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1   |   INTRODUCTION

Exposure to high altitude induces a decrease in oxygen 
pressure along the gradient from ambient air to cell mi-
tochondria. The degree of hypoxemia is aggravated by the 
progressive decrease in atmospheric PO2  so that the se-
verity of tissue hypoxia increases with altitude. Physical 
exercise is a potent factor that aggravates the level of 

hypoxemia since, at high altitude, arterial PO2 decreases 
when the intensity of exercise increases (West et al., 1983). 
This phenomenon has been clearly linked, at least in 
part, to a diffusion limitation in the lungs (Wagner, 2010; 
West et al., 1983). Two factors may be responsible for this 
limitation: (1) cardiac output increases with exercise in-
tensity, causing a decrease of blood transit time in the 
pulmonary capillaries, hence reducing the time required 
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Abstract
Exposure to high altitude induces a decrease in oxygen pressure and saturation 
in the arterial blood, which is aggravated by exercise. Heart rate (HR) at maximal 
exercise decreases when altitude increases in prolonged exposure to hypoxia. We 
developed a simple model of myocardial oxygenation in order to demonstrate 
that the observed blunting of maximal HR at high altitude is necessary for the 
maintenance of a normal myocardial oxygenation. Using data from the available 
scientific literature, we estimated the myocardial venous oxygen pressure and 
saturation at maximal exercise in two conditions: (1) with actual values of maxi-
mal HR (decreasing with altitude); (2) with sea-level values of maximal heart 
rate, whatever the altitude (no change in HR). We demonstrated that, in the ab-
sence of autoregulation of maximal HR, myocardial tissue oxygenation would 
be incompatible with life above 6200 m–7600 m, depending on the hypothesis 
concerning a possible increase in coronary reserve (increase in coronary blood 
flow at exercise). The decrease in maximal HR at high altitude could be explained 
by several biological mechanisms involving the autonomic nervous system and 
its receptors on myocytes. These experimental and clinical observations support 
the hypothesis that there exists an integrated system at the cellular level, which 
protects the myocardium from a hazardous disequilibrium between O2  supply 
and O2 consumption at high altitude.
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for oxygen diffusion through the alveolo-capillary barrier; 
(2) due to a lower arterial O2 content, peripheral O2 ex-
traction increases and PO2 in the venous blood coming 
back to the lungs is lowered, rending a proper reloading 
of O2 in the capillaries more difficult (Mollard et al., 2007; 
Van Thienen & Hespel, 2016).

The myocardium is very sensitive to O2 availability, 
especially when energetic demand is high such as during 
exercise. Therefore, the myocardium is submitted to a 
high constraint in terms of O2 availability when exposed 
to both hypoxia and intense exercise. In this matter, if the 
maximal work of myocardium depends on mitochondrial 
O2 content, the latter itself follows the variation of venous 
PO2 (Gnaiger et al., 1995; Sutton et al., 1988), so we could 
assume that myocardial venous PO2 is a valuable index of 
cardiac O2 consumption, even if it is not likely to be linear.

Paradoxically, in alpinists exercising in extreme con-
ditions over the altitude of 8000 m with an arterial PO2 of 
around 35 mmHg, no cardiac failure, coronary insufficiency, 
angina pectoris or myocardial infarct has ever been reported 
(Mallet et al., 2021; Reeves et al., 1987). In parallel, heart rate 
at high altitude, although increasing at submaximal exercise 
for any level of workload, is greatly reduced at maximal ex-
ercise (Richalet, 2016), hereby protecting the myocardium 
against a too high energy consumption in conditions of low 
O2 availability. An important series of studies in animals and 
humans have been performed to explain this decrease in 
maximal heart rate and developed the hypothesis of a down-
regulation of beta-adrenergic receptors in the myocardium 
in prolonged exposure to hypoxia, together with an increase 
in parasympathetic influence (Antezana et al., 1994; Boushel 
et al., 2001; Favret & Richalet, 2007; Favret et al., 2001; 
Hartley et al., 1974; Kacimi et al., 1993; León-Velarde et al., 
2001; Richalet, Mehdioui, et al., 1988; Siebenmann et al., 
2017; Voelkel et al., 1981). This modulation of cardiac recep-
tors would reduce the chronotropic response to the hypoxia-
induced adrenergic activation and protect the myocardium 
in these extreme conditions (Richalet, 2016).

