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Abstract
This paper put forward a new interactive design approach for customized garments towards sustainable fashion using 
machine learning techniques, including radial basis function artificial neural network (RBF ANN), genetic algorithms (GA), 
probabilistic neural network (PNN), and support vector regression (SVR). First, RBF ANNs were employed to estimate the 
detailed human body dimensions to fulfill consumers’ ergonomics requirements. Next, the GA-based models were developed 
to generate the formalized design solutions following the consumer profiles (demands). Afterwards, the evaluation model 
was established to quantitatively characterize the relations between consumer profiles and garment profiles from the gener-
ated design solutions. The design solutions would be digitally demonstrated and recommended to the consumer following 
the evaluation results in descending order. Meanwhile, the PNN-based models were created to predict garment fitness based 
on virtual try-on. Moreover, the SVR-based self-adjustment mechanism was built to estimate and control garment design 
parameters according to the consumer’s feedback. Based on these mathematical models, the approach enhances the interac-
tions among digital garment demonstration, the designer’s professional knowledge and the user’s perception to find out the 
most relevant design solution. The effectiveness of the new approach was verified by a real application case of leisure pants 
customization. The results show that the proposed method can powerfully support the designers’ quality personalized design 
solutions for consumers more accurately, fast, intelligently, and sustainably, compared with the existing approaches. More 
importantly, it also establishes an effective and reliable communication channel and mechanism among consumers, fashion 
designers, pattern designer, and garment producer.

Keywords Interactive garment design · Machine learning · Sustainable fashion · Garment e-mass customization · Radial 
basis function artificial neural network · Genetic algorithm · Probabilistic neural network · Support vector regression

1 Introduction

Over the past few decades, the fashion industry has been 
criticized to be one of the most polluting industries in the 
world [1–4]. To change this situation, an innovation named 
sustainable fashion (SF) has occurred presently in the fash-
ion industry [5]. The SF concentrates on the efforts to mini-
mize the fashion industry’s adverse environmental and social 
impacts [4]. Hence, classical garment design and manufac-
turing should be innovated to satisfy the requirements of 
the SF in a more optimized manner [6]. For this purpose, 
garment e-mass customization (e-MC), aiming at enhanc-
ing the quality of products and their manufacturing to fulfil 
the consumer’s personalized demands, has been adopted 
by many fashion companies [7–9]. Conventionally, quality 
customized garments are obtained by repeatedly performing 
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the circle of “design–evaluation–adjustment” using physical 
prototypes. This design process is rather tedious and mate-
rial wasting, leading to negative impacts on the environ-
ment [10–12]. To overcome these shortcomings, cutting-
edge digital technologies (i.e. 3D human body scanning and 
virtual reality) have been utilized for reshaping the entire 
garment customization process in a more sustainable way 
[13–16]. One of the most representative technologies is 3D 
digital simulation, also named virtual fitting, virtual try-on, 
etc. Since this technology can simulate the garment design 
process without making real garments [17], the targets of 
material saving, environmental protection, and sustainabil-
ity can be achieved. In the past few years, researchers have 
attempted to apply digital technologies for optimizing the 
quality of garment design. For example, Liu et al. suggested 
that a “what you see is what you get” way to design garment 
patterns efficiently [18]. Tao et al. originally put forward 
a customized 3D garment collaborative design process by 
integrating interactions between the designer and the specific 
consumer [6]. In Ref. [19], an intuitive method that seam-
lessly integrates the whole process of garment design includ-
ing 3D modelling, pattern development, garment simula-
tion, and grading was proposed by Zhang et al. Hong et al. 
present a virtual reality (VR)-based collaborative custom-
ized garment design methodology for disabled people with 
scoliosis [20]. Mulat et al. put forward a bra pattern design 
process for customizing female seamless soft armour based 
on innovative 3D reverse engineering approaches [21]. Han 
et al. proposed a 3D prototyping method and procedure for 
middle-aged women’s swimsuit [22]. Yan et al. established 
a novel approach of virtual e-bespoke design permitting the 
ready completion of a well-fitted and balanced men's shirt 
[23]. A new 3D pattern-making approach based on graphic 
coding was put forth by Lei et al. in [24], for generating 
garment patterns in any constructions intuitively, accurately, 
and quickly. These research results present fine prospects 
for the 3D digital simulation-based design process of cus-
tomized garments, but the generality and accuracy of the 
techniques in the above-mentioned work still need further 
verification in real production scenarios using more cases.

Meanwhile, for realizing sustainable fashion by provid-
ing consumers with more accurate and personalized prod-
ucts, there has been a trend in that fashion companies wish 
to involve the consumer in the garment customization pro-
cess and make him/her directly interact with the product 
[25]. Thus, efficient human–product interactions, aiming 
at offering decision support for designers by unveiling and 
applying the sophisticated quantified relationships between 
consumers’ equivocal needs and product design parame-
ters, have become a key to success in garment e-MC. Pres-
ently, diverse computational tools have been put forward to 
provide decision supports in key links of the personalized 
garment design process, such as design solution generation 

[26–28], fabric selection [29, 30], colour coordination 
[31–33], fashion sketch design [34–36], garment pattern 
design [37–42], and so forth. For instance, in Ref. [28], 
an e-customized garment co-design system was developed 
by Li et al. based on the evolutionary algorithm and fuzzy 
logic theory, to optimize the size and affect the customized 
skirt with communication and expert evaluation. Takatera 
et al. created a fabric retrieval system for designers based 
on Kansei information that allows designers to find the 
most relevant fabric with the Kansei values and experience 
without technical knowledge of fabrics [30]. Mok et al. set 
up a web-based design support system using interactive 
genetic algorithm that enables users to design realistic and 
interesting skirts in the form of technical sketches over 
the Internet [35, 36]. Shukla et al. originally developed an 
interactive fashion and garment design system for men's 
shirts by combining garment design recommendation, 3D 
virtual demonstration, design knowledge base, and design 
parameters adjustment [41]. These proposed tools have 
facilitated the optimization of the garment e-MC process. 
However, there still exist several shortcomings as follows:

• The previous methods mainly focused on resolving the 
problems existing in a specific garment style, such as 
skirt, shirt, brassiere, and jeans. A generalized customi-
zation solution for a wide range of garment styles is 
still lacking.

