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Abstract

Decentralized energy production, particularly from photovoltaic (PV) systems, is becoming increasingly prevalent,
leading to a rise in the number of energy producers and consumers, or ”prosumers”. These prosumers, equipped
with their own energy generation and storage systems, are not just passive consumers but active participants in the
energy market. They generate their own electricity, often from renewable sources, and can feed excess power back
into the grid, store it for later use, or share it within a local energy community. This evolving energy paradigm
presents new opportunities and challenges in terms of energy management and optimization, necessitating innovative
approaches to ensure efficient and sustainable use of energy resources. This paper introduces an innovative storage
management method for grid-connected photovoltaic (PV) systems. The method is designed to minimize either the
economic or ecological cost, or to find an optimal balance between the two, under various tariff scenarios. This
is achieved while adhering to a full self-consumption constraint imposed by the distribution system operator. The
control strategy is underpinned by forecasts of electrical consumption, production, and CO2 emissions, which are
developed using feedforward neural network models. These models are trained on data from a real-scale smart-grid
demonstrator at the Catholic University of Lille, France. The results of the study offer a comparative analysis of the
economic and ecological benefits of the three proposed strategies, demonstrating that the best compromise is achieved
when considering the off-peak tariff option. Furthermore, a real-time controller was implemented on the Energy
Management System (EMS) of the demonstrator and tested over a 24-hour period, yielding satisfactory results. This
paper, therefore, presents a significant advancement in the field of storage management for grid-connected PV systems.

Keywords: Storage management, Smart Grids, Photovoltaic power, Optimization, Consumption forecast, Production
forecast, Photovoltaic self-consumption

1. Introduction

Declining costs of PV equipment and other renewable energy sources, as well as government incentives, are
driving decentralized energy production growth in the context of the smart grid. The number of energy producers and
consumers (’prosumers’) is increasing significantly. In the first quarter of 2021, the main distribution system operator
(DSO) in France, Enedis, had more than 100,000 customers connected to the distribution grid with individual self-
consumption contracts. In addition to these connections, there are one hundred and two collective self-consumption
operations that are active at the end of the second quarter of 2022. Whereas in 2015, Enedis had only 3,000 individual
self-consumption installations, the rate of connection has accelerated exponentially over the last five years. This strong
trend reflects a change in consumption patterns in favour of the development of renewable energies and the ecological
transition [1], [2]. Energy prosumers generally remain connected to the central electricity network. However, they
are also capable of generating and even storing energy, usually with photovoltaic solar panels and batteries, with
the aim to maximize their self-consumption rate and reduce their energy costs. Therefore, an adapted multi-objective
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supervision is required to ensure energy balance and to properly exploit the storage. The challenge of the development
of these supervision strategies is the random behaviour of these multi-source systems, whose time horizons can be
very short (dynamic responses) or very long (seasonality of renewable sources). Authors of article [3] show that
depending on the time scale, several types of multi-source system supervision exist, including long-term supervision
(daily to monthly, based on the prediction and anticipation of input variables), medium-term supervision (usually from
one hour to half an hour, which provides forward-looking instructions based on forecasts with average input data),
and real-time supervision, which allows forecast correction according to the measurements. Real time supervision is
related to the instantaneous nature of electricity. Regarding the energy supervision of multi-source systems, a state of
the art followed by an analysis of the specifics of each of the methods is carried out in [4]. The three families of tools
offered in this regard are:

• Causal formalization tools, of which the inversion of the power balance makes it possible to determine reference
powers (a detailed mathematical model is necessary as well as the behaviour of the system in real time).

• Explicit optimization tools, which allow making an optimal choice by formulating constraints, optimization
variables and an objective function to be minimized or maximized (e.g., minimization of CO2 emissions). This
approach is difficult to implement instantaneously. The optimization problem is often complex with several
variables and several objectives and therefore time consuming to resolve. However, medium term energy man-
agement is becoming increasingly popular (up to 10min).

• Implicit optimization tools, including fuzzy logic ([5] and [6]).

In this paper, we have opted for an explicit optimization method for the energy management of an on-grid PV
system with batteries in the context of individual self-consumption. This choice is justified by the existence of a cost
function (economic or ecological) to be minimized and by the desire to consider the constraint of non-injection into
the network.

The management method uses multiple criteria (economic, ecological, and best compromise between the two),
in different tariff scenarios while respecting a full self-consumption constraint imposed by the DSO. It is based on
electrical consumption, production, and CO2 forecasts developed using feedforward neural network models based on
data from a real-scale smart-grid demonstrator at the Catholic university of Lille, France.

The management is predictive and done at two-time levels: day ahead and real time. The day ahead planning
is obtained by optimizing three possible main objectives, economic, ecological and the compromise between the
two. Whereas real time control applies rules to ensure power balance and to respect the self-consumption constraint
imposed on the photovoltaic power production by the DSO to avoid any injection of power to the main distribution grid
and between independent buildings. The energy management step time is 10 minutes over 24 hours. The proposed
method is validated in the real-scale demonstrator of the Catholic university of Lille in France.

