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This paper studies how the user charging practice affects battery degradation over time. To achieve this objective, a system oriented simplified aging model based on the literature is proposed. The differential calculation of the capacity loss is used for infinitesimal variations. The model inputs are the battery state of charge, the battery temperature and the cumulative number of full equivalent cycles. The output is the battery state of health. This model is identified and validated with experimental aging tests from the Renault Zoe 41kWh battery manufacturer. The battery model (electro-thermal and aging) interconnects with the vehicle traction model complete the system model. The battery electrothermal and traction models are also validated with measurements on the studied vehicle. The Energetic Macroscopic Representation (EMR) formalism organizes in a unified way the interconnections of all the sub-system models. The impact of the charging interval and SoC on the battery aging is then studied. Five charging scenarios are studied by simulation while keeping the driving phases and the charging current the same. In these conditions, the average SoC is the main contributor for the battery aging. Compared to daily charge of the EV, a charge every 4 days extends the time to reach 80% of state of health by 36 % due to lower average SoC. The daily driving distance is fixed for every studied scenario.

I. INTRODUCTION

Electric Vehicles (EVs) [START_REF] Kim | A Robust State of Charge Estimation Approach Based on Nonlinear Battery Cell Model for Lithium-Ion Batteries in Electric Vehicles[END_REF] [2] reduce greenhouse gases (GHG) emissions due to transportation and limit global warming [3]. However, the GHG emissions due to EVs (also referred as Battery Electric Vehicles in some other publications BEVs [START_REF] Zhang | An Integrated Fault Isolation and Prognosis Method for Electric Drive Systems of Battery Electric Vehicles[END_REF]) production are high due to lithium mining, and the well to tank emissions are dependent on the way the electricity is produced [START_REF] Peters | The environmental impact of Li-Ion batteries and the role of key parameters -A review[END_REF]. Nevertheless, there is a global life cycle assessment gain in term of CO2 compared to a classical thermal vehicle [START_REF]How clean are electric cars?[END_REF].

For EVs, the main energy source is a lithium-ion battery. The main technology currently used (for positive electrode) is the Nickel Manganese Cobalt (NMC) one [START_REF] Morganti | Multi-Scale, Electro-Thermal Model of NMC Battery Cell[END_REF]. In 2022, 75% of the battery demand for the electrified vehicles (EV or hybrid vehicles) is NMC [3]. Typical EVs have a driving range from 200 km to 400 km and a long charging time (up to 12 hours) [START_REF] Chamola | An IoT and Edge Computing Based Framework for Charge Scheduling and EV Selection in V2G Systems[END_REF].

As batteries represent a major cost of EVs, aging of batteries has been an important research topic for EVs. Batteries are complex storage systems based on electrochemistry. They are affected by many parameters such as temperature [START_REF] German | Dynamical Coupling of a Battery Electro-Thermal Model and the Traction Model of an EV for Driving Range Simulation[END_REF], State of Charge, cumulated cycles, etc. This results in battery aging over time [START_REF] Ben-Marzouk | Generation of a Real-Life Battery Usage Pattern for Electrical Vehicle Application and Aging Comparison With the WLTC Profile[END_REF].

As stated in a literature review [START_REF] Alyakhni | A Comprehensive Review on Energy Management Strategies for Electric Vehicles Considering Degradation Using Aging Models[END_REF], different types of battery aging models exist. Electrochemical models are used for analysis, but they are difficult to connect to other subsystems because of the specific variables they use [START_REF] Ramadass | Development of first principles capacity fade model for Li-ion cells[END_REF]. Empirical black box models need large datasets for identification [START_REF] Xing | An ensemble model for predicting the remaining useful performance of lithium-ion batteries[END_REF]. The semi empirical models are the most used for its advantage in identification and interconnection. This is the type of model used in this paper. One of the aging indicators is the capacity decrease over time [START_REF] Patil | Sensitivity Analysis of Battery Aging for Model-Based PHEV Use Scenarios[END_REF]. Aging of the battery is influenced by driving, charging [START_REF] Abdel-Monem | Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries[END_REF] and parking (also called calendar ageing [START_REF] El Brouji | Impact of Calendar Life and Cycling Ageing on Supercapacitor Performance[END_REF]). Charging can be managed to slow down battery aging. For example, varying charging power is studied to optimize the charging duration [START_REF] Hu | Optimal Multistage Charging of NCA/Graphite Lithium-Ion Batteries Based on Electrothermal-Aging Dynamics[END_REF] or the battery lifespan [START_REF] Fernández | Capacity fade and aging models for electric batteries and optimal charging strategy for electric vehicles[END_REF], [START_REF] Houbbadi | Optimal Scheduling to Manage an Electric Bus Fleet Overnight Charging[END_REF], [START_REF] Senol | Electric Vehicles under Low Temperatures: A Review on Battery Performance, Charging Needs, and Power Grid Impacts[END_REF]. Some experimental aging tests based on SoC [START_REF] Redondo-Iglesias | Calendar and cycling ageing combination of batteries in electric vehicles[END_REF], [START_REF] Grolleau | Predicting lithium-ion battery degradation for efficient[END_REF] have shown that the degradation of battery cells is faster when the SoC is higher.