• The techniques mentioned above paid major attention 
to one or several concrete key links in the garment 
e-MC process, especially the fabric selection, fashion 
sketch design, and garment pattern design. However, 
from the perspectives of the whole design process, they 
still have weaknesses in systematicness and integrity.

• Due to the expensive and time-consuming physical and 
sensory experiments, as well as the consumer's con-
cern for personal privacy, sufficient modelling data (i.e. 
anthropometric data, user perception and experience 
data) can hardly be acquired, leading to the emergence 
of poor garment quality. How to conquer this technical 
bottleneck by reliable computational models has been 
rarely mentioned in the above-mentioned research.

In this context, we propose a knowledge-driven 
approach with an adaptive self-adjustment mechanism for 
generating personalized garment design solutions. Com-
pared with the current techniques, our approach can pre-
dict and control the garment style and structural design 
parameters from a limited quantity of consumers’ anthro-
pometric and personalized demand data. It will enable 
to design and manufacture garments sustainably by pro-
moting accuracy, fitting, and efficiency and mitigate the 
adverse impacts on the natural environment.
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In practice, garment e-MC is regarded as a knowledge-
intensive work dealing with implicit and complex rela-
tionships among multidisciplinary knowledge, such as the 
general design rules and specific adaptation rules character-
izing the relations among design elements (fabrics, style, 
and human body shapes). Due to the outstanding merits in 
learning, generalizing, and handling uncertain and nonlinear 
relationships and solving optimization problems, machine 
learning (ML) techniques, such as artificial neural network 
(ANN), fuzzy logic (FL), and genetic algorithm (GA), have 
been introduced and broadly utilized in garment e-MC 
recently [43–45]. Therefore, ML technologies integrated 
with 3D digital simulation, including radial basis function 
(RBF) ANN, probabilistic neural network (PNN), support 
vector regression (SVR) and GA, were employed to enhance 
the human-product interactions in this study.

The proposed design approach with the process for cus-
tomized garments (See Fig.  1) is majorly supported by 
five design knowledge models. First, Model 1 is created to 
estimate the detailed human body dimensions, which were 
critical to garment pattern making and inconvenient to be 
acquired in a real garment e-MC scenario. The predictive 
data enable the formation of more complete and accurate 
consumer profiles constituted by personalized body dimen-
sions and demands. Next, Model 2 generates a series of ini-
tial personalized garment design solutions following con-
sumer profiles, to satisfy consumers’ demands. Afterwards, 
Model 3 evaluates the generated design solutions following 

the quantified relationships between consumer profiles and 
garment profiles from the generated design solutions firstly. 
Then, the design solutions will be digitally demonstrated 
and recommended to the consumer following the evalua-
tion results in descending order. Sequentially, Model 4 pre-
dicts the recommended garment fitness by fully taking the 
consumer’s human body dimensions, fabric properties, and 
garment ease allowances (or digital pressures) into account. 
After that, the consumer is available to select the most pre-
ferred garment from the recommended solutions. If none of 
the recommended solutions is selected, Model 5 will be acti-
vated to adjust the most relevant design solution. The circle 
of “design solution generation–3D demonstration–evalua-
tion–adjustment” will be performed repeatedly until a sat-
isfactory design solution is achieved, in terms of garment 
style and fitness. In the end, the production patterns of the 
determined customization solution will be generated and 
delivered to the following department for manufacturing.

The major contributions of this study are in presenting:

• Resolving the critical technical bottleneck of provid-
ing high-quality garments to satisfy consumer’s vague 
demands under the circumstances of a limited quantity 
of available data in garment e-MC.

• Proposing an applicable and potential solution for sus-
tainable development in the fashion industry by design-
ing more accurate garments through enhancing human–
product interaction using ML technologies.

Fig. 1  The proposed ML-enhanced design approach and process for customized garments
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• Providing reliable communication channels and interac-
tion mechanisms among products, consumers, designers, 
and manufacturers based on more robust and intelligent 
computational tools.

• Facilitating the creation of sustainable manufacturing 
mode in the fashion industry by combining the proposed 
garment design process with the advanced clothing 
assembly line;

• Conveniently extending the general principles of the pro-
posed method to establish a generalized fashion product 
e-MC framework or platform by systematically consid-
ering human aesthetic preferences, ergonomic require-
ments, and product parameters.

• Supporting the formation of a new O2O (order online and 
receive services off-line) business model in the fashion 
industry by upgrading the level of e-MC.

The remainder of this article is structured as follows. Sec-
tion 2 introduces the general formalization of this study. The 
construction of the design knowledge models is described 
in detail in Sect. 3. Section 4 elaborates the implementa-
tion of the proposed method using a real application case. 
The extensibilities of the proposed approach are discussed 
in Sect. 5. Lastly, Sect. 6 presents the conclusion and future 
research directions.

2  General Formalization

Let CP =
[
SD FD

]
 be a vector of profiling the consumer’s 

demands, where SD and FD refer to the demands of garment 
style and fitness, respectively.

Let SD =
{
SD1,… , SDi,… , SDm

}
 be a set of normalized 

vectors representing the demands for m categories of style 
design elements. For a specific garment style, the SD can be 
constituted by various categories of style design elements. 
For example, pants’ style can be constituted by the combina-
tion of various design elements, such as the silhouette, pant 
length, waist line position, darts, pleats, pockets, ornaments, 
and so on.