The present study aims to develop a model of O2 trans-
port in the myocardium at exercise in hypoxia in acclima-
tized subjects in order to demonstrate that the decrease 
in maximal heart rate at high altitude is necessary for the 
survival of myocardial tissue in these extreme conditions.

2   |   MATERIAL AND METHODS

2.1  |  Model description

Monitoring the level of oxygenation of the myocardial tissue 
would require measuring PO2 within the tissue, which is not 
readily feasible in humans exercising in altitude conditions. 
Therefore, we aimed to determine an alternative method 

that would give us an indirect measure of tissue and mito-
chondrial oxygenation, represented by myocardial venous 
blood PO2. A model of O2 transport to the myocardium is 
given in Figure 1. Along the myocardial capillary, blood PO2 
is progressively decreasing from the arterial to the venous 
end while O2 is diffusing to the tissue. We can assume that 
end-capillary PO2 is in equilibrium with tissue PO2, there-
fore, venous PO2, equal to end-capillary PO2, would be a reli-
able substitute to tissue PO2 (Gnaiger et al., 1995; Herrmann 
& Feigl, 1992; Rubio & Berne, 1975; Sutton et al., 1988). The 
objective is therefore to calculate myocardial venous PO2, a 
marker of myocardial tissue oxygenation, as a function of al-
titude in the condition of maximal exercise.

2.2  |  Determinants of myocardial 
tissue PO2

Myocardial tissue PO2 is the result of O2 consumption and 
O2 availability. Oxygen consumption is determined by the 
cardiac mechanical power of the left and right ventricles 
(ẆLV andẆRV), which depends on heart rate (HR), stroke 
volume (SV), and mean ejection pressure of each ventri-
cle, in the aorta and in the pulmonary artery (PejAo and 
PejPa, respectively) (Opie, 1991):

ẆLV = HR × SV × PejAo and ẆRV = HR × SV × PejPa

Myocardial O2 consumption (V̇O2) is linked to cardiac 
mechanical power by the energetic equivalent of O2 for 
the myocardium EE (Han et al., 2019):

F I G U R E  1   Model of oxygen handling in the myocyte. Tissue 
PO2 (PtO2) depends on the balance between O2 availability after 
diffusion from the capillary and O2 consumption by the myocyte. 
O2 consumption is determined by cardiac mechanical power, which 
mainly depends on three factors: Heart rate (HR), stroke volume 
(SV), and mean ejection pressure (Pej)

O2 consumption

PtO2myocyte

cardiac mechanical power

PvO2 PaO2
capillary
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From the O2 transport side, O2 consumption can be de-
rived from myocardial blood flow (

.

Q ) and myocardial 
arterio-venous difference in O2 content (Ca–Cv), using the 
Fick equation:

or

where [Hb] is the blood concentration of hemoglobin, SaO2 
and SvO2 are the O2 saturation in the arterial and myocar-
dial venous blood, respectively.

Combining Equations (1) and (2), it comes:

This equation can be rewritten as follows:

where

Let us write this equation for heart rate at maximal ex-
ercise in normoxic (mn) and hypoxic (mh) conditions:

and the ratio HRmh
HRmn

:

In order to estimate HRmh as a function of HRmn, we 
need to evaluate the changes induced by hypoxia in the 
above ratios in Equation (4).

First, the ratio Q̇mh
Q̇mn

 is the ratio of myocardial blood 
flow at maximal exercise between normoxia and hy-
poxia, for example, the “coronary reserve” that can be 
mobilized in hypoxia. Although there is no data in the 
literature above 4500 m, it is likely that coronary reserve 
is near maximal in normoxia and can hardly increase in 
hypoxia (Wyss et al., 2003). Therefore, this ratio is close 
to unity. In a second part of the study, we will evaluate 
the possible influence of a substantial increase in coro-
nary reserve (see below).

Second, the ratio [Hb]mh
[Hb]mn represents the intensity of the 

erythropoiesis induced by the prolonged exposure to high 
altitude. It is 1 in acute hypoxia and increases with acclimati-
zation: For example, if [Hb] is 15 g/dl in normoxia and goes 
up to 20 g/dl in prolonged hypoxia, this ratio will be 1.33.