The objective of this paper is to study the impact of the user charging practice (the time interval between battery charges or the SoC at which the user starts charging) on battery aging in an EV.

In the literature, various battery aging models have been developed with some missing aspects to be fully applied in the EV system. For example, in [START_REF] Schimpe | Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries[END_REF] an aging model is developed for large temperature span (0-55°C), but it is not in dynamic interaction with a traction model of an EV. In [START_REF] Mesbahi | Dynamic Model of Li-Ion Batteries Incorporating Electrothermal and Ageing Aspects for Electric Vehicle Applications[END_REF], an aging model is proposed considering the temperature and voltage but not the energy exchange through full equivalent cycle counting. In [START_REF] Suri | A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries[END_REF] an aging model is interconnected with a traction model. In this model the effect of cycles on aging is multiplicative. That means the capacity degradation is null if there is no exchange of energy. As a consequence, aging during parking mode cannot be considered in [START_REF] Suri | A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries[END_REF].

The scientific novelty of our paper is to integrate the battery model with aging as a sub-system of an EV. This model is considering all modes (parking, driving and charging). The system philosophy is based on the interconnection between different subsystems.

As a consequence, a simplified semi empirical aging model is proposed here. It is derived from classical models of the literature. The SoC and T dependence come from [START_REF] Suri | A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries[END_REF] and the energy exchange effect cumulative effect comes from [START_REF] Redondo-Iglesias | Calendar and cycling ageing combination of batteries in electric vehicles[END_REF] and [START_REF] Schimpe | Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries[END_REF]. It is composed of an electrical part, a thermal part and an aging part. This model is interconnected with the traction model of EV. Usage scenarios are considered from the perspective of the drivers: commuting trip, parking time and charging.
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Impact of the User Charging Practice on the Battery Aging in an Electric Vehicle

For this integration, the Energetic Macroscopic Representation (EMR) formalism is used [START_REF] Bouscayrol | Graphic Formalisms for the Control of Multi-Physical Energetic Systems[END_REF]. The EMR is a graphical representation using power flows between different pictograms (see Appendix A). Moreover, the inputs and outputs of different pictograms are imposed by the integral causality (outputs are delayed compared to inputs). For these reasons, interconnection of multi-physical subsystems is facilitated and organised in a systematic way. The global model is thus organized in this unified way to enable the right interaction between subsystems models.

In section II, the global model is proposed and the parameters are identified from a set of experiments coming from an EV NMC cell manufacturer. Validations of each subsystem with experimental results are performed. In section III, different scenarios are presented and studied. Battery aging is simulated and compared for 10 years, which corresponds to a classical vehicle ownership duration. Literature and industrial policy recommend to change an EV battery when the State of Health (SoH) reaches 80% to 70 % [START_REF] Martinez-Laserna | Battery second life: Hype, hope or reality? A critical review of the state of the art[END_REF][28] [START_REF] Arrinda | Application Dependent End-of-Life Threshold Definition Methodology for Batteries in Electric Vehicles[END_REF] where the SoH is defined as the ratio between the actual capacity versus the initial capacity at the battery Beginning of Life (BoL). A comparative study is performed to estimate the time to reach 80% SoH in this paper.

II. MODELLING OF THE BATTERY AND THE VEHICLE

A. Battery aging model presentation

The main aging factors associated to batteries are well identified in the literature [START_REF] Birkl | Degradation diagnostics for lithium ion cells[END_REF]:

• the state of Charge (SoC in %),

• the temperature of the battery (TBat in K),

• the time (in days),

• the number of cumulated Full Equivalent Cycles (NFEC) since the battery production. One FEC corresponds to a full charge and discharge. A system-oriented simplified aging model with two parts (1) is developed from existing aging models of the literature [START_REF] Schimpe | Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries[END_REF], [START_REF] Grolleau | Calendar aging of commercial graphite/LiFePO4 cell e Predicting capacity fade under time dependent storage conditions[END_REF], [START_REF] Wang | Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide positives: Part 1, aging mechanisms and life estimation[END_REF]. A set of experimental results [33] is used for identification. They correspond to the cell (63 Ah, NMC technology) used in the Renault Zoe 41 kWh. They correspond to mild to hot conditions). As a consequence, the extracted model is limited to normal to hot conditions. For the first part of the model, three classical stress factors are considered: SoC, temperature and time. To build the corresponding part of the equation the following assumptions are used. The aging SoC dependency is considered to be linear as in [START_REF] Grolleau | Calendar aging of commercial graphite/LiFePO4 cell e Predicting capacity fade under time dependent storage conditions[END_REF]. A classic Arrhenius law can be used to describe the impact of the temperature on aging as in [START_REF] Schimpe | Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries[END_REF]. The time dependence can be composed of a fractional exponent z (between 0 and 1) as in [START_REF] Wang | Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide positives: Part 1, aging mechanisms and life estimation[END_REF]. This first part represents the aging due to the SoC and temperature of the battery at any time. A second part is added to consider the number of FEC for a given charging/discharging current. It represents the aging due to the exchange of energy when battery is running. Aging is the sum of these two parts [START_REF] Redondo-Iglesias | Modelling Lithium-Ion Battery Ageing in Electric Vehicle Applications-Calendar and Cycling Ageing Combination Effects[END_REF]. That means that the two parts are cumulative and occur at the same time. It is validated in the next sections with experimental results.