Let SDi =
[
sdi1 ⋯ sdij ⋯ sdiu

]
 be an iu-dimensional 

normalized or one-hot vector expressing the demands for the 
i-th category style design element. The value of sdij is 
defined as the nearness degree of the style demand to the ij
-th style element.

For example, if the pants’ silhouette includes five types, 
namely H type, A type, T type, X type and S type, then it can 
be expressed by SDpants silhouette = {H type, A type, T type,

X type, S type} . If SDpants silhouette =

[
H type

1
A type

0
T type

0
X type

0
S type

0

]
 , it  

means that the demand for silhouette is H type. If the pants’ 
length includes five types, such as mini length, thigh length, 
knee length, ankle length, and full length, then it can be repre-
sented bySDpants length = {mini length, thigh length, knee

length, ankle length, andfull length} .  I f  SDpants length

=

[
mini length

0
thigh length

0
knee length

0
ankle length

0.7
full length

0.3

]
 , it indi-

cates that the demand for the length is close to ankle length 
by 70% and full length by 30%.

Let FS = {extremly tight, tight, neutral, loose, extremely loose} be a 
semantic set for evaluating garment fitness.

Let FD =
{
FD1,… , FDj,… , FDq

}
 be a set of q normal-

ized vectors representing the demands for garment fitness at 
q feature positions.

Let FDj =
[
extremely tight

fdj1

tight

fdj2

neutral

fdj3

loose

fdj4

extremely loose

fdj5

]
 be a 

five-dimensional normalized vector representing the demands 
on garment fitness at the j-th feature position. The value of 
fdjp(p ∈ {1, 2, 3, 4, 5}) is defined as the nearness degree of the 
garment fitness demand to a certain fitness evaluation seman-
tics at the j-th feature position. For example, if 
FDwaist girth =

[
extremely tight

0
tight

0
neutral

0.55
loose

0.45
extremely loose

0

]
 ,  it 

means that the demanded garment fitness for waist girth is 
close to neutral by 55% and loose by 45%.

Let S =
{
S1,… , Sk,… , Sn

}
 be a set of n generated garment 

design solutions in this study.
Let GP =

{
GP1,… , GPk,… , GPn

}
 be a set of n garment 

profiles corresponding to the set of garment design solutions S , 
where GPk is denoted as the k-th garment profile correspond-
ing to the k-th garment design solution Sk.

Let GPk =
[
SFk FFk

]
 be a vector of profiling the features 

for garment profile GPk , where SFk and FFk represent the fea-
tures of garment style and fitness, respectively. The elements 
of GPk have a one-to-one correspondence with those of CP.

Let SFk =
{
SFk

1
,… , SFk

i
,⋯ , SFk

m

}
 be a set of formalized 

vectors expressing the style features of the k-th garment from 
the aspects of the m categories style design elements, repre-
sented by normalized vectors or one-hot vectors.

Let SFi =
[
sf i1 ⋯ sf ij ⋯ sf iu

]
 be an iu-dimensional vec-

tor expressing the concrete style feature of a specific garment 
in the i-th category style design element. The structure of SFm 
has a one-to-one correspondence with that of SDm . Further-
more, the value of sf ij is defined by using the same method as 
sdij mentioned above.

Let FFk =
{
FFk

1
,… , FFk

i
,… , FFk

n

}
 be a set of normal-

ized vectors expressing the features of garment fitness of 
the k-th garment. The elements of FFk have a one-to-one 
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correspondence with those of FD . The definition of FFk
i
 is the 

same as that of FDi.

3  Construction of Design Knowledge 
Models for Customized Garments

The general principles of the present method can be easily 
spread to other garment styles. For simplicity, we expound 
it using a real case of males’ leisure pants from the com-
panies involved in our projects in this study.

3.1  Estimation Model for Human Body Dimensions 
(Model 1)

In practice, the acquisition of precise human body dimen-
sions has become a challenging issue in real garment e-MC 
scenarios, due to either the lack of necessary anthropomet-
ric instruments and knowledge or the worry of privacy 
protection. To address this issue, we proposed an estima-
tion model for human body dimensions. The inputs of the 
model are the easy-to-measure feature body dimensions, 
such as stature, waist girth, and hip girth. The outputs are 
defined as the difficult-to-measure detailed body dimen-
sions corresponding to the garment style.

Contributing to its advantages of simple topological 
structure, fast convergence, and acceptable predictive 
accuracy [46], RBF ANN was employed in our study. The 
concrete modelling procedure is described below:

Step 1: To obtain the data quickly and precisely [47], 
we collected the anthropometric measurements of 500 
Chinese adult males by the Vitus Bodyscan. Considering 
the garment type, ten relevant anthropometric measure-
ments were chosen (see Fig. 2), including stature, waist 
height, hip height, crotch height, knee height, waist girth, 
hip girth, thigh girth, knee girth, and ankle girth.

Step 2: We set up seven RBF ANN models for human 
body estimation, respectively, corresponding to waist 
height, hip height, crotch height, knee height, thigh girth, 
knee girth, and ankle girth.

3.2  Generation Model of Design Solution (Model 2)

The garment design solution generation model (see Fig. 3) 
is constituted by two parts, namely the GA model and 
linear model supported by a garment design knowledge 
base. The garment ease allowances corresponding to the 
standard design solutions were predefined by professional 
and experienced garment pattern makers based on the real 
cases from the fashion brand companies involved in our 

study. The inputs of the solution generation model are 
the style demands (SD) and the garment fitness demands 
(FD) for the feature positions. The outputs of the model 
are the garment ease allowances, which are denoted as an 
indicator expressing the extra space difference between 
the human body and the garment to present the diverse 
features of the garment style and fitness [42].