Third, the ratio Samh−Svmh
Samn−Svmn

 represents the change in 
arterio-venous difference in O2  saturation at maximal 
exercise from normoxia to hypoxia. We know from the 
literature that Samn is normally around 98% and that 
Svmn is around 30%, so that the arterio-venous differ-
ence in saturation in normoxia is around 68% (Heiss 
et al., 1976; Richalet et al., 1981). Altitude-induced 
changes in arterial O2 saturation at maximal exercise are 
known from the literature. However, myocardial venous 
O2  saturation at maximal exercise (Svmh) has never 
been measured yet.

Finally, the ratio Amh
Amn

 depends on the ratio of energetic 
equivalents, the ratio of stroke volumes and the ratio of 
ejection pressures. Although no data is available, the en-
ergetic equivalent is probably not modified by altitude, 
unless profound changes in substrate utilization occur 
in hypoxia. Stroke volume is marginally modified in hy-
poxia: while a 10% decrease has been measured at rest, its 
value at maximal exercise at altitude (7620 m) has been 
estimated at 86% of its sea level value (Reeves et al., 1987; 
Sutton et al., 1988). Mean aortic pressure at exercise does 
not consistently increase at high altitude, while mean 
pulmonary pressure increases through pulmonary vaso-
constriction (Boussuges et al., 2000). The sum of mean 
aortic  +  pulmonary pressures has been estimated to go 
from 153 mmHg at sea level to 150, 169 and 157 mmHg 
at 6100 m, 7620 m and 8840 m, respectively (Sutton et al., 
1988). Altogether, the ratio Amh

Amn
 probably stays around the 

unity since a decrease in stroke volume would compen-
sate an increase in ejection pressures (Stembridge et al., 
2016; Sutton et al., 1988).

Finally, if we summarize our first assumptions (no 
change in coronary reserve and compensations in varia-
tions of ejection volumes and pressures), we can write that:

Therefore, combining Equations (4) and (5):

Estimating Samn-Svmn at 68% (see above), we can cal-
culate Svmh as a function of Samh as follows:

(1)V̇O2=EE× (ẆLV+ẆRV)=EE×HR×SV×(PejAo+PejPa)

V̇O2 = Q̇ × (Ca − Cv)

(2)V̇O2= Q̇×1.34×[Hb] ×
(

SaO2−SvO2

)

V̇O2 =EE×HR×SV×(PejAo+PejPa)

= Q̇×1.34×[Hb] × (SaO2−SvO2)

(3)HR= Q̇×[Hb] ×
(

SaO2−SvO2

)

×A

A =
1.34

EE × SV × (PejAo + PejPa)

HRmn =
.

Qmn × [Hb]mn × (Samn − Svmn) ×Amn

HRmh =
.

Qmh × [Hb]mh × (Samh − Svmh) ×Amh

(4)HRmh

HRmn
=
Q̇mh

Q̇mn
×
[Hb]mh

[Hb]mn
×
Samh−Svmh

Samn−Svmn
×
Amh

Amn

(5)Q̇mh

Q̇mn
×
Amh

Amn
= 1

HRmh

HRmn
=

[Hb]mh

[Hb]mn
×
Samh − Svmh

Samn − Svmn

(6)Svmh = Samh − 68 ×
HRmh × [Hb]mn

HRmn × [Hb]mh
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Samh can be estimated by linear regression from our 
data (Table1, Figure 2) by the following equation:

Equation (6) then allows calculating myocardial ve-
nous O2 saturation at maximal exercise in various altitude 
conditions if arterial O2  saturation, heart rate, and he-
moglobin concentrations are known. From O2 saturation 
(SO2), we can estimate O2 pressure (PO2), given a standard 
equation of the oxyhemoglobin dissociation curve and an 
estimated value of venous pH of 7.32:

Dash et al.(2016) Therefore, we reach our main objec-
tive: estimating venous tissue O2 pressure at maximal ex-
ercise at various altitudes and evaluating the influence of 
maximal heart rate on tissue oxygenation.

2.3  |  Summary of main assumptions

In order to build the present model, we made several as-
sumptions, as follows:

•	 There is no significant increase in coronary reserve at 
high altitude (in a first approach).

•	 Arterio-venous difference in oxygen saturation in nor-
moxia equals 68%.

