant Current, Constant Voltage strategy (CC-CV). A 

detailed presentation of the charger has been developed in [40].  

The parking phase is represented by an equivalent current 

source with a current of 0 A.  

III. IMPACT OF THE CHARGING TIME INTERVAL ON THE 

BATTERY AGING FOR VARIOUS USAGES 

A. Integration of the full model  

EMR is used as a unique representation for every sub-

system. The sub-systems are easily interconnected by using this 

graphical description (Fig. 12) to form the system model. The 

battery current comes from the vehicle traction subsystem or 

the charger. The actual battery capacity is updated at every 

aging model time step with the evolution of the SoH. A WLTC 

(Worldwide Harmonized Light Vehicles Test Cycle) class 3 is 

used as an input for the driving phases (Fig. 13.a). It is a driving 

cycle with urban, sub-urban and motorway parts. The total 

distance is 23 km. Two WLTC cycles are considered to be 

achieved every day (this corresponds to 17 000 km per year). In 

Fig 13, the battery voltage (b), current (c), temperature (d), SoC 

(e) and capacity loss (f) are also represented. The self-heating 

is moderate because of the short trip. All the charges are 

performed at a current level (C/6) corresponding to a 6.7 kW 

AC charging [20]. The ambient air temperature for all 

simulations is 20°C. 

 

  

a) 

b) 

c) 

d) 

e) 

f) 

vVehSim (km/h) 

UBatSim (V) 

iBatSim (A) 

TBatSim (°C) 

SoCBatSim (%) 

SoHBatSim (%) 

 
Fig. 13 WLTC driving cycle a) battery simulated voltage b), current 

c), temperature d), SoC e), and SoH evolution f) 
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Combining the vehicle model with the aging model also 

results in a multiple time scale system. The vehicle subsystem 

has much faster dynamics (hundreds of milliseconds) than the 

aging subsystem (several years). The difficulty to simulate such 

problems is that the subsystems are coupled and depend on each 

other with different time scales. Therefore, it can penalize the 

computational time. 

It is possible to simulate the aging model with the same time 

step as the traction and battery electro-thermal one. However, 

the aging part makes the global simulation 10 times longer than 

when a unique time step is applied throughout the model. This 

is a problem when 10 years of operation are simulated for the 

aging study. In this paper, the multi-step method [41] is 

performed to tackle this problem. It is implemented on 

MATLAB Simulink. The system is split into several slow and 

fast subsystems [42], allowing to use adapted step times. The 

time step chosen for the simulation of the fast dynamics is 10 

ms and 100 s for the battery aging model. 

B. Everyday charging scenarios (fixed interval) for 10 years 

In this part, different charging scenarios are studied. They 

are presented in Fig. 14 for one week. 

S1 to S3 correspond to scenarios where the battery of the 

vehicle is charged every day. The difference is the initial SoC 

(respectively 100 %, 60 % and 30 %) computed with the 

degraded capacity. The scenarios are simulated for 10 years to 

estimate the evolution of the SoH.  

First, the everyday charging scenarios are tested (Fig. 15). 

Depending on the SoC interval, aging can be very different. As 

a matter of fact, after 10 years the degradation can go from 15 

% (S3) to 28 % (S1), which represents a multiple of 1.9, for the 

same driving distance. 

A close look at Fig. 14 shows that higher the SoC is, faster 

is the aging. A way to slow down battery aging would be to stay 

at low SoC (S3 for example). Nevertheless, the charging 

stations usually recharge the batteries of the vehicles to full SoC 

level. The user could stop the recharge before the end but it is 

not practical. In the next section, longer intervals for recharge 

are studied in order to lower the SoC in a more practical way.  

 

 

S1 

S2 

S3 

Time (Day)  
Fig. 14 Battery SoC evolution for every day charge scenarios 

 

 

S1 (SoCinit = 100%)  

S3(SoCinit = 30%)  

S2 (SoCinit = 60%) 

SoH (%) 

90  

100  

80 

70 
2 4 6 8 10 

Time (year)   
Fig. 15 SoH evolution for everyday charges 

C. Various charging intervals scenarios for 10 years 

In this section the initial SoC is fixed at 100 %. The variable 

under consideration is the time interval between charges. For 

example, a charge can be made every 2 days (S4) or every 4 

days (S5). With longer intervals between charges, the average 

SoC level is lower because the SoC decreases for a longer 

period than when the EV is charged every day.  

The S4 and S5 scenarios are simulated for 10 years. The 

scenario S1 (everyday recharge) is also simulated for 

comparison. 