In the application process, we can utilize the GA-based 
model to generate the normalized design solution corre-
sponding to a new garment style and fitness firstly. Next, 
the garment design solutions (garment ease allowances) can 
be calculated by combining the outputs of the GA model 
with the standard design solutions from the garment design 
knowledge base in a linear combination way. In the end, the 
obtained ease data are utilized for garment pattern making.

The creation of the garment design solution generation 
model is given below:

Let the fitness value f fitness
SDj

 for the garment style demand 
SDj be denoted in Eq. (1) and the fitness value f fitness

FDj
 for the 

garment fitness demand FDj be denoted in Eq. (2).

where SFnew
j

 represents the generated new garment style fea-
tures corresponding to the garment style demand SDj.

where FFnew
j

 represents the generated new garment fitness 
features corresponding to the garment fitness demand FDj.

From Eqs. (1) and (2), a smaller value of the f f itness
SDj

 or 
f f itness
FDj

 indicates a more optimal degree of fitness.
The execution process of the GA-based model is as fol-

lows. The termination criteria of the GA-based model were 
as follows: (1) the preset maximum iterations achieved; (2) 
the average variation in the fitness function values with a 
specific number of generations less than a predefined toler-
ance; (3) reaching the consumer’s demands. For each SDj 
or FDj , the consumer’s demand can be denoted by two sets 
SDconstraint

j
 and FDconstraint

j
 . If the terminal criteria were not 

reached, the process of “selection–crossover–mutation–cal-
culation–evaluation” would be repeatedly performed till the 
terminal criteria were satisfied. The objective functions of 
GA are defined in Eqs. (3) and (4).

(1)f fitness
SDj

=
||
|
SFnew

j
− SDj

||
|

(
SDj ∈ SD

)
,

(2)f fitness
FDj

=
||
|
FFnew

j
− FDj

||
|

(
FDj ∈ FD

)
,

(3)argmin
SFnew

j

(
f fitness
SDj

)(
SDj ∈ SD, SFnew

j
∈ SFconstraint

j

)
,

(4)argmin
FFnew

j

(
f fitness
FDj

)(
FDj ∈ FD, FFnew

j
∈ FFconstraint

j

)
.
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The new garment ease allowance is computed following 
Eq. (5):

where GEnew
i

 is defined as the new garment ease allowance 
of the new garment design solution at i feature position; OPi 
represents the i output of the GA-based model, which could 
be SFnew

i
 or FFnew

i
 ; GEstd

i
 refers to a standard garment ease 

(5)GEnew
i

= OPi ∙ GE
std
i
,OPiisSF

new
i

orFFnew
i

,

allowance vector at i feature position in the garment design 
knowledge base.

For instance, if OP
i
= SFnew

waist line
=

[
lower waist line

0
normal waist line

0.65
high waist line

0.35

]

 , 
meaning that the new waist line was close to the normal waist 
line by 65% and the high waist line by 35% 
GEstd

waist line
=

[
lower waist line

ge1

normal waist line
ge2

high waist line
ge3

]T , then the new garment 
ease for the waist line position GEnew

waist line
 can be computed by 

GEnew
waist line

= 0 × ge1 + 0.65 × ge2 + 0.35 × ge3.

Fig. 2  The general structure of the proposed estimation model for detailed human body dimensions
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I f  OP
i
= FFnew

hip girth
=

[
extremely tight

0
tight

0
neutral

0.55
loose

0.45
extremely loose

0

]
 , 

meaning that the new garment fitness of the hip girth was 
close to the neutral fitness by 55% and the loose fitness by 
45%, and GEstd

hip girth
=

[
extremely tight

gf1

tight

gf2

neutral

gf3

loose

gf4

extremely loose

gf5

]T
 , 

then the new garment ease for the fitness of hip girth 
GEnew

hip girth
 can be computed by GEnew

hip girth
= 0 × gf1 + 0 × gf2

+0.55 × gf
3
+ 0.45 × gf

4
+ +0 × gf

5
.

3.3  Evaluation Model of Design Solution (Model 3)

In the garment design solution evaluation model, we defined 
a similarity degree indicator r

(
CP,GPk

)
 to express the quan-

titative relationships between the consumer profile (CP) 
and the garment profile 

(
GPk

)
 . In this study, r

(
CP,GPk

)
 is 

defined and calculated by Eq. (6).

(6)r
(
CP,GPk

)
= � × r

(
SD, SFk

)
+ β × r

(
FD, FFk

)
,

where � and β represent the weights of garment style and 
fitness, respectively. The weights, varying between 0 and 1, 
can be set by the designer or consumer following the specific 
scenario. r

(
SD,SFk

)
 is denoted as the indicator for charac-

terizing the similarity degrees between the style demands 
(SD) and the style features 

(
SFk

)
 of a garment profile 

(
GPk

)
 . 

r
(
SD,SFk

)
 is defined by Eq. (7).

From Eq. (7), we can find that the values of r
(
SD,SFk

)
 

vary between 0 and 1. If all style elements of SD and SFk 
are close to each other, the value of r

(
SD,SFk

)
 is close to 1. 

Otherwise, it tends to 0.
r
(
FD,FFk

)
 refers to the indicator for representing the sim-

ilarity degrees between the global garment fitness demands 
(FD) and the global fitness features 

(
FFk

)
 of a garment profile (

GPk
)
 . r
(
FD,FFk

)
 is defined and computed with Eq. (8) and 

(9).

(7)
r
�
SD, SF

k
�
=

∑
j

∑
i min

�
sdi, sfi

�

∑
j

∑
i max

�
sdi, sfi

� ,

�
sdi ∈ SDj ∈ SD, sfi ∈ SFj ∈ SF

k
�
.