(7)Samh = 107.6 − 0.0066 ×Altitude (m)

PO2 =
29.11 × SO2

(

100−SO2

)0.3704

Reference
Altitude 
(m) HRmh

HRmn
Samh [Hb]mh

[Hb]mn

Nb 
days

Moore et al. (1986) 4350 0.924 82 1.23 19

Pugh et al. (1964) 4600 0.928 30–90

5800 0.756 57 1.47 60–90

Klausen et al. (1966) 3800 0.89 25

4340 0.906 16

Vogel et al. (1967) 4300 0.978 79.4 1.07 3

4300 0.95 81.7 1.11 17

Dill & Adams (1971) 3090 0.944 17

Vogel et al. (1974) 4350 0.924 10

Cerretelli (1976) 5350 0.87 1.37

Horstman et al. (1980) 4300 0.963 15

Saltin et al. (1968) 4300 0.946 79.5 1.13 15

Dill et al. (1969); Klausen et al. (1970) 3800 0.899 1.08 20

Vogel et al. (1974) 4600 0.873 3

Sutton et al. (1988) 6100 0.82 61 1.2

7620 0.73 59 1.26

8840 0.70 49 1.26

Christensen & Forbes (1937) 5340 0.695 70 1.5 9–10

Richalet (1983) 5000 0.859 21

Richalet et al. (1988) 4350 0.952 8

4800 0.901 92 21

West et al. (1983); Winslow et al. 
(1984)

6300 0.82 61 1.29

8050 0.719 57 1.27

8848 0.741 49 1.29

Young et al. (1982) 4300 0.874 15

Antezana et al. (1994) 6542 0.843 68 1.13 7

Richalet et al. (1999); Robach et al. 
(2000)

5000 0.85 77 1.1 2–6

6000 0.785 72 1.07 9–12

7000 0.75 68 1.14 15–19
HRmh

HRmn
: ratio of maximal heart rate measured at high altitude over value measured at sea level; Samh, arterial 

O2 saturation at maximal exercise at high altitude; [Hb]mh
[Hb]mn

, ratio of hemoglobin concentration measured at 

high altitude over value measured at sea level; nb days, number of days spent at high altitude.

T A B L E  1   Data from the literature 
was used to build the model of oxygen 
transport in the myocardium at maximal 
exercise in hypoxia
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      |  5 of 11RICHALET and HERMAND

•	 Decrease in stroke volume in hypoxia compensates an 
increase in ejection pressures.

•	 Coronary venous pH at exercise is 7.32.

2.4  |  Data from the literature

In order to feed our model, we reviewed all available stud-
ies in the literature that simultaneously proposed values 
of heart rate, hemoglobin concentration, and arterial 
O2 saturation for various altitudes above 4000 m at maxi-
mal exercise. Data from studies concerning prolonged 
exposure to hypoxia (>3 days) were included and studies 
concerning acute hypoxia were excluded. The first his-
torical values come from the “International High Altitude 
Expedition to Chile” in 1935 (Christensen & Forbes, 1937). 
Values are presented in Table 1.

2.5  |  Role of coronary reserve

Very few studies are available about coronary reserve 
at maximal exercise, especially at high altitude. Wyss 
and coworkers found no significant increase in acute 
hypoxia (4500  m) (Wyss et al., 2003). However, stud-
ies by Kaufmann and coll. have shown that it may in-
crease by 20% at 4559  m (Kaufmann et al., 2008). To 
our knowledge, no value is available at higher altitudes. 
However, we evaluated how our model is modified, as-
suming that coronary reserve at maximal exercise may 

increase from sea level to high altitude. If we suppose 
that the minimal value of myocardial venous O2 satura-
tion compatible with adequate O2  supply to the myo-
cardium is 10% (Goodwill et al., 2017), we can calculate 
from Equations (4) and (7) the maximal altitude (max-
Alt) compatible with this minimal O2  saturation as a 
function of an estimated percentage increase in coro-
nary reserve at maximal exercise (ΔQhn) from sea level 
to a given altitude:

3   |   RESULTS

Using equation (6) and Table 1, we can calculate Svmh in 
two scenarios:

1.	 Using the actual value of HRmh observed in the 
studies quoted in Table 1

2.	 Considering that there is no decrease in HRmh at alti-
tude, so that the ratio HRmh

HRmn
 is 1.

Results are shown in Figure 3.
Considering the second hypothesis of no decrease in 

maximal heart rate at altitude, venous O2 saturation de-
creases with altitude and becomes negative above 8000 m, 
condition that is not physiologically compatible with life. 