The paper is organised as follows: Section 2 presents a literature review. Section 3 provides a description of the
studied system. The storage control methodology is presented in section 4. The first part of this section is dedicated
for the forecast methodology and the results for the three forecasts (electrical consumption, PV production and CO2
emissions). The energy management optimization is presented in the second part of this section. Section 5 is dedicated
for simulation results and experimental results derived from the smart-grid demonstrator at the Catholic university of
Lille. A conclusion is conducted in section 6.

2. Literature Review

Energy management optimization in micro-grids and energy communities is a topic that has been extensively re-
searched. Microgrids are a scaled-down version of utility grids that have gained attention in recent decades due to
their distinct features such as the utilization of renewable energy resources and elimination of power transmission
requirements. The intermittent nature of distributed generation resources and the need for improving the economic
feasibility of microgrids have made energy management an important research area. In this context, Oprea et al. [7]
proposed a novel concept of a Smart Adaptive Switching Module (SASM) that leverages fuzzy logic to efficiently
manage electricity generated from renewable energy sources (RES). The SASM is designed to gradually switch elec-
tric appliances based on a variety of factors including weather sensors, power forecast, storage system constraints,
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among others. The effectiveness of the proposed SASM architecture was demonstrated through a case study of a RES
system located in Hulubesti, Romania. However, a more in-depth analysis of the results obtained from the case study
would have provided deeper insights into the practical implications of the SASM. Nsilulu T. Mbungu et al. [8] delve
in their study into various control and estimation techniques applied to smart microgrids. They discuss a plethora of
control techniques, including linear, non-linear, robust, predictive, intelligent, and adaptive control techniques. They
also underscore the importance of accurate data for a better performance index to ensure the efficiency of the power
network. This paper provides a fundamental conceptual framework for selecting an optimal design modeling strategy
and policy-making decisions to control, monitor, and protect the innovative electrical network. A review of optimiza-
tion techniques used in microgrid energy management systems found that mixed integer linear programming is the
most used optimization technique [9]. Multi-agent systems are most ideal for solving unit commitment and demand
management. State-of-the-art machine learning algorithms are used for forecasting applications. The meta-heuristic
algorithms are commonly used in economic dispatch application.The review also found that the multi-agent-based
techniques and meta-heuristics algorithms outperformed other conventional techniques in terms of system efficiency
due to the decentralized nature of the EMS problem in microgrids and the capability of these techniques to act effec-
tively in such scenarios. However, it was also evident that the use of advanced optimization techniques was limited in
the scope of forecasting and demand management. Abdel-Nasser and Mahmoud [10] introduced a novel approach to
PV power forecasting using deep Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN). They argued
that LSTM-RNNs are particularly suited for this task due to their ability to model temporal changes in PV output
power. However, a more detailed explanation of the LSTM-RNN model and its advantages over other types of neural
networks would have provided a more comprehensive understanding of this approach. Furthermore, discussing the
practical implications of their findings, particularly how the improved accuracy of their model could impact the op-
eration of smart grids in real-world scenarios, would have added value to their study. Hossain et al. [11] presented a
novel approach to forecasting the power output of PV systems using the Extreme Learning Machine (ELM) approach.
They claimed that the ELM model offers higher accuracy and less computational time in forecasting the daily and
hourly PV output power compared to other popular models such as Support Vector Regression (SVR) and Artificial
Neural Network (ANN). However, potential issues with the ELM approach, such as overfitting or sensitivity to pa-
rameter selection, were not thoroughly discussed in their study. A more detailed discussion of these issues and how
they were addressed in their study would have strengthened their methodology. Oprea and Bâra [12] conducted a
comprehensive study on the use of big data technologies for the management of photovoltaic power plants. They pro-
posed an ultra-short-term forecast (USTF) algorithm that uses a Feed-Forward Artificial Neural Network (FF-ANN)
and a backtracking adjustment of the learning rate for faster convergence. The effectiveness of their approach was
demonstrated through two case studies - PV Agigea and PV Giurgiu located in Romania. However, a comparison of
their approach with other existing methodologies or algorithms for PV forecasting would have highlighted the advan-
tages of their approach and its potential improvements over existing methods. Following this literature review, this
study makes a significant contribution to the field of energy management in grid-connected photovoltaic systems by
introducing a novel approach that focuses on individual self-consumption, a topic that has gained increasing relevance
in the context of decentralized energy production. The paper presents an explicit optimization method that takes into
account multiple criteria, including economic, ecological, and a balance between the two, under different tariff sce-
narios. This approach provides a comprehensive framework for energy management, demonstrating the potential of
advanced machine learning techniques in forecasting electrical consumption, photovoltaic production, and CO2 emis-
sions. Furthermore, the paper bridges the gap between theoretical research and practical application by validating
the proposed method using data from a real-scale smart-grid demonstrator at the Catholic university of Lille, France.
Importantly, the study addresses the full self-consumption constraint imposed by the distribution system operator, a
critical aspect of energy management in grid-connected photovoltaic systems that has not been extensively explored
in previous research, thereby enriching the existing literature in this field.