Closs expressed in % here. As the input variables (SoC, TBat and NFEC) are varying with time during an EV use, an approach based on a differential form is proposed in this paper such as [START_REF] Redondo-Iglesias | Calendar and cycling ageing combination of batteries in electric vehicles[END_REF] by adding the impact of NFEC to consider energy exchange. The expression of the capacity loss variation for an infinitesimal time dt is given below.

𝑑𝐶 𝑙𝑜𝑠𝑠 𝑡→𝑡+𝑑𝑡 = 𝑑 [(𝐴 + 𝐵. 𝑆𝑜𝐶)𝑒 -𝐸𝑎 𝑘 𝐵 𝑇 𝐵𝑎𝑡 . 𝑡 𝑧 + 𝑘 𝐹𝐸𝐶 . 𝑁 𝐹𝐸𝐶 ] (1)
where Ea is the energy of activation (eV), kB is the Boltzmann constant (eV) and kFEC is the capacity loss for each full equivalent cycle (% FEC -1 ). Contrary to [START_REF] Schimpe | Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries[END_REF], kFEC is taken as a constant. This simplification has to be verified with experimental results. To consider the history of the battery, the cumulated capacity loss is obtained by integrations.

𝐶 𝑙𝑜𝑠𝑠 0→𝑡 = ∫ 𝑑𝐶 𝑙𝑜𝑠𝑠 𝑡 0 (2)
The differential is expressed with partial derivatives and variations of each model variables (during t→t+dt). Contrary to [START_REF] Redondo-Iglesias | Calendar and cycling ageing combination of batteries in electric vehicles[END_REF] and [START_REF] Grolleau | Calendar aging of commercial graphite/LiFePO4 cell e Predicting capacity fade under time dependent storage conditions[END_REF], the total differential is used here, instead of the partial differential in function of time. 

The analytical expressions of partial derivatives are deduced from (1), they are given below. 

A discretization of the law (1) is given with Δt the time step of the aging model (100 s) [START_REF] Peters | The environmental impact of Li-Ion batteries and the role of key parameters -A review[END_REF]. This is infinitesimal compared to the aging time (~10 years).

𝛥𝐶 𝑙𝑜𝑠𝑠 𝑡→𝑡+∆𝑡 = 𝜕𝐶 𝑙𝑜𝑠𝑠 𝜕𝑆𝑜𝐶 𝛥𝑆𝑜𝐶 + 𝜕𝐶 𝑙𝑜𝑠𝑠 𝜕𝑇 𝐵𝑎𝑡 𝛥𝑇 𝐵𝑎𝑡 + 𝜕𝐶 𝑙𝑜𝑠𝑠 𝜕𝑡 𝛥𝑡 + 𝜕𝐶 𝑙𝑜𝑠𝑠 𝜕𝐹𝐸𝐶 𝛥𝐹𝐸𝐶 (5) 
The cumulated aging ( 2) is also discretized with a sum.

𝛥𝐶 𝑙𝑜𝑠𝑠 0→𝑛∆𝑡 = ∑ 𝛥𝐶 𝑙𝑜𝑠𝑠 𝑖 𝑛 𝑖=1 (6) 
As a consequence, the expression of the current degraded capacity of the battery (%) can be expressed as follows. In the battery this value is called the SoH.

𝑆𝑜𝐻(𝑡 = 𝑛∆𝑡) = 100 -∑ 𝛥𝐶 𝑙𝑜𝑠𝑠 𝑖 𝑛 𝑖=1 (7)
where 100% is the normalized value of the fresh capacity. The value of the degraded capacity is one of the most important variables for EV simulation (for example for driving range estimation). It is smoothed with a low pass filter. The SoH is the output of the aging model.