(8)maxAlt = 14788 −
8445

(

1 + ΔQhn

100

)

F I G U R E  2   Values of arterial 
O2 saturation at maximal exercise (Samh) 
and its corresponding HR (expressed 
as the percentage of maximal HR at sea 
level), in subjects acclimated to hypoxia, 
as a function of altitude. Data extracted 
from literature (references in Table 1). 
There is a significant linear decrease 
in Samh and in HRmh with increasing 
altitude
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Similarly, values of venous PO2 become negative around 
8000 m (Figure 4).

In contrast, taking the first hypothesis, there is only 
a slight decrease in venous saturation and pressure but 
not as pronounced as for the first hypothesis (Figures 3 
and 4).

Figure 5 shows that if we suppose that coronary reserve 
at maximal exercise is already maximal at sea level, the 
maximal reachable altitude compatible with myocardial 
euoxia is around 6200 m in case of no regulation of max-
imal heart rate. To reach the summit of Mount Everest 
without decrease in maximal heart rate, the increase in 
coronary reserve would have to be as high as 44.5%.

4   |   DISCUSSION

The present model was constructed from the physiologi-
cal data available in the literature. However, as expected, 
very few measurements are available in humans in those 

extreme conditions of exercise and altitude, so that we 
had to make some reasonable assumptions. To reduce 
the uncertainty of these assumptions, future studies may 
include measurements of myocardial blood flow, cardiac 
venous and mitochondrial PO2 at maximal exercise, both 
at sea level and high altitude. Let us reconsider the above 
assumptions and estimate the effects on the results of a 
non-validity of some of them.

First, arterial hypoxemia is a probably the most pow-
erful stimulus for coronary vasodilation, either directly 
or through active metabolites such as adenosine, NO or 
prostaglandins. However, hypoxia-induced vasodilation 
is limited (coronary reserve). If myocardial blood flow at 
maximal exercise can increase significantly at high alti-
tude, let us suppose that the maximal value of ratio Q̇mh

Q̇mn
 

is 1.2 (20% increase), as previously suggested (Kaufmann 
et al., 2008). In that condition, maximal altitude reachable 
would be around 7600 m (Figure 5). The minimal value of 
this ratio suitable to reach the summit of Mount Everest 
(8848 m) would be 44.5%, which is incompatible with our 

F I G U R E  3   Calculated values of myocardial venous O2 saturation (SvO2) at maximal exercise as a function of altitude in prolonged 
exposure to hypoxia. In open squares, values are calculated using data from the literature (Table 1) with the actual value of maximal heart 
rate (decreasing from sea level). In black triangles, values are re-calculated using the same data but with a value of maximal heart rate 
at altitude identical to the sea-level value. Note that with the actual values, SvO2 stays over 10% (minimal value compatible with normal 
myocardial oxygenation), while if we suppose that maximal heart rate does not decrease with altitude, SvO2 plunges below 10% over 6200 m 
and becomes negative above 8000 m, values incompatible with life. Negative values of SvO2 are physiologically impossible in the case of the 
absence of regulation
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      |  7 of 11RICHALET and HERMAND

F I G U R E  4   Calculated values of 
myocardial venous PO2 (PvO2) in the 
same conditions as in Figure 3. Pv at 
maximal exercise stays almost constant, 
whatever the altitude, thanks to the 
autoregulation of maximal heart rate (see 
text for explanations). Negative values of 
PvO2 are physiologically impossible in the 
case of the absence of regulation

F I G U R E  5   Maximal reachable altitude compatible with normal myocardial oxygenation (myocardial venous O2 saturation above 10%) 
as a function of an expected increase in coronary reserve at maximal exercise from sea level to high altitude, if we suppose that maximal 
heart rate does not decrease with altitude (no autoregulation). Note that if we consider that coronary reserve at maximal exercise is already 
maximal at sea level, the maximal tolerated altitude would be 6200 m. If we hypothesize a 20% increase in coronary reserve, the maximal 
altitude would be 7600 m. To reach the summit of Mount Everest (8848 m), the coronary reserve would have to increase by 44.5%
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8 of 11  |      RICHALET and HERMAND

present understanding of the regulation of myocardial 
blood flow and adequate myocardial oxygenation.

Second, if the increase in ejection pressures largely 
overpasses the decrease in stroke volume, the conditions 
would be worse for myocardial oxygenation, as inferred by 
Equation (4). Conversely, if pressures do not change and 
stroke volume largely decreases, conditions of oxygen-
ation would be better, but this hypothesis is incompatible 
with values of ejection pressures and volumes available in 
the literature (Naeije, 2010; Stembridge et al., 2016; Sutton 
et al., 1988).