Fig. 3  The general scheme of garment design solution generation model
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where r
(
FDi, FF

k
i

)
 is defined as the indicator for evaluat-

ing the similarity degrees between the local garment fitness 
demands 

(
FDi

)
 and the local fitness features 

(
FFk

i

)
 of a gar-

ment profile 
(
GPk

)
 at the i-th feature position.

Both the values of r
(
FDi, FF

k
i

)
 and r

(
FD, FFk

)
 are 

between 0 and 1. From Eq. (8), if the local fitness features (
FFk

i

)
 is close to the fitness demands 

(
FDi

)
 , the value of 

r
(
FDi, FF

k
i

)
 is close to 1. Otherwise, it tends to 0. Similarly, 

following Eq. (9), if the value of r
(
FD, FFk

)
 is close to 1, 

(8)
r
(
FDi, FF

k
i

)
=

min
(
etd

i
, et

f

i

)
+min

(
tid
i
, ti

f

i

)
+min

(
nld

i
, nl

f

i

)
+min

(
lod

i
, lo

f

i

)
+min

(
eld

i
, tl

f

i

)

max
(
etd

i
, et

f

i

)
+max

(
tid
i
, ti

f

i

)
+max

(
nld

i
, nl

f

i

)
+max

(
lod

i
, lo

f

i

)
+max

(
eld

i
, tl

f

i

) ,

(9)
r
(
FD, FFk

)
= avg

(
r
(
FDi, FF

k
i

))
,
(
FFk

i
∈ FFk, FDi ∈ FD

)
, it means that the global fitness features 

(
FFk

)
 is close to the 

fitness demands (FD) and vice versa.

3.4  Prediction Model of Garment Fitness (Model 4)

Thanks to its powerful performance in dealing with pat-
tern recognition and classification problems in the textile 
and apparel industry [48], PNN was applied to build the 
garment fitness prediction models in this study. A series of 
PNN-based models were created to predict garment fitness 

Fig. 4  The general scheme of the garment fitness prediction model for feature position
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at various feature positions, such as waist, hip, thigh, 
knee, ankle, and so on. Each model had an identical four-
layer structure, with thirteen inputs and one output (see 
Fig. 4). The inputs were constituted by the body dimen-
sion at feature position, fabric properties, and garment 
ease allowance (for loose-fit garments) or digital pressure 
(for tight-fitted garments) measured in a 3D digital design 
environment. The output was the predicted real garment 
fitness.

The detailed procedure for creating the garment fitness 
prediction model is presented as follows:

Step 1: A series of real try-on-based sensory experiments 
were conducted to collect the real garment fitness data on 
various feature positions. Considering the target markets 
of the fashion companies involved in our study, 14 male 
subjects with various figure types in China were recruited 
to participate in the experiments. The involved figure types 
included 160/80A, 160/84A, 160/88A, 165/84A, 165/88A, 
165/92A, 170/84A, 170/88A, 170/92A, 175/84A, 175/88A, 
175/92A, 180/88A, and 185/92A. They were selected 
according to the accommodation rate demonstrated in the 
China National Standard (GB/T 1335.1–2008) [49]. Mean-
while, we invited an expert with over 20 years of experi-
ence in sizing systems to join our research. With her in-
depth knowledge and rich experience, we can guarantee 
the recruited subjects were in line with the China National 
Standard.

Step 2: Every subject performed his try-on with the 
experimental garments in static and dynamic scenarios. 

Meanwhile, they recorded the garment fitness data repre-
sented by {1, 2, 3, 4, 5} , corresponding to the semantics 
{εextremelytight(1)ε, εtight(2)ε, εneutral(3)ε, εloose(4)ε, ε

extremelyloose(5)ε} . These data were used to form the out-
put dataset to construct the proposed models.

Step 3: 25 pieces of real experimental garments (leisure 
pants) of five sizes with five types of fabrics were selected in 
this research (see Tables 1 and 2). The inputs for creating the 
proposed models were procured using the software CLO 3D, 
thanks to its cutting-edge simulation techniques. First, 14 
mannequins corresponding to the subjects were modelled. 
Next, we created 25 pieces of digital garments correspond-
ing to the real experimental garments. Then, these digital 
garments were tried on the 14 digital mannequins one by 
one. For each virtual try-on, the garment ease allowances 
at each feature position were measured. Finally, all the col-
lected ease data were aggregated to form the input dataset. 
Additionally, 11 indicators for characterizing the mechani-
cal properties of the digital fabric were measured by the 
Fabric Kit of CLO 3D, including thickness (TH) , stretch 
weft (SWT) , stretch warp (SWP) , shear (SH) , bending weft 
(BWT) , bending warp (BWP) , bending ratio–weft (BRT) , 
bending ratio–warp (BRP) , buckling stiffness–weft (BST) , 
buckling stiffness–warp (BSP) , and density (DE).

Step 4: For each feature position, 350 records of data 
were collected to form the learning dataset in total. The 
PNN-based models were determined using the k-fold 
( k = 10 ) cross-validation approach.

3.5  Adjustment Model of Design Solution (Model 5)

Step 1: The garment patterns for a specific style were 
divided into the main panel and the associated panels based 
on the knowledge of experienced and skillful pattern makers. 
For leisure pants in this study, the front panel was selected 
as the main panel with other panels as the associated panels.