B. SoC and temperature dependence identification

Experimental aging results from the literature are available in [33]. They correspond to the battery cells used in the 41 kWh Renault Zoe (LG Chem NMC 63 Ah). As any aging battery test, the test time (300 days) is much shorter than the battery lifetime (~10 years). They are used to extract the parameters of the capacity evolution with time. In the next sections, the extracted models will be used for simulation during several years. The hypothesis is that the SoH behaviour stays the same until 70% of SoH. For the cells we are studying aging behaviour is steady until that limit [33]. This indicates that the ageing mechanism is dominated by the surface electrolyte interface growth and can be described by a single equation [START_REF] Maher | A study of lithium ion batteries cycle aging by thermodynamics techniques[END_REF]. As a consequence, using shorter time aging test for identification is possible. The experimental results presented in Fig. 1 correspond to calendar aging. Calendar aging is particular kind of accelerated aging test where:

• no current is implied (ΔFEC=0, ΔSoC=0),

• the temperature is maintained constant with a thermal chamber (ΔTBat=0). Consequently, the expression presented in (1) can be simplified as it is described as follows.

𝐶 𝑙𝑜𝑠𝑠 (𝑡) = (𝐴 + 𝐵 𝑆𝑜𝐶)𝑒 -𝐸 𝑎 𝑘.𝑇 𝑡 𝑧 (8)
This experimental test is used to identify the parameters A, B, Ea and z. A global data fitting is performed between the proposed model and experimental results to obtain the model parameters presented below. The capacity are normalized in % and d refer to days. Different indicators are used to quantify the accuracy of the model. First, in Fig. 1 the determination coefficient (R²) is added. Its value is independent whether CLoss or SoH is represented.

𝑅 2 = 1 - ∑(𝑆𝑜𝐻 𝐸𝑥𝑝 -𝑆𝑜𝐻 𝑀𝑜𝑑𝑒𝑙 ) 2 ∑(𝑆𝑜𝐻 𝐸𝑥𝑝 -𝑆𝑜𝐻 𝐸𝑥𝑝 ) 2 (9) 
where 𝑆𝑜𝐻 𝐸𝑥𝑝 is the experimental State of Health, 𝑆𝑜𝐻 𝑀𝑜𝑑𝑒𝑙 is the predicted SoH and 𝑆𝑜𝐻 𝐸𝑥𝑝 is the average value of the experimental SoH. 𝑅 2 is better when SoC is high (0.99) than when aging constraints are low (~0.8). The relative errors are presented in Fig. 2. The average value of the relative error is 0.23 % for SoH. This part of the aging model has been identified for a large span of SoC (5% to 90%) and of temperature (25°C to 45°C). This covers the majority of an EV use case in mild to hot weather conditions. 

Fig. 2 Relative error on capacity for calendar aging C. kFEC identification

Experimental aging tests have been conducted with cycles (charging and discharging) by the battery cell manufacturer. In these experiments:

• current is running (ΔFEC≠0, ΔSoC≠0, ΔTBat≠0),

• the ambient temperature is maintained constant with a thermal chamber. Two ambient temperatures have been tested (25°C and 45°C). The cell SoC (Fig. 3.a) and the self-heating during a cycle (Fig. 3.b) are estimated from the manufacturer test procedure description given below [33].

• Charging: 21.6 A until UCell = 4.05 V then 13.0 A until UCell = 4.16 V. • Constant voltage: 4.16 V until current reaches 3.2 A.

• Discharge: 32.5 A until UCell = 2.5V. As the SoC goes from 0% to 100 % and back to 0%, a test cycle corresponds to a Full Equivalent Cycle (FEC). One FEC takes around 7 hours to be achieved. The experimental results of the manufacturer (Fig. 4) are used for kFEC identification by data fitting, considering the other parameters of the aging model identified in Table 1.

The general model presented in (1) is used. The aging model is simulated with a fixed step size of 100 s ( 5)- [START_REF]How clean are electric cars?[END_REF].

The extracted kFEC value is 98.0 10 -3 % FEC -1 . The R² coefficient is calculated and presented in Fig. 4. The best value is 0.91 and the lower one is 0.82. The relative error on C is given for each point in Fig. 5.

The proposed model is close to the experimental SoH results (Fig. 4) It allows us to combine the effect of varying SoC, temperature and FEC with 2.20 % average relative error on the SoH.

The model has been identified for mild to hot temperatures (25°C to 45 °C) from experimental test of a manufacturer. As a consequence, the proposed battery aging model is restricted to these orders of temperature to have the announced accuracy. Studying cold temperatures would need other tests. 

D. Aging model validation

To validate the aging model another aging test from the same document has been used [33]. It has not been used for identification. It is based on the cycle presented in Fig. 3a except that the charging phase at C/3 is replaced by a constant power at 43 kW which corresponds to a fast DC charge (Fig. 6).

The coefficient of determination is 0.89 and the average relative error on SoH is 2.24 % (Fig. 7).

