Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) - Université de Lille Accéder directement au contenu
Article Dans Une Revue Journal of Geophysical Research: Atmospheres Année : 2023

Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ)

Shang Liu
  • Fonction : Auteur
Toshihiro Kuwayama
  • Fonction : Auteur
Nancy Johnston
  • Fonction : Auteur
Barry Lefer
  • Fonction : Auteur

Résumé

The NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) experiment was a multi-agency, inter-disciplinary research effort to: (a) obtain detailed measurements of trace gas and aerosol emissions from wildfires and prescribed fires using aircraft, satellites and ground-based instruments, (b) make extensive suborbital remote sensing measurements of fire dynamics, (c) assess local, regional, and global modeling of fires, and (d) strengthen connections to observables on the ground such as fuels and fuel consumption and satellite products such as burned area and fire radiative power. From Boise, ID western wildfires were studied with the NASA DC-8 and two NOAA Twin Otter aircraft. The high-altitude NASA ER-2 was deployed from Palmdale, CA to observe some of these fires in conjunction with satellite overpasses and the other aircraft. Further research was conducted on three mobile laboratories and ground sites, and 17 different modeling forecast and analyses products for fire, fuels and air quality and climate implications. From Salina, KS the DC-8 investigated 87 smaller fires in the Southeast with remote and in-situ data collection. Sampling by all platforms was designed to measure emissions of trace gases and aerosols with multiple transects to capture the chemical transformation of these emissions and perform remote sensing observations of fire and smoke plumes under day and night conditions. The emissions were linked to fuels consumed and fire radiative power using orbital and suborbital remote sensing observations collected during overflights of the fires and smoke plumes and ground sampling of fuels.
Fichier principal
Vignette du fichier
JGR Atmospheres - 2022 - Warneke - Fire Influence on Regional to Global Environments and Air Quality FIREX‐AQ.pdf (11.71 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04465865 , version 1 (19-02-2024)

Licence

Identifiants

Citer

Carten Warneke, Joshua P. Schwarz, Jack Dibb, Olga Kalashnikova, Gregory Frost, et al.. Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ). Journal of Geophysical Research: Atmospheres, 2023, Journal of Geophysical Research: Atmospheres, 128, ⟨10.1029/2022JD037758⟩. ⟨hal-04465865⟩
6 Consultations
7 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More