Step 2: Since its excellent advantages of tackling the 
problems of function approximation [50, 51], SVR was 
employed to model the relationships between the length 
variation of the structural line and the movements of its 
corresponding controlling points. Initially, we set up five 

Table 1  Feature dimensions of the involved experimental garment 
(unit: cm)

Size Garment 
length

Waist girth Hip girth Knee girth Ankle girth

XS 103 70 91 45 43
S 104.5 74 95 46 44
M 106 78 99 47 45
L 107.5 82 103 48 46
XL 109 86 107 49 47

Table 2  Fabric properties of the 
involved experimental garment

No. Composition Structure Weight (g/m2) Thickness (cm) Bending 
resistance B 
(1e-6N.m)

Warp Weft

1 100% cotton Woven 153 0.03 40.63 13.82
2 75% polyester, 25% cotton Woven 210 0.03 23.56 15.96
3 100% wool Woven 268 0.07 17.66 11.77
4 100% polyester Knit 125 0.06 1.03 0.25
5 90% polyamide 10% elasthane Knit 200 0.05 0.66 0.63
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SVR-based adaptation models for each structural line (see 
Fig. 5). Meanwhile, we utilized the Bayesian optimization 
approach to determine the parameters of the SVR-based 

models. Afterwards, all the SVR-based models were aggre-
gated to form a complete adaptation model for the main 
panel.

Fig. 5  The SVR-based adaptation models for the structural line sl
i

Table 3  The relationships of 
movements of controlling points 
in the front and back panels

Controlling points of 
the front panel

Movement Controlling points of 
the back panel

Movement

Horizontal 
direction

Vertical 
direction

Horizontal 
direction

Vertical 
direction

Fp1 dxFp1 dyFp1 Bp1 −dxFp1 dyFp1

Fp2 dxFp2 dyFp2 Bp2 −dxFp2 dyFp2

Fp3 dxFp3 dyFp3 Bp3 −dxFp3 dyFp3

Fp4 dxFp4 dyFp4 Bp4 −dxFp4 dyFp4

Fp5 dxFp5 dyFp5 Bp5 −dxFp5 dyFp5

Fp6 dxFp6 dyFp6 Bp6 −dxFp6 dyFp6

Fp7 dxFp7 dyFp7 Bp7 −dxFp7 dyFp7

Fp8 dxFp8 dyFp8 Bp8 −dxFp8 dyFp8

Fp9 dxFp9 dyFp9 Bp9 −dxFp9 dyFp9
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Step 3: The associate adjustment rules of other panels 
(see Table 3) were defined following the correspondence 
between the associated panels and the main panel. For 
example, Fp1 and Bp1 (see Fig. 5) belong to the outside 
seam of the front panel and back panel respectively. They 
have one-to-one correspondence. Therefore, once the 
adjustment parameter of Fp1 in the front panel (the main 
panel) is determined, the adjustment parameter of Bp1 
in the back panel (the associated panel) will be obtained 
simultaneously.

4  Application and Implementation

In this section, the application and implementation of our 
proposed method will be elaborated on using a real case of 
men’s leisure pants customization for a specific consumer. 
The key body dimensions of the consumer, namely stature, 
waist girth, and hip girth, were 170.8 cm, 69.8 cm, and 88.6, 
respectively. The detailed human body dimensions were esti-
mated by the proposed RBF ANN-based models, as follows:

4.1  Creation of Consumer Profile

In this study, the consumer profile is defined by the combina-
tion of the demands on garment style and fitness. The style 
of leisure pants was constituted by ten categories of style 
elements, involving silhouette, length, waist line position, 
waist band, leg opening, dart, pleat, yoke, ornament, and 
pocket. Each category of style can be further divided into 
several types (see Table 4). The consumer’s demands on the 

DD =

{
waist height

105.9 ,
hip height

83.3 ,
crotch height

77.5 ,
knee height

45.8 ,
thigh girth

48.7 ,
knee girth

35.2 ,
ankle girth

22.3

}

.

style and fitness are expressed by vectors in Tables 5 and 6. 
The value of the vector element refers to the nearness degree 
to the corresponding type of style design element and fitness.

4.2  Generation of Design Solutions

It was assumed that all the other style elements met the con-
sumer’s demands except the leisure pants’ style and fitness. 
Hence, we first set up six GA-based models to generate new 
normalized pants’ style and fitness feature vectors based 
on the method as presented in Sect. 3.2. In this article, the 
population size of the individuals was set to 50. To eliminate 
the effects of the raw fit scores returned by the fit function, 
rank scaling was utilized. Next, the roulette method was 
employed to choose the individuals. Additionally, we used 
the single-point crossover method to generate new individu-
als. The constraint-dependent method was utilized to execute 
the mutation. According to the consumer profile defined in 
Sect. 4.1, we randomly generated 100 normalized design 
solutions for further research.

Afterwards, the ease allowances of the new design solu-

tion can be calculated by linearly combining the outputs of 
the GA-based models with the standard ease allowances, as 
follows:

GEstd
l

=
[

mini length

−0.8WH
thight length

−0.7WH
knee length

−0.5WH
ankle length

−0.1WH
full length

0

]T
,

Table 4  The classification of 
leisure pants style elements

Category Type

Silhouette 
(
SD1

)
H type; A type; X type; T type; S type

Length 
(
SD2

)
Mini length; thigh length; knee length; ankle length; full length

Waist line position 
(
SD3

)
High waist line; normal waist line; lower waist line

Waist band 
(
SD4

)
No waist band; straight waist band; curved waist band

Leg opening 
(
SD5

)
Tapered opening; straight opening; flared opening

Dart 
(
SD6

)
No front dart; single front dart; double front darts; multiple front darts;
No back dart; single back dart

Pleat 
(
SD7

)
No front pleat; single front pleat; double front pleats; multiple front pleats

Yoke 
(
SD8

)
No yoke; straight yoke; curved yoke; special yoke

Ornament 
(
SD9

)
Embroidery; printing; riveting; quilting; hollow cut; no ornament

Pocket 
(
SD10

)
No front pocket; front straight inserted pocket; front diagonal inserted 

pocket; front curved inserted pocket; front curved inserted pocket with 
coin pocket; front patched pocket; no back pocket; back inserted pocket; 
back inserted pocket with flap; back patched pocket; back patched 
pocket with flap
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4.3  Evaluation and Recommendation 
of the Generated Design Solutions