3. Description of the smart-grid demonstrator

The demonstrator is located at Lille Catholic university campus in the north of France. It contains 4 academic
buildings named HEI1, HEI2, HA and RIZOMM (Fig. 1). It consists of the following parts:

• Two photovoltaic rooftop generators. A 189 kWp PV system with a surface of 1200 m² is installed on the roof
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of RIZOMM building. This system is connected to the grid via 10 FRONIUS PV inverters (2 x 8.2 kVA, 1
x 10 kVA, 1 x 15 kVA, 4 x 17.5 kVA, 2 x 20 kVA). The second PV system is installed on the roof of HEI2
building with an installed power of 28 kWp and a surface of 150 m². It is connected to the grid via two 12.5
kVA FRONIUS PV inverters.

• A Li-ion Eaton storage system with a capacity of 250 kWh is installed in the underground of HEI1 building.
It consists of five strings of 50 kWh of capacity for each string. The storage is connected to the grid via two
inverters and has a rated power of 80 kW in discharge and 40 kW in charging.

• Six charging points for electric vehicles with a charging power of 22 kW for each point. They are connected to
the grid via HA building LVDB (Low Voltage Distribution Board).

• Measurement station (Socomec DIRIS Digiware D-70) is installed in the main distribution board of the cam-
pus. Power consumption/production measurements are provided in real-time by the station to the EMS of the
demonstrator.

• EMS of the demonstrator is installed on a dedicated server. Modbus TCP/IP protocol is used for the communi-
cation of the EMS with all devices. The data acquisition is done using Python codes which allow the filtering
and the storage of the relevant data on a NoSQL database. Others Python codes are used to provide different
forecasts (detailed in section 4.1) and control the storage.

This campus network is connected to the public distribution grid via 1 MVA 15kV/0.4kV transformer (Fig. 2).

Figure 1: Lille Catholic university demonstrator

The engineering school JUNIA own two buildings HEI1 and HEI2 while the Catholic university own the other
buildings HA and RIZOMM. As the buildings belong to two separate legal entities, the law in France does not allow
the exchange of energy between the two entities.

The Catholic university buildings with the 189 kWp photovoltaic system are the case study considered for this
work and the energy produced is to be consumed by the local loads of the Catholic University. Thus, the storage
control method proposed in the study considers the self-consumption constraint that prevents any excess photovoltaic
production from being injected from the Catholic university to the HEI buildings or to the public distribution grid.

4. Proposed storage management method

Energy management is done in two stages: day ahead and real time. The day ahead planning is optimized follow-
ing three possible main objectives, economic, ecological (CO2 cost) and the compromise between the two. Whereas
real time control applies rules to manage power flows and to respect the self-consumption constraint imposed on the
photovoltaic power production by the distribution system operator to avoid any injection of power to HEI buildings or
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to the main distribution grid. To control the storage with the desired objectives, day-ahead forecasts of electrical con-
sumption, local PV production and CO2 intensity are needed. The forecast methodology is presented in the following
sections as well as the energy management optimization.

4.1. Forecast methodology and validation

Electrical consumption and local PV production data of the demonstrator are available for three years. Machine
learning (ML) is used to develop models that provide the different needed forecasts. In order to choose the best ML
algorithm and using historical data from the smart grid demonstrator, multiple machine learning models were devel-
oped and compared including models from the boosting family of machine learning algorithms which try to convert
weak learners to strong learners [13] (Catboost, Light Gradient Boosting Machine, Extreme Gradient Boosting, Gra-
dient Boosting Regressor, AdaBoost Regressor) as well as decision tree algorithms which, by learning straightforward
decision rules derived from the data features, create a model that forecasts the value of a target variable [14] (Decision
Tree Regressor, Extra Trees Regressor, Random Forest Regressor) and finally a feedforward neural network model
consisting of four layers of which two are hidden [15]. A detailed comparison is given for the consumption forecast,
where the most suitable model is chosen and reused in the following sections.

In order to compare the different ML algorithms, the total electrical consumption data set of 400 days of the
demonstrator is used to provide and compare forecast provided by different algorithms. The input variables were
chosen using correlation studies as well as trial and error with all available parameters. For example Fig. 3 shows
the auto-correlation of the consumption data where the peaks of the graph after lagging point 0 correspond to the
same hour and minute of the previous seven days and were therefore chosen as input values.The training results of the
comparison are presented in table 1 (Where, nRMSE is the normalized root mean square error, R2 is the coefficient of
determination, RMSLE is the root mean squared logarithmic error and MAPE is the mean absolute percentage error).
An example of the forecast provided by the four best ML algorithms found for the day of Tuesday September 27th

Model nRMSE (%) R2 RMSLE MAPE (%) Training Time (Sec)
Feedforward Neural Network 3.51 0.9906 0.0371 2.44 120.034

CatBoost Regressor 3.95 0.9876 0.0476 3.15 25.223
Extra Trees Regressor 4.35 0.9864 0.0476 3.64 200.980

Extreme Gradient Boosting 4.44 0.9862 0.0491 3.69 19.742
Light Gradient Boosting Machine 4.96 0.9790 0.0614 4.64 6.172

Decision Tree Regressor 6.23 0.9706 0.0689 4.15 5.124
Random Forest Regressor 7.98 0.9636 0.0796 4.63 49.540

Gradient Boosting Regressor 9.47 0.9396 0.0985 6.99 19.874
Linear Regression 15.68 0.8350 0.1664 12.25 8.409

Table 1: Results table for consumption prediction using various machine learning models.