Experiment Model T=25°C Pcharge=43 kW R²=0.89

Fig. 6 Validation of the aging model with a fast recharge cycle Fig. 7 Relative error for capacity with a fast recharge cycle

E. Simplified Battery Electro-Thermal model

The battery of the studied vehicle is composed of the cells presented before. The cells are assumed to be the same and to have the same behaviour (no dispersion). The battery electrothermal model is simplified. The battery is described as an equivalent large cell. The configuration of the battery is 96 cells in series and two branches in parallel. The battery electrothermal model is derived from [START_REF] German | Dynamical Coupling of a Battery Electro-Thermal Model and the Traction Model of an EV for Driving Range Simulation[END_REF] and is presented in Fig. 8. The parameters are the following:

• the Open Circuit Voltage (OCVBat),

• the Equivalent Series Resistance (ESRBat),

• the thermal capacitance of the battery (CThBat),

• the thermal resistance of the battery (RThBat).

Table 2 gives the values of the battery parameters. The battery electro-thermal model is organized with EMR.

As a consequence, the model is organized with power variables and the integral causality is compulsory. Equations of a battery electro-thermal model have been developed in [START_REF] German | Dynamical Coupling of a Battery Electro-Thermal Model and the Traction Model of an EV for Driving Range Simulation[END_REF]. 

For EMR, the variables must be power variables (flow and effort). In the thermal domain, the flow variable is the entropy flow (qS in W/K) and the power variable is the temperature (T in K). The heating power P is the product of those two variables. 𝑃 = 𝑞 𝑆 . 𝑇 [START_REF] Ramadass | Development of first principles capacity fade model for Li-ion cells[END_REF] The electro-thermal battery model presented in fig. 4 is simplified. The endo/exo-thermic effects [START_REF] Damay | A method for the fast estimation of a battery entropy-variation high-resolution curve -Application on a commercial LiFePO4/graphite cell[END_REF] are neglected in our battery model. The heating power is considered to come only from Joule effect. The classical differential equation ( 14) used for the evolution of the temperature is re-organized in an integral form. This is to meet the integral causality (compulsory in EMR), as shown in [START_REF] El Brouji | Impact of Calendar Life and Cycling Ageing on Supercapacitor Performance[END_REF]. TBatInit is the initial temperature inside the battery.

𝑑𝑇 𝐵𝑎𝑡 𝑑𝑡 = 𝑃 𝐼𝑛𝑡 𝐶 𝑇ℎ𝐵𝑎𝑡 [START_REF] Patil | Sensitivity Analysis of Battery Aging for Model-Based PHEV Use Scenarios[END_REF] with 𝑃 𝐼𝑛𝑡 = (𝑞 𝑆1 -𝑞 𝑆3 ). 𝑇 𝐵𝑎𝑡 [START_REF] Abdel-Monem | Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries[END_REF] ⇔ 𝑇 𝐵𝑎𝑡 = 𝑇 𝐵𝑎𝑡𝐼𝑛𝑖𝑡 . 𝑒 )𝑑𝑡

The equations associated with the thermal resistance calculate the entropy flows qS3 and qS4. TAmb is the ambient air temperature.

𝑞 𝑆3 =

𝑇 𝐵𝑎𝑡 -𝑇 𝐴𝑚𝑏 (𝑅 𝑇ℎ𝐵𝑎𝑡 ). 𝑇 𝐵𝑎𝑡 [START_REF] Hu | Optimal Multistage Charging of NCA/Graphite Lithium-Ion Batteries Based on Electrothermal-Aging Dynamics[END_REF] 𝑞 𝑆4 = 𝑇 𝐵𝑎𝑡 -𝑇 𝐴𝑚𝑏 (𝑅 𝑇ℎ𝐵𝑎𝑡 ). 𝑇 𝐴𝑚𝑏 [START_REF] Fernández | Capacity fade and aging models for electric batteries and optimal charging strategy for electric vehicles[END_REF] Fig. 9 shows the EMR of the presented electro-thermal model of the Renault Zoe battery. Then, the simulated temperature is compared with the battery temperature measured inside a Zoe for a 22 kW charger during 1h (Fig. 10). The experimental temperature is recorded through 12 sensors placed by the manufacturer inside the battery of the Renault Zoe during charging. The results are presented with the average and extreme values of the 12 temperatures measured. At each moment of the test, there is a +/-1°C dispersion. This dispersion seems to be related with sensors offsets, as it is present since the beginning of the test (the car was at total rest for 5 hours before the test). As a consequence, an average thermal model is justified for the study of the Renault Zoe battery. The average error of the model with the battery temperature is 0.25 °C. When normalized with the temperature variation during the test (+ 5.34 °C), it gives a relative error of 4.7 %.

A comparison was also made for the electrical part. The model battery voltage has been compared with experimental measurements in the Renault Zoe (Fig 11). The mean relative error on the battery voltage is lower than 1 %. The traction model has been developed, organized with EMR and validated in [START_REF] Desreveaux | Techno-Economic Comparison of Total Cost of Ownership of Electric and Diesel Vehicles[END_REF] for the Renault Zoe. The parameters of the model are given in Table 3. To simplify the traction presentation, the electric drive (machine, control and power electronics) is grouped with the gearbox and the wheels. In EMR it is represented as a multiphysical (electro-mechanical) energy conversion element with a fixed power efficiency (𝜂 𝑇𝑟𝑎𝑐𝑡 𝑘 ). The value of k depends on the power direction.