First, the weights � and � in Eq. (6) were set to 0.5 and 0.5 
based on the analytic hierarchy process. Next, according to 
Eq. (7), we obtained the relationships r

(
SD,SFk

)
 between 

the pants style demands and the style features from the gen-
erated design solutions. After that, according to Eq. (8) and 
(9), we obtained the relationships r

(
FD,FFk

)
 between the 

pants fitness demands and the fitness features of the pants 
from the generated design solutions. Sequentially, the rela-
tionships r

(
CP,GPk

)
 between the consumer profile and the 

generated pants profiles were calculated by Eq. (6). Finally, 
the generated design solutions were sorted by r

(
CP,GPk

)
 in 

GEstd
wl

=
[
lower

−3
normal

0
high

3

]T
,

GEstd
wg

=
[
extremely tight

−2
tight

0
neutral

2
loose

4
extremely loose

6

]T
,

GEstd
hg

=
[
extremely tight

0
tight

4
neutral

8
loose

12
extremely loose

16

]T
,

GEstd
kg

=
[
extremely tight

0
tight

3
neutral

6
loose

9
extremely loose

12

]T
,

GEstd
ag

=
[
extremely tight

0
tight

4
neutral

8
loose

12
extremely loose

16

]T
.

descending order, and then recommended to the consumer. 
The top-5 design solutions are shown in Table 7.

4.4  Prediction of Garment Fitness 
from the Recommended Design Solutions

For each recommended design solution, we predicted the 
garment fitness at various feature positions using the created 
PNN-based models. We take the fitness prediction of waist 
girth in design solution 1 

(
S1
)
 for instance. The inputting 

vector was denoted as follows:

The predicted garment fitness outputS1
wg

= fitnessS
1

wg
= 

3.468, indicating that the predictive garment fitness at waist 
girth was between neutral and loose in general, but a lit-
tle close to neutral. For the prediction of garment fitness 
at other feature positions, we only replaced waist girth and 
its ease allowance with other feature body dimensions with 
their corresponding ease allowance. Finally, the complete 
leisure pants design solution, which consisted of 3D digital 
garments and predicted garment fitness, was demonstrated to 
the consumer to support his further decision-making.

4.5  Adaptation of Garment Design Solutions

If the consumer is not satisfied with the recommended 
design solutions, the adaptation mechanism will be acti-
vated, for example, if the consumer is satisfied with most of 
the parts of the design solution 1 

(
S1
)
 , but prefers the hip 

girth of the solution p (Sp) and the length of the solution q 
(Sq) .  Meanwhi le ,  FF

p

hg
=
[
0 0 0.792 0.218 0

]
 and 

InputS
1

wg
=
[
waistgirth

69.8
TH

0.23
SWT

55
SWP

58
SH

14
BWT

23
BWP

29
BRT

90
BRP

90
BST

30
BSP

30
DE

7
easeallowance

2.816

]
.

Table 5  Consumer’s demands on leisure pants style elements SD

S.N Category Normalized style demands Style demands

1 Silhouette SD1 =
[
1 0 0 0 0

]
H type

2 Length SD2 =
[
0 0 0 0.75 0.25

]
Close to ankle length by 75% and full length by 25%

3 Waist line position SD3 =
[
0.2 0.8 0

]
Close to normal waist line by 80% and lower waist line by 

20%
4 Waist band SD4 =

[
0 1 0

]
Straight waist band

5 Leg opening SD5 =
[
0 1 0

]
Straight opening

6 Dart SD6 =
[
1 0 0 0 0 1

]
No front and single back dart

7 Pleat SD7 =
[
0 1 0 0

]
Sing front pleat

8 Yoke SD8 =
[
1 0 0 0

]
No yoke

9 Ornament SD9 =
[
0 0 0 0 0 1

]
No ornament

10 Pocket SD10 =
[
0 1 0 0 0 0 0 1 0 0 0

]
Front straight inserted pocket and back inserted pocket
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SF
q

l
=
[
0 0 0 0 0.563 0.437

]
 . The adaptation process is 

described concretely below:
Step 1: The overall adaptation requirements were com-

puted and distributed to each panel. For the main panel 
(front panel), the adaptation requirement of waist girth and 
pants length was determined to be −0.71 cm and 1.80 cm, 
respectively.

Step 2: We adjusted the front panel from the structural 
line l1 (see Fig. 6). First, the movement of the point Fp2 
was calculated; next, the length deviation of the adjacent 
line l2 under the condition of the movement of Fp2 . If the 
length deviation dll2 is less than a predefined threshold � , 
then we will continue to check the adaptation results of the 
whole panel; otherwise, we will compute the movement of 
the point Fp3 . Afterwards, if all the adaptation demands 

Table 6  Consumer’s demands 
on leisure pants fitness FD

S.N Feature position Normalized fitness demands Fitness demands

1 Waist girth FD1 =
[
0 0 0.5 0.5 0

]
Close to neutral by 50% and loose by 50%

2 Hip girth FD2 =
[
0 0 0.2 0.8 0

]
Close to neutral by 20% and loose by 80%

3 Knee girth FD3 =
[
0 0 0.8 0.2 0

]
Close to neutral by 80% and loose by 20%

4 Ankle girth FD4 =
[
0 0 0.65 0.35 0

]
Close to neutral by 65% and loose by 35%

Table 7  Top-5 leisure pants 
design solutions

Solution Feature position Normalized design solutions r
(
SD, SF

k
)

r
(
FD, FF

k
)

r
(
CP, GP

k
)