Simulation results in Fig. 17 show that charging every 4 

days reduces the aging at 10 years by 19 % compared to 

charging every day. The difference between charging every day 

and every two days is less obvious (5.7 % aging reduction). 

These tendencies are also observed at the end of the first year 

(Fig. 18). It can be noticed that the evolution of the SoC during 

S1 (Fig. 14) is close to S4 (Fig. 16), whereas for S5, the SoC is 

decreasing far below. Having a longer interval between two 

charges implies a lower mean SoC level and thus a slower 

aging.  

D. Synthesis for reaching 80% SoH 

A synthesis has been performed to identify the main 

impacting factor on aging. In this study, as described before, the 

daily driving distance of the EV is fixed. The variable for the 

scenarios is the SoC variation between charge. The average 

SoC has been chosen to represent every scenario. In Fig. 19 the 

time to reach 80% SoH has been represented as a function of 

the average SoC for every scenario. This is a common value 

recommended by the manufacturers although the batteries can 

operate at further degradation [21]. S3 has been simulated for 

14 years to reach this value.  

A clear trend is extracted with a decrease of time to reach 80% 

SoH when the average SoC is increasing.  

This is a direct consequence of the SoC dependence in the aging 

law presented in (1). Cumulated variations under aging law 

allows to estimate the time to reach 80% capacity for each 

scenario. This time goes from 6.3 years to 14 years under 

different simulation conditions. The 4 days recharge scenario 

(S5) takes 8.6 years (144 103 km) compared to the (S1) daily 

charging 6.3 years (107 103 km). This means a 36 % of time 

extension to reach 80% for SoH.  

 

 

S4 

S5 

SoC (%) 

 
Fig. 16 Battery SoC evolution for different charging intervals 
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Fig. 17 SoH evolution for different charging intervals 

  
Fig. 18 Capacity degradation after one year of use 
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Fig. 19 Time to reach 80% for capacity vs average SoC 

E. Extension to US06 cycle 

Another type of cycle is used in this study (US06). It is mainly 

a motorway cycle. The cumulated distance is 12 km. Fig. 20 

shows the velocity, the evolution of the temperature and the 

SoC over time. The self-heating is low and the evolution of the 

SoC is slightly lower than for the WLTC (-6.5% instead of 9%). 

The same scenarios are studied. Fig. 21 presents the aging 

results. They are similar to the WLTC one (the lower amount 

of FEC is compensated by the higher SoC as a function of time). 

The same tendencies are observed. 

 
Fig. 20 US 06 simplified presentation 
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Fig. 21 SoH evolution for a US06 cycle 

IV. CONCLUSION 

In this paper, a new model for battery aging has been 

proposed. It is based on the effect of temperature, SoC and the 

amount of full equivalent cycles (FEC). Aging is a dynamical 

phenomenon with causality (present state depends on past 

events). Therefore, an approach based on differential 

(infinitesimal variations) is used in this paper. 

The parameters of the proposed aging law are identified 

using aging results from the literature corresponding to the cells 

used in the 41 kWh Renault Zoe. The model has been validated 

with a separate cycling aging result not used for identification. 

The results obtained with the model are compared with 

experimental results and show an average relative error of 2.24 

% on the SoH value. 

The aging model has been identified for mild to hot battery 

temperatures. As a consequence, this model is not adapted for 

cold temperatures. 

An electro-thermal model of the battery is used to reproduce 

the evolution of the battery temperature. It has been validated 

with experimental results (measured on a real car) with an 

average absolute value of 0.25 °C and an average relative value 

of 4.7% normalized with the total variation. 

The aging and the electro-thermal models have been 

coupled with a vehicle traction model validated in another 

publication.  

The complete simulation model (including driving, parking 

and charging) is used to study the impact of charging intervals 

on battery aging for a Renault Zoe. For the same driving use (2 

WLTC per day) and the same low current level for recharge, 

different SoC scenarios are investigated. The effect on the SoH 

degradation are compared over 10 years. Simulation results 

show that keeping average SoC value as low as possible is the 

key to improve the battery lifespan. This trend is evident after 

one year. Another cycle (US06) is used for confirmation.  

From the user point of view, it means performing charges 

with longer time interval and charging the battery when it is 

nearly discharged. In practice, for the same daily driving 

distance, a charge every 4 days increased the time to reach 80% 

SoH by 36 % compared to a daily charge. 

Other cells, vehicles can be studied with this method. The 

only point to change is to define the new battery model with 

results corresponding to the cells used in this battery. Using 

larger battery ageing databases for model identification is of 

interest for future works for accuracy and generalization 

purposes.  
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