From the present modeling study, based on mea-
sured values from the literature, we suggest that the 
hypothesis of a preservation of maximal heart rate at 
high altitude at its sea level value would necessarily 
lead to values of myocardial tissue PO2 incompatible 
with a viable myocardial oxygenation. Therefore, the 
alternative hypothesis of a mechanism limiting heart 
rate at exercise in hypoxic conditions therefore appears 
realistic (Figure 2). We hypothesize that cardiac chro-
notropic function could be controlled by a local mech-
anism linked to myocardial PO2 (White et al., 1995). 
Several pathways have been mentioned in the litera-
ture. A downregulation of the adrenergic system has 
been shown in prolonged hypoxia, either in humans or 
animal models (Favret & Richalet, 2007). Adrenergic 
activation is well documented in acute and prolonged 
hypoxia (Antezana et al., 1994; Richalet et al., 1990) but 
the response to this activation is blunted as shown by 
a lower heart rate for a given value of plasma norepi-
nephrine at exercise (Antezana et al., 1994; Richalet, 
Mehdioui, et al., 1988) or for a given value of perfused 
isoproterenol (Richalet, Larmignat, et al., 1988). In par-
allel, although a chronic exposure to 3500 m triggers a 
long-term reduction of the vagal tone at rest (Ponchia 
et al., 1994; Siebenmann et al., 2017), the parasympa-
thetic system may be activated as shown by the res-
toration of heart rate at exercise after infusion of a 
muscarinic blocker (Bogaard et al., 2002; Boushel et al., 
2001; Hartley et al., 1974). In a model of rats exposed 
to prolonged hypoxia, the density of beta-adrenergic re-
ceptors has been shown decreased, while, conversely, 
the density of muscarinic receptors is increased (Kacimi 
et al., 1992, 1993; Voelkel et al., 1981). The complex 
pathway connecting adrenergic, muscarinic, and ade-
nosinergic receptors to the adenylate cyclase in the car-
diomyocyte is modified when exposed to hypoxia: the 
activity of the Gs protein is reduced while the expression 
of Gi protein is enhanced, both phenomenon leading to 
a blunting of adenylate cyclase activity and a reduced 
chronotropic function (Favret & Richalet, 2007; Fowler 
et al., 1986; Kacimi et al., 1995; León-Velarde et al., 2001; 
White et al., 1995). Moreover, an extensive evidence 

exists concerning the role of downregulation of adren-
ergic receptors in cardiac failure, another representative 
condition of imbalance between cardiac oxygen supply 
and consumption (Hamdani & Linke, 2012; Soltysinska 
et al., 2011). The heart is not the only organ where these 
desensitization mechanisms appear in hypoxia. Fat 
cells also show a decrease in their response to adren-
ergic activation in prolonged hypoxia (de Glisezinski 
et al., 1999). Renal handling of calcium is submitted to 
a down-regulation of parathormone effects in hypoxia 
(Souberbielle et al., 1995). Similarly, growth hormone 
production is subjected to a down-regulation of its spe-
cific receptor (Richalet et al., 2010). Lactate release by 
the muscle could be modulated by a down-regulation of 
beta-receptors (Reeves et al., 1992). Common elements 
in all these signaling pathways seem to be receptors reg-
ulated by a G protein complex (Hamdani & Linke, 2012; 
Richalet, 2016).

5   |   CONCLUSION

Altogether, there appears to exist an integrated system 
at the cellular level that protects the myocardium from 
a hazardous disequilibrium between O2 supply and O2 
consumption at high altitude. This system would fully 
explain the decrease in heart rate at maximal exercise 
at high altitude. This autoregulation of O2 supply in the 
myocardium efficiently protects this vital organ against 
myocardial ischemia and its potentially serious clinical 
consequences (Richalet, 1997, 2016). Simple modeling 
of biological mechanisms may help for a better under-
standing of regulation systems in complex environ-
mental conditions. This paper allows some significant 
advances in the knowledge of physiological adaptations 
to stressors such as hypoxia. It is a remarkable example 
of autoregulation of a vital organ submitted to a severe 
metabolic challenge that contributes to an overall pro-
cess of homeodynamics (Hermand et al., 2021; Richalet, 
2021). Future studies may include measurements of 
myocardial blood flow, cardiac venous, and mitochon-
drial PO2 at maximal exercise, both at sea level and high 
altitude, to validate and refine our model.
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