2022 is shown in Fig. 4. The feedforward neural network performed the best however, it is closely followed by the
CatBoost machine learning model which has a lower training time, noting that the training time includes the model
tuning time in PyCaret. Additionally, CatBoost and the neural network are the only models where the error did not
significantly increase when testing with unseen data. An ensemble model using the previous two models should yield
the best result, however after looking at the feature importance plot, i.e. the contribution of each input variable to
the output result, (Fig. 5) of the CatBoost model, the neural network model was chosen as it yielded better results
using the year and school holiday inputs which are disregarded by the CatBoost model. Both factors are considered
important as the demonstrator decreases its consumption from year to year as it gets more efficient and school holidays
have decreased consumption when compared to regular days. Based on this comparative study, feedforward neural
network is used to provide all type of forecast presented in the following sections.

4.1.1. Consumption forecast
Day ahead consumption load forecast is calculated for each building of the demonstrator at midnight. The input

layer of the model consists of 15 variables: temperature, day of the week, month, hour, weekend (or not), day of the
year, public holiday (or not), school holiday (or not), as well as the consumption of the last seven days. Consumption
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Figure 3: Auto-correlation coefficient for consumption data over a period of a week i.e. over 1008 lagging points

data is sourced from the smart grid demonstrator database, temperature data from Solcast [16], the time period for
the historical data is a sliding window of 400 days since the demonstrator keeps evolving and data beyond this period
decreases the accuracy of the models.The available data is divided into two parts; 70% of data chosen randomly and
used for the training stage and the rest (30%) used for validation.

The models were developed using TensorFlow [17] (for the neural network) and PyCaret [18] libraries in the
python programming language.

The feedforward neural network model is composed of 4 layers including 2 hidden layers consisting respectively
of 1024 neurons and 512 neurons as shown in Fig. 6. The number of neurons chosen for the network is based on
training time and results. Fig. 7 represents the forecast results during a normal week of operation of October 2021
(without holidays or school closures). The same structure is used for all forecast results presented in the following
sections.

4.1.2. PV production forecast
Thanks to three years of PV production data set available for both PV systems of the demonstrator, and using

historical meteorological data, a feedforward neural network model was developed. Photovoltaic power forecasts are
based on meteorological forecasts using 4 main variables from the Solcast [16] database: global horizontal irradiation
(GHI), direct normal irradiation (DNI), temperature, and cloud coverage. These variables were chosen using corre-
lation studies as well as trial and error with all available parameters. It should be highlighted that the weather data
used are the weather forecast obtained every day at midnight for 24 hours. These data were saved in a database to
test the accuracy of the forecast algorithm with realistic data that contains the weather forecast error. The feedforward
neural network model is composed of 4 layers including 2 hidden layers consisting of 1024 neurons and 512 neurons
respectively. A rectified linear activation function (ReLU) is used for both hidden layers. All data used for training
and prediction are normalized using equation (1):

Xscaled =
X − Xmin

Xmax − Xmin
(1)

where X represents the original value, Xmin is the minimum value of input data, and Xmax is the maximum value of
input data.70% of available data are used for training and 30% of data are used for validation. The mean squared
error (MSE) is used to calculate the loss during the NN training and the mean absolute error (MAE) is used with
the MSE for the validation of the NN model. The model is trained for 300 epochs, with a batch size of 720. The
training is performed using historical meteorological data obtained from Solcast database and PV production data of
the demonstrator. The prediction of PV production is calculated for 24 hours using the NN model and the forecast
data of the four meteorological variables mentioned above as input data. The weather prediction provided by Solcast
is generated using satellite forecasting based on latest cloud image for four hours horizon with an update each 30
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Figure 4: Consumption power prediction for various models with real values in red

Figure 5: Feature importance plot for all consumption forecast inputs, holiday 1 being a school holiday and holiday 2 a public holiday
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Figure 6: Structure of the Neuron Network

Figure 7: Load forecast of HA building and Rizomm building for a week of October 2021. Dashed lines are forecast results and continues lines are
measured values
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minutes. Numerical Weather Prediction is used for weather prediction for more than 4 hours up to 14 days with lower
accuracy. The prediction of PV production is updated every two hours to increase the prediction accuracy. The model
has an average normalized root mean square error of 10.01% for days with different weather conditions. . Fig. 8, Fig.
9 and Fig. 10 represent the forecast results for different types of days, including sunny, cloudy, or partially cloudy.
PV forecast has higher forecast errors than the consumption forecast as it is totally dependent on meteorological data
forecasts which have their own associated errors. Errors of PV production forecast for the three types of day are
presented in table 2. The forecast errors for partially cloudy day are bigger than the errors of sunny and cloudy day.
This could be explained by the error in weather forecast which cannot predict the fluctuation of the irradiation because
of variable and partially cloud coverage.