{

𝑖 𝐷𝑟𝑖𝑣𝑒 = 𝜂 𝑇𝑟𝑎𝑐𝑡 𝑘 𝑉 𝐸𝑉 𝑓 𝑊ℎ𝑒𝑒𝑙 𝑢 𝐵𝑎𝑡 𝑓 𝑊ℎ𝑒𝑒𝑙 = 𝑓 𝑊ℎ𝑒𝑒𝑙𝑅𝑒𝑓 k=1 if traction mode k=-1 if regenerative braking [START_REF] Houbbadi | Optimal Scheduling to Manage an Electric Bus Fleet Overnight Charging[END_REF] where iDrive, VEV, UBat and fWheel are the drive current, the vehicle velocity, the battery voltage and the wheel force. The brake and the traction force of the wheels are coupled together on the wheels. fTot is the total force due to traction and braking.

𝑓 𝑇𝑜𝑡 = 𝑓 𝑊ℎ𝑒𝑒𝑙𝑠 -𝑓 𝐵𝑟𝑎𝑘𝑒 ( 20 
)
The chassis is an energy accumulation element. It is expressed with the integral causality.

𝑣 𝐸𝑉 = 1 𝑀 𝑇𝑜𝑡 ∫ 𝑓 𝑇𝑜𝑡 -𝑓 𝑅𝑒𝑠 𝑑𝑡 𝑡 0 ( 21 
)
The road is a source of resistive forces. Resistive forces (fRes) are composed of the road friction f0 and the aerodynamical forces. Slope is not considered here, as we study normalized cycles, but it can be added easily.

𝑓 𝑅𝑒𝑠 = 𝑓 0 + 1 2 𝑐 𝑥 𝑆𝜑 𝐴𝑖𝑟 𝑣 𝐸𝑉 2 (22) 
In order to study a driving scenario in the following parts, a driving cycle should be used. As a consequence, the reference speed as a function of time is the input of the vehicle simulation (vVehRef). With EMR, the control structure is deduced by mirror effect. For all control variables, Ref refers to a reference value. As the chassis presents a delay in (21) (integral), a controller (C(s)) should be used.

𝑓 𝑇𝑜𝑡𝑅𝑒𝑓 = 𝑓 𝑅𝑒𝑠𝑀𝑒𝑠 +𝐶(𝑠). (𝑣 𝑅𝑒𝑓 -𝑣 𝑀𝑒𝑠 ) (23) 
The coupling is inverted with a distribution element.

{ 𝑓 𝑤ℎ𝑒𝑒𝑙𝑠𝑅𝑒𝑓 = 𝑘 𝐵𝑟𝑎𝑘𝑒 . 𝑓 𝑇𝑜𝑡𝑅𝑒𝑓 𝑓 𝐵𝑟𝑎𝑘𝑒𝑅𝑒𝑓 = (1 -𝑘 𝐵𝑟𝑎𝑘𝑒 ). 𝑓 𝑇𝑜𝑡𝑅𝑒𝑓 (24) 
The braking strategy generates a factor kBrake which distributes the wheel force between electrical (traction/brake) and mechanical brake [START_REF] Mesbahi | Dynamic Model of Li-Ion Batteries Incorporating Electrothermal and Ageing Aspects for Electric Vehicle Applications[END_REF]. When braking is activated, 60% of the braking is electrical.

{ 𝑘 𝐵𝑟𝑎𝑘𝑒 = 1 𝑖𝑓 𝑓 𝑇𝑜𝑡𝑅𝑒𝑓 > 0 (𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒) 𝑘 𝐵𝑟𝑎𝑘𝑒 = 0.6 𝑖𝑓 𝑓 𝑇𝑜𝑡𝑅𝑒𝑓 ≤ 0 (𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑚𝑜𝑑𝑒) [START_REF] Suri | A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries[END_REF] Although this EV traction model is simplified, the average error with experimental results of battery current is 2% [START_REF] Desreveaux | Techno-Economic Comparison of Total Cost of Ownership of Electric and Diesel Vehicles[END_REF] .

The mode selector is a switching EMR element and allows to choose if the vehicle is in charging, driving or parking mode.

The charger is represented here by an equivalent source driven by a Constant Current, Constant Voltage strategy (CC-CV). A detailed presentation of the charger has been developed in [START_REF] German | Battery pack self-heating during the charging process[END_REF].

The parking phase is represented by an equivalent current source with a current of 0 A.

III. IMPACT OF THE CHARGING TIME INTERVAL ON THE BATTERY AGING FOR VARIOUS USAGES

A. Integration of the full model EMR is used as a unique representation for every subsystem. The sub-systems are easily interconnected by using this graphical description (Fig. 12) to form the system model. The battery current comes from the vehicle traction subsystem or the charger. The actual battery capacity is updated at every aging model time step with the evolution of the SoH. A WLTC (Worldwide Harmonized Light Vehicles Test Cycle) class 3 is used as an input for the driving phases (Fig. 13.a). It is a driving cycle with urban, sub-urban and motorway parts. The total distance is 23 km. Two WLTC cycles are considered to be achieved every day (this corresponds to 17 000 km per year). In Fig 13, the battery voltage (b), current (c), temperature (d), SoC (e) and capacity loss (f) are also represented. The self-heating is moderate because of the short trip. All the charges are performed at a current level (C/6) corresponding to a 6.7 kW AC charging [START_REF] Senol | Electric Vehicles under Low Temperatures: A Review on Battery Performance, Charging Needs, and Power Grid Impacts[END_REF]. The ambient air temperature for all simulations is 20°C. Combining the vehicle model with the aging model also results in a multiple time scale system. The vehicle subsystem has much faster dynamics (hundreds of milliseconds) than the aging subsystem (several years). The difficulty to simulate such problems is that the subsystems are coupled and depend on each other with different time scales. Therefore, it can penalize the computational time. It is possible to simulate the aging model with the same time step as the traction and battery electro-thermal one. However, the aging part makes the global simulation 10 times longer than when a unique time step is applied throughout the model. This is a problem when 10 years of operation are simulated for the aging study. In this paper, the multi-step method [START_REF] Crow | The parallel implementation of the waveform relaxation method for transient stability simulations[END_REF] is performed to tackle this problem. It is implemented on MATLAB Simulink. The system is split into several slow and fast subsystems [START_REF] Crow | The multirate simulation of devices in power system dynamics[END_REF], allowing to use adapted step times. The time step chosen for the simulation of the fast dynamics is 10 ms and 100 s for the battery aging model.
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B. Everyday charging scenarios (fixed interval) for 10 years

In this part, different charging scenarios are studied. They are presented in Fig. 14 for one week.

S1 to S3 correspond to scenarios where the battery of the vehicle is charged every day. The difference is the initial SoC (respectively 100 %, 60 % and 30 %) computed with the degraded capacity. The scenarios are simulated for 10 years to estimate the evolution of the SoH.

First, the everyday charging scenarios are tested (Fig. 15). Depending on the SoC interval, aging can be very different. As a matter of fact, after 10 years the degradation can go from 15 % (S3) to 28 % (S1), which represents a multiple of 1.9, for the same driving distance.

A close look at Fig. 14 shows that higher the SoC is, faster is the aging. A way to slow down battery aging would be to stay at low SoC (S3 for example). Nevertheless, the charging stations usually recharge the batteries of the vehicles to full SoC level. The user could stop the recharge before the end but it is not practical. In the next section, longer intervals for recharge are studied in order to lower the SoC in a more practical way. In this section the initial SoC is fixed at 100 %. The variable under consideration is the time interval between charges. For example, a charge can be made every 2 days (S4) or every 4 days (S5). With longer intervals between charges, the average SoC level is lower because the SoC decreases for a longer period than when the EV is charged every day.

The S4 and S5 scenarios are simulated for 10 years. The scenario S1 (everyday recharge) is also simulated for comparison.

Simulation results in Fig. 17 show that charging every 4 days reduces the aging at 10 years by 19 % compared to charging every day. The difference between charging every day and every two days is less obvious (5.7 % aging reduction). These tendencies are also observed at the end of the first year (Fig. 18). It can be noticed that the evolution of the SoC during S1 (Fig. 14) is close to S4 (Fig. 16), whereas for S5, the SoC is decreasing far below. Having a longer interval between two charges implies a lower mean SoC level and thus a slower aging.

D. Synthesis for reaching 80% SoH

A synthesis has been performed to identify the main impacting factor on aging. In this study, as described before, the daily driving distance of the EV is fixed. The variable for the scenarios is the SoC variation between charge. The average SoC has been chosen to represent every scenario. In Fig. 19 the time to reach 80% SoH has been represented as a function of the average SoC for every scenario. This is a common value recommended by the manufacturers although the batteries can operate at further degradation [START_REF] Redondo-Iglesias | Calendar and cycling ageing combination of batteries in electric vehicles[END_REF]. S3 has been simulated for 14 years to reach this value.

A clear trend is extracted with a decrease of time to reach 80% SoH when the average SoC is increasing. This is a direct consequence of the SoC dependence in the aging law presented in [START_REF] Kim | A Robust State of Charge Estimation Approach Based on Nonlinear Battery Cell Model for Lithium-Ion Batteries in Electric Vehicles[END_REF]. Cumulated variations under aging law allows to estimate the time to reach 80% capacity for each scenario. This time goes from 6.3 years to 14 years under different simulation conditions. The 4 days recharge scenario (S5) takes 8.6 years (144 10 3 km) compared to the (S1) daily charging 6.3 years (107 10 3 km). This means a 36 % of time extension to reach 80% for SoH. 