Day type RMSE (W) (%) nRMSE (%) MAE (W) nMAE (%) R2
Sunny day (14th of August 2021) 6788 4.74 4261 2.97 0.97

Cloudy day (26th of September 2021) 7827 5.46 4280 2.99 0.8
Partially cloudy day (29th of July 2021) 13297 9.26 8140 5.68 0.88

Table 2: Results table for PV production prediction of RIZOMM PV system for different weather conditions

Figure 8: PV production forecast for RIZOMM PV system of a sunny day (14th of August 2021)

Figure 9: Production forecast for RIZOMM PV system of a cloudy day (26th of September 2021)

The PV production forecast is provided using the same NN algorithm with the same configuration for the second
PV system of the demonstrator which belong to HEI building. Fig 11 presents an example of PV production forecast
for a sunny day and a cloudy day. The different metrics of the PV production forecast of HEI are provied in table 3.

4.1.3. CO2 forecast
The CO2 content of the electric kWh corresponds to the CO2 emissions generated by the production of this kWh

of electricity as well as the global warming potential of each electric energy source by analyzing its life cycle [19].
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Figure 10: PV production forecast for RIZOMM PV system of a partially cloudy day (29th of July 2021)

Day type RMSE (W) (%) nRMSE (%) MAE (W) nMAE (%) R2
Sunny day (14th of August 2021) 1660 6.67 1080 4.34 0.95

Cloudy day (26th of September 2021) 1354 5.44 721 2.9 0.8

Table 3: Results table for PV production prediction of HEI for different weather conditions

Figure 11: PV production forecast for HEI PV system of a sunny day (14th of August 2021) and cloudy day (26th of September 2021)
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Forecasts are based on consumption, wind, and solar day-ahead forecasts, as well as the CO2 content of the last 2
weeks given by the national transmission system operator (TSO). The method is inspired by the works of the United
Kingdom’s national grid operator National Grid ESO which developed a carbon intensity forecasting tool [20].The
data is sourced from the french national grid operator RTE who has an open data platform [21] that includes historical
consumption and production data on the national level since 2012. The model has a normalized root mean square
error of 3.80%. Fig. 12 represents the forecast results during a week of August 2021.

Figure 12: Forecast of grams of CO2 equivalent per kWh of a week in August 2021

4.2. Energy management optimization

Day-ahead planning is based on PV, load and CO2 forecasts calculated at midnight. It is obtained by deterministic
optimization using Sequential Least SQuares Programming (SLSQP) algorithm using objective function given by
equation (2). SLSQP is chosen because of the non linear constraints due to battery and inverter efficiencies’ outlined
in section 4.2.2 and equation (4).

min
144∑
i=1

(pc−i − ppv−i + pbat−i) ×
ei

6
(2)

Where:

− pc−i: day ahead load consumption forecast at 10-minute intervals in kW (average value over 10-minute period)

− ppv−i: day ahead photovoltaic power production forecast at 10-minute intervals in kW (average value over
10-minute period)

− pbat−i: battery charging or discharging power in 10-minute steps in kW (average value over 10-minute period)

− ei: cost coefficient of gCO2equiv/kWh or€/kWh. The division of ei by 6 gives the cost coefficient of an average
power value over 10 minutes period.

The cost coefficient will depend on the chosen strategy. The energy management step time is 10 minutes over a period
of 24 hours, which was found to be satisfactory. Real time power flow management is rule-based. 13 represents the
forecast diagram of the different elements of the cost function in equation2.

4.2.1. Strategies and Constraints
For the specific case of the Catholic university SG demonstrator, the locally produced power by the PV system

should be fully consumed by the local load thus, no injection to the distribution grid of extra produced power is
permitted. To fulfil this condition and other objectives, the control of the storage is done at two-time levels: day-ahead
optimization and real-time controller.

12



• France consumption forecast
• French wind and solar Energy Forecast
• CO2 content of the last 2 weeks

Forecast using NN model 
of CO2

e 

(gCO2equiv/kWh)

• Temperature Forecast (Solcast webservice)

• Day of the week

• Month

• Hour

• weekend (or not)

• day of the Year

• Public holiday (or not)

• School holiday (or not)

• The consumption of the last seven days

Forecast using NN model 
of Load 

Pc 

Weather forecast (Solcast webservice)

• Global horizontal irradiation (GHI)

• Direct normal irradiation (DNI)

• Temperature

• Cloud coverage

Forecast using NN model 
of PV production

Ppv

Energy 
management 
optimization

Dayahead Electricity 
price forecast (epexspot)

e (€/kWh)

Pbat

Figure 13: Forecast diagram

13



Three strategies for the control of the storage are proposed in this study for the day-ahead optimization; economic,
ecological and compromise strategies. The smart grid demonstrator is currently subscribed to an off-peak tariff option,
which is the basis for economic results in the best compromise and ecological strategies. However, to evaluate the
proposed storage control mechanism in a more complex economic tariff, the economic strategy uses the day-ahead
SPOT market prices as its cost function. Fig. 14 shows an example of the difference between both tariffs for a typical
day in January. Additional constraints could be added if the results of the three strategies cited above do not fulfil
the full self-consumption condition. Since the day-ahead optimization is based on PV production, and consumption
forecast, a real-time controller is used to verify the full-self consumption condition of the produced energy and take
corrective actions if needed. These actions could concern the storage by ignoring the day-ahead optimization and
applying a set point to absorb the extra produced power. In some cases the real-time controller could curtail the PV
production if the storage has non available capacity. The different strategies of the day-ahead optimization and the
associated constraints are presented in the following sections.

Figure 14: Example of SPOT price variation during a day vs off-peak tariff variation

• Best compromise strategy

The best compromise strategy takes advantage of the off-peak tariff option which has a lower electricity price during
off-peak hours (mainly at night) and higher costs during the day. It primarily targets economic gains, but also imple-
ments an ecological aspect by using the predicted CO2 per kWh, as the cost coefficient (see equation (2)), to minimize
the carbon impact of the facility by charging during the least carbon intensive hours (at night) and discharging during
the most carbon intensive hours (during the day) using the following constraints:

− S OCmin ≤ S OC ≤ S OCmax.

− S OC = S OCmax at the end of the charging period (off-peak)

− 0 ≤ pbat−i ≤ Pcharge,max during the charging period (off-peak hours)

− 0 ≥ pbat−i ≥ Pdischarge,min during the discharge period (peak hours)

− S OC = S OCmin at the end of the discharging period (peak)

Where:

− S OC: State of Charge of the battery in %

− S OCmin: Minimum allowable SOC in %

− S OCmax: Maximum allowable SOC in %

− Pcharge,max: Maximum charging power in W
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− Pcharge,min: Minimum charging power in W

The chosen constraints also apply the physical constraints of the storage as well as limiting the system to a single
battery charge/discharge cycle per day (by limiting the total energy) to increase battery lifespan.

• Ecological strategy

The ecological strategy implements a reduced number of constraints but is still limited to one full charge/discharge
cycle (two times the capacity) per day to preserve battery life, it uses the predicted CO2 per kWh as the cost coefficient
to optimize the gCO2equiv for the day (see equation (2)) and is subject to the following constraints:

− S OCmin ≤ S OC ≤ S OCmax

− Pdischarge,min ≤ pbat−i ≤ Pcharge,max

−
∑ |pbat−i |

6 ≤ 2 ×
(
ES OCMAX − ES OCMIN

)
• Economic strategy

The economic strategy uses the same constraints as the ecological strategy, with the main difference being the use
of the day ahead spot market price (fig. 14) as the cost coefficient (see equation (2)).

• Self-consumption optimization

The self-consumption optimization ensures that the smart grid doesn’t re-inject power into the distribution grid. It
ensures that PV power never exceeds consumption power by either injecting the excess power into the storage system
or by curtailing the PV station. To minimize the curtailed (i.e., wasted) power, whenever the forecasts show that at
a certain time or for a given period the production will surpass the consumption, additional constraints are added to
the optimization for all strategies, to ensure that the storage will have as much capacity as possible to store the excess
energy by adding the following constraints:

− S OC ≤ S OCES OCMAX−ECurtail at the beginning of the overproduction period

− pbat−i = ECurtail/(Loverprod) during the overproduction period

Where:

− ECurtail: The excess energy during the overproduction period up to a limit of Emax − Emin in Wh

− Loverprod: Length of the overproduction period (unitless)

• Real-time controller

The real-time controller checks every 10 seconds if the production become higher than the consumption. Since the
injection of PV production surplus to the public grid is not permitted, the storage should store the extra production
to avoid a curtailment of the PV production. The battery set-point calculated by the day-ahead optimization will be
ignored in this case and the storage set-point will take a the value of the PV production surplus. If the storage is fully
charged, the PV inverters will be controlled to curtail the PV production. The total PV production will be set to be
equal the electrical consumption. Fig. 15 represents an overview of the energy management algorithm.

4.2.2. Implementation
The implementation of the optimization algorithm was done using the SciPy library in the python programming

language and more specifically the scipy.optimize.minimize function. As per equation (2) the goal is to minimize
the total cost (ecological or economic) on a day by day basis. To achieve this objective, pbat−i should be optimized
according to the forecasts of power consumption, PV production and CO2 per kWh or energy cost. There are 144
variables to be optimized simultaneously which form the vector Pbat (see eq (3)) of length 144 representing the battery
power setpoints that correspond to a 10-minute interval during 24 hours. The initial value of the variables is set to
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Ecological
− SOCmin ≤ SOC ≤ SOCmax

− Pdischarge,min ≤ pbat−i ≤ Pcharge,max

− ∑ |pbat-i| ≤ 2 × (ESOCMAX − ESOCMIN)

Choice of strategy

Forecasts 
Pc-i , Ppv-i , ei (gCO2equiv/kWh), ei (€/kWh) with 0 ≤ i ≤144  

Best compromise
− SOCmin ≤ SOC ≤ SOCmax.
− SOC = SOCmax at the end of the charging period (off-peak)
− 0 ≤ pbat−i ≤ Pcharge,max during the charging period (off-peak hours)
− 0 ≥ pbat−i ≥ Pdischarge,min during the discharge period (peak hours)
− SOC = SOCmin at the end of the discharging period (peak)

Economical

− SOCmin ≤ SOC ≤ SOCmax

− Pdischarge,min ≤ pbat−i ≤ Pcharge,max

− ∑ |pbat-i| ≤ 2 × (ESOCMAX − ESOCMIN)

Optimization 

Self-consumption constraints
− SOC ≤ SOCESOCMAX −ECurtail at the beginning of the overproduction period
− pbat−i = ECurtail/(Loverprod) during the overproduction period