E. Extension to US06 cycle

Another type of cycle is used in this study (US06). It is mainly a motorway cycle. The cumulated distance is 12 km. Fig. 20 shows the velocity, the evolution of the temperature and the SoC over time. The self-heating is low and the evolution of the SoC is slightly lower than for the WLTC (-6.5% instead of 9%). The same scenarios are studied. Fig. 21 presents the aging results. They are similar to the WLTC one (the lower amount of FEC is compensated by the higher SoC as a function of time). The same tendencies are observed. In this paper, a new model for battery aging has been proposed. It is based on the effect of temperature, SoC and the amount of full equivalent cycles (FEC). Aging is a dynamical phenomenon with causality (present state depends on past events). Therefore, an approach based on differential (infinitesimal variations) is used in this paper.

The parameters of the proposed aging law are identified using aging results from the literature corresponding to the cells used in the 41 kWh Renault Zoe. The model has been validated with a separate cycling aging result not used for identification. The results obtained with the model are compared with experimental results and show an average relative error of 2.24 % on the SoH value.

The aging model has been identified for mild to hot battery temperatures. As a consequence, this model is not adapted for cold temperatures.

An electro-thermal model of the battery is used to reproduce the evolution of the battery temperature. It has been validated with experimental results (measured on a real car) with an average absolute value of 0.25 °C and an average relative value of 4.7% normalized with the total variation.

The aging and the electro-thermal models have been coupled with a vehicle traction model validated in another publication.

The complete simulation model (including driving, parking and charging) is used to study the impact of charging intervals on battery aging for a Renault Zoe. For the same driving use (2 WLTC per day) and the same low current level for recharge, different SoC scenarios are investigated. The effect on the SoH degradation are compared over 10 years. Simulation results show that keeping average SoC value as low as possible is the key to improve the battery lifespan. This trend is evident after one year. Another cycle (US06) is used for confirmation.

From the user point of view, it means performing charges with longer time interval and charging the battery when it is nearly discharged. In practice, for the same daily driving distance, a charge every 4 days increased the time to reach 80% SoH by 36 % compared to a daily charge.

Other cells, vehicles can be studied with this method. The only point to change is to define the new battery model with results corresponding to the cells used in this battery. Using larger battery ageing databases for model identification is of interest for future works for accuracy and generalization purposes.
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Table 1

 1 Identified aging law parameters due to SoC, TBat and t.

	Parameter	Name	Value	Unit
	Aging order	z	0.56	---
	Aging SoC constant	A	942	% d -z
	Aging SoC dependence	B	68.3	% d -z (%SoC) -1
	Arrhenius activation energy Ea	0.26	eV
	Boltzmann constant	kB	8,62.10 -5	eV K -1

Table 2

 2 Parameters of the battery electro-thermal model[START_REF] Phetsinorath | Multi-level behaviour models of batteries[END_REF] 

	Parameter		Name	Value	Unit
	Battery config. (nSCells series x	nSCells x	96 x 2	cells
	nPCells parallel)		nPCells
	Battery nominal voltage		uBatNom	345.6	V
	Battery capacity		CAhBat	126	Ah
	Battery ESR (@ 25°C, 50%		ESRBat	78.2	mΩ
	SoC)			
	Battery mass		mBat		305	kg
	Battery thermal resistance		RThBat	23.0	mK.W -1
	Battery thermal capacitance		CThBat	202	kJ.K -1
	The SoC and OCVBat equations are expressed in a classical
	way.			
	𝑆𝑜𝐶(%) = 𝑆𝑜𝐶 𝐼𝑛𝑖𝑡 -	100 3600. 𝐶 𝐴ℎ𝐵𝑎𝑡	0 . ∫ 𝑖 𝐵𝑎𝑡 𝑑𝑡 𝑡	(10)

𝑂𝐶𝑉 𝐵𝑎𝑡 -𝐸𝑆𝑅 𝐵𝑎𝑡 • 𝑖 𝐵𝑎𝑡 = 𝑢 𝐵𝑎𝑡

Table 3

 3 Parameters of the studied EV[START_REF] Sirbu | Report on the virtual testing of the BEV[END_REF] 

	Parameter	Name	Value	Unit
	Aerodynamic drag coefficient cX	0.333	---
	Front surface	S	2.25	m²
	Vehicle mass+ 2 passengers	MTot	1600	kg
	Air volumic mass	φAir	1.3	kg/m 3
	Road friction	f0	220	N
	Wheel radius	rWheel	0.30	M
	Gearbox coefficient	kGear	9.34	---
	Traction efficiency	ηTract	0.86	---
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