Pbat-i (with 0 ≤ i ≤144)  

Ppv > Pc

Real-time measurements
- Ppv (PV production)
- Pc (electrical consumption)

Yes

Pbat* (set-point) = ppv-pc

No

Pbat* (set-point) = Pbat-i

Dayahead optimization

Real-time controller

SOC ≤ SOCmax
Ppv (set point)=Pc 

(Curtail production)

Yes No

Figure 15: Energy management algorithm diagram
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1 kW, SOCmin and SOCmax are set to 15% and 95% respectively as a compromise between battery lifespan and total
usable battery capacity. Emin and Emax are the energy stored that corresponds to minimum and maximum states of
charge, and E0 is the initial stored energy which is measured before the start of the optimization. As the setpoints pbat-i
are in kW per 10-minute interval, when divided by 6 they are expressed in kWh and therefore the energy stored in
the battery at a given timestep Ej can be calculated by summing the initial stored energy and the some of the energy
of the preceding timesteps multiplied by the total efficiency of the battery (which includes the inverter and depends
on the SOC and power setpoint) as per equation (4). The efficiency is found from the characterisation of the battery.
Constraints are setup using the equation (4) where 288 inequality constraints are set for each timestep to ensure that
the capacity stays within Emin and Emax as previously described, in addition to other constraints presented in section
4.2.1.

Pbat =



pbat−10
pbat−20
...

pbat−1430
pbat−1440


(3)

Where:pbat−10, pbat−20, pbat−1430, pbat−1440 are battery power setpoints at respectively t=10, 20, 1430, 1440 minutes
(24 hours).

E j = E0 +

j∑
i=1

pbat−i

6
× ηibattery (S OCi, pbat−i) (4)

5. Results and discussion

The optimisation algorithms is validated in two different ways; first by simulation using one year data set of elec-
trical consumption and PV production, then by an experimental validation on the Catholic university SG demonstrator
for 24 hours to validate the dynamic behaviour of the system.

5.1. Simulation results

The proposed storage management method is validated using historical data for the period of 1/3/2019 to 1/3/2020.
Two key performance indicators (KPI) are used to compare the results of different strategies; economic indicator and
ecological indicator. The economic gain and the ecological gain are directly related to ratio between the battery
capacity size and the total daily consumption. For the case of the Catholic university SG demonstrator, the installed
battery capacity represents only 6% of the total daily energy consumption. Therefore, relative comparisons provide
a more accurate view of the differences between each strategy regardless the battery capacity size. The economic
indicator is defined by the decrease in the total cost of electricity. For a full economic strategy, this indicator takes
the value of 100% and for the case with no storage used this value become 0. By the same, the ecological indicator
is defined by the decrease in the total amount of CO2 produced from electricity. It takes the value of 100% for a full
ecological strategy and 0 for the case with no storage used. A “simple” energy management system is implemented
with predefined daily setpoints for charging during off-peak hours and discharging during peak hours to better test the
proposed management system’s performance by providing a more appropriate comparative perspective. The storage
management method uses forecasts of electricity consumption, photovoltaic production and CO2 rate or day ahead
SPOT market prices to generate power set points for the storage unit daily. The real values are used to calculate the
simulation results to compare the different strategies.

5.1.1. Simulation using off-peak tariff
Fig. 16 shows the average relative economic and ecological performance for the simple, ecological, and best

compromise strategies using off-peak tariff, The economic gain is limited by the off-peak tariff, it cannot be further
increased without increasing the capacity of the storage, which is why the best compromise and simple strategies
offer the same economic gain. The ecological gain is where the differences between the strategies emerge. As the
best compromise strategy demonstrates its advantages over the simple strategy, the ecological strategy’s gains are a
trade-off with the economic gains when compared to the other strategies. Fig. 17 shows a sample of some of the
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results from the best compromise strategy over a 2-day period; from the 7th of March 2019 to midnight 9th of March
2019.

Figure 16: Relative economic and ecological gains per strategy using off-peak tariff

Figure 17: Battery setpoint power profile, HA building power profile, Rizomm building power profile, Rizomm PV power profile and grid con-
sumption power profile for best compromise scenario over a 2-day period

5.1.2. Simulation using spot market prices
The results obtained with the spot market price show the best economic gain in comparing to other strategies. A

comparison of the economic gain between the economic and simple strategies is presented in Fig. 18. They show
the utility of the proposed management method in more complex tariff scenarios compared to the simple scenario,
the latter being adequate with off-peak tariffs but offering limited gains when the price varies hourly. Finally, with
regards to the self-consumption constraints, without the presence of the storage, 4481 kWh must be curtailed which
represents 3.19% of the total yearly production. The proposed control method manages to reduce the curtailed energy
to 20 kWh. This curtailed energy is because of high production during a sunny day in June with low consumption
which saturated the storage and lead to curtailing the excess energy.

5.2. Experimental validation of real time controller on the Catholic university demonstrator
In order to test the real time controller outlined in section 4.2.1, the algorithm was implemented on the EMS of

the smart grid demonstrator (Fig. 2). For security reasons, the following parameters were adopted in the storage
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Figure 18: Relative economic gain per strategy using day ahead spot market prices

controller:

• One string of the storage system with a capacity of 50kWh is used.

• The maximum power is limited to 20kW in discharging and 25kW in charging.

• The consumption of only Rizomm buidling is considered in order to reach the worst case scenario (electrical
production will surpass consumption for a long period of time) for the real time controller and test the limits of
the algorithm.

• S OCmax is set equal to 80% (Emax = 40kWh) and S OCmin is set to 30% (Emin = 15kWh).

• The chosen strategy is ”Best compromise” with full self consumption constraints checking.

The experiment was conducted for 24 hours and started at midnight of Saturday 15th of October 2022. This date was
chosen based on day-ahead weather forecast to have a sunny day with good PV production and to have low power
consumption and less number of students in the campus on the other hand. Figure 19 shows the results of real time
controller test, where the photovoltaic and consumption forecasts predicted a period during which production will
surpass consumption, the management method accounts for this by discharging the battery to a specific SOC at the
beginning of the overproduction period (as described in 4.2.1).The figure is split into four sections:

• The first section where the battery can only be charged since it is during the off-peak hours and overproduction
cannot occur since it is at night, noting that since the chosen strategy is ”Best compromise” the objective here is
to charge during the least carbon intensive hours (Fig. 20). Charging stops at 78% due to the small inaccuracies
in the theoretical SOC (using characterized efficiency), and falls slightly to 77% due to the re-balancing of the
battery cells by the internal battery management system (BMS).

• The second section is where the battery can only be discharged since the net power is still positive (i.e. con-
sumption is higher than production) as per the predictions, and the SOC goes from 77% to the minimum of 30%
since the excess energy during the overproduction period was predicted to be higher than the current battery
useful capacity (25kWh). The real time controller takes over and charges the battery, in order to ensure the self
consumption constraint, near the end of this section as the net power becomes negative for some brief periods,
which is due to the forecast errors mentioned previously in section 4.1. It should be noted that real time control
can utilize the maximum charging power of the battery and is not limited by the upper and lower bounds shown
on the graph as they only limit the day ahead planning.

• The third section is the predicted overproduction period where real time controller takes full control of the
battery in order to ensure the full self consumption constraint. The lower and upper bounds are equal to the
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curtailment energy over the length of the period as previously mentioned for real time controller constraints in
section 4.2.1, these bounds are necessary in order to calculate an accurate SOC after the overproduction period.
The battery reaches S OCmax near the middle of the period and the real time controller must now curtail the
power production by directly communicating with the PV inverters in order to limit their power. This is not
shown on the figure for clarity purposes.

• The fourth and final section is the final discharge period, where the battery which is now fully charged must
discharge at the most carbon intensive hours (Fig. 20) in preparation for the next day’s off-peak charging.
Battery cell re-balancing causes the small increase of SOC near the end of the section.

Figure 19: Battery setpoint power profile, net power, battery setpoint lower and upper bounds and the battery SOC for the 15th of October 2022,
four sections outline the different stages based on net power, time and bounds

Figure 20: Battery setpoint power profile, grams of CO2 equivalent per kWh, battery setpoint lower and upper bounds for the 15th of October 2022,
four sections outline the different stages based on time and bounds
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The results show that the real time controller test was a success, with the management method accounting for
the overproduction period as well as it possibly could, while using the forecasts with slight inaccuracies due to the
efficiency calculations of the battery. Possible improvements could be accounting for forecast errors by varying the
length of the overproduction period and more accurate efficiency curve for the battery and inverter system. Noting
that the efficiency characterization must be done periodically as the battery ages.

6. Conclusion

In conclusion, a novel approach to the energy management of an on-grid photovoltaic (PV) system with batteries
in the context of individual self-consumption has been presented in this study. The proposed method, which uses
multiple criteria (economic, ecological, and a compromise between the two) in different tariff scenarios, respects a
full self-consumption constraint imposed by the distribution system operator. The originality of this work is found
in the application of machine learning algorithms for forecasting electrical consumption, PV production, and CO2
emissions, and in the use of an optimization model for energy management. The forecast models were developed
using feedforward neural network models based on data from a real-scale smart-grid demonstrator at the Catholic
University of Lille, France. Advantages of this approach include the ability to handle non-linear data and learn
complex patterns, which are inherent in electrical consumption, production, and CO2 emissions data. The use of
machine learning algorithms for forecasting allows for more accurate predictions, which in turn leads to more efficient
energy management. The optimization model enables the system to minimize the economic or ecological cost while
respecting the full self-consumption constraint. However, some limitations are also associated with this approach.
The performance of the forecast models is dependent on the quality and quantity of the available data. In situations
where data is limited or noisy, the accuracy of the forecasts may be compromised. Furthermore, the optimization
model assumes perfect forecasts, which is not always the case in real-world scenarios. Future work could focus on
incorporating forecast uncertainties into the optimization model. Despite these limitations, it is believed that this
approach provides a robust and effective solution for the energy management of on-grid PV systems with batteries.
The results from the real-scale demonstrator at the Catholic University of Lille, France, validate the effectiveness of
this approach and demonstrate its potential for practical application. This work is hoped to contribute to the ongoing
efforts to optimize the integration and management of renewable energy sources into the power grid, and further
advancements in this field are eagerly anticipated.
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