S1 Length SF1
l
=
[
0 0 0 0 0.726 0.274

] 0.9942 0.9871 0.9907
Waist line position SF1

wl
=
[
0.189 0.811 0

]

Waist girth FF1
wg

=
[
0 0 0.512 0.488 0

]

Hip girth FF1
hg

=
[
0 0 0.207 0.793 0

]

Knee girth FF1
kg
=
[
0 0 0.802 0.198 0

]

Ankle girth FF1
ag

=
[
0 0 0.645 0.355 0

]

S2 Length SF2
l
=
[
0 0 0 0 0.761 0.239

] 0.9975 0.9818 0.9897
Waist line position SF2

wl
=
[
0.196 0.804 0

]

Waist girth FF2
wg

=
[
0 0 0.501 0.499 0

]

Hip girth FF2
hg

=
[
0 0 0.211 0.789 0

]

Knee girth FF2
kg
=
[
0 0 0.823 0.177 0

]

Ankle girth FF2
ag

=
[
0 0 0.652 0.348 0

]

S3 Length SF3
l
=
[
0 0 0 0 0.777 0.223

] 0.9950 0.9827 0.9889
Waist line position SF3

wl
=
[
0.203 0.797 0

]

Waist girth FF3
wg

=
[
0 0 0.488 0.512 0

]

Hip girth FF3
hg

=
[
0 0 0.197 0.803 0

]

Knee girth FF3
kg
=
[
0 0 0.791 0.209 0

]

Ankle girth FF3
ag

=
[
0 0 0.661 0.339 0

]

S4 Length SF4
l
=
[
0 0 0 0 0.758 0.242

] 0.9955 0.9701 0.9828
Waist line position SF4

wl
=
[
0.219 0.781 0

]

Waist girth FF4
wg

=
[
0 0 0.493 0.507 0

]

Hip girth FF4
hg

=
[
0 0 0.188 0.812 0

]

Knee girth FF4
kg
=
[
0 0 0.831 0.169 0

]

Ankle girth FF4
ag

=
[
0 0 0.639 0.361 0

]

S5 Length SF5
l
=
[
0 0 0 0 0.733 0.267

] 0.9942 0.9658 0.9800
Waist line position SF5

wl
=
[
0.182 0.818 0

]

Waist girth FF5
wg

=
[
0 0 0.467 0.533 0

]

Hip girth FF5
hg

=
[
0 0 0.191 0.809 0

]

Knee girth FF5
kg
=
[
0 0 0.811 0.189 0

]

Ankle girth FF5
ag

=
[
0 0 0.633 0.367 0

]
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of the front panel are satisfied, then the adaptation of the 
main panel terminates; otherwise, the adaptation of the 
structure line l3 will be activated. The process of “check-
ing–adaptation” will be repeatedly performed until all the 
adjustment targets are approached.

Step 3: According to the relationships defined in 
Table 3, we determined the movements of the controlling 
points of the back panel (see Table 8).

Step 4: The movements of other controlling points 
were furtherly determined by modelling the relationships 
between them and the key points in the panel (i.e. Fp1 , 
Fp2 , Fp3 , etc.). We take the movements of the pleat points 
pl1 and pl2 (see Fig. 5) in the main panel for example. 
The movements of pl1 can be calculated by the following 

relationships: dxpl1 = dxFp8+dxFp9

2
 , dypl1 = dyFp8 = dyFp9 . Then, 

the movements of pl2 can be computed by the relation-
ships: dxpl2 = dxpl1 , dypl2 = dypl1 . Finally, the movements 
of all the controlling points are obtained.

5  Discussion

5.1  Extensibility in the Design of the Production 
Patterns

Garment production patterns play pivotal roles by link-
ing fashion design with garment manufacturing. They can 

Fig. 6  General adaptation flowchart for the main panel

Table 8  The movements of controlling points in the front and back panels

Controlling points of the 
front panel

Movement Controlling points of the 
back panel

Movement

Horizontal direction Vertical direction Horizontal 
direction

Vertical direction

Fp1 −0.7100 0 Bp1 0.7100 0

Fp2 −1.0457 −0.9000 Bp2 1.0457 0.9000

Fp3 −1.4710 −1.8000 Bp3 1.4710 1.8000

Fp4 −1.4702 −1.8000 Bp4 1.4702 1.8000

Fp5 −1.5663 −0.9000 Bp5 1.5663 0.9000

Fp6 −1.8070 0 Bp6 1.8070 0

Fp7 0 −0.2564 Bp7 0 −0.2564

Fp8 0 −0.2521 Bp8 0 −0.2521

Fp9 0 −0.2517 Bp9 0 −0.2517
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Fig. 7  The original and production panels

Table 9  The design rules of the production patterns (unit: cm)

Controlling points of 
the original panel

Coordinates Controlling points of the 
production panel

Coordinates

Horizontal 
direction

Vertical 
direction

Horizontal direction Vertical direction

Front panel Fp1 xFp1 yFp1 Fp
′

1
xFp1 + 1 yFp1

Fp2 xFp2 yFp2 Fp
′

2
xFp2 + 1 yFp2

Fp3 xFp3 yFp3 Fp
′

3
xFp3 + 1 yFp3 − 3.5

Fp4 xFp4 yFp4 Fp
′

4
xFp4 − 1 yFp4 − 3.5

Fp5 xFp5 yFp5 Fp
′

5
xFp5 − 1 yFp5

Fp6 xFp6 yFp6 Fp
′

6
xFp6 − 1 yFp6

Fp7 xFp7 yFp7 Fp
′

7
xFp7 − 1 yFp7

Fp8 xFp8 yFp8 Fp
′

1
xFp8 − 1 yFp8 + 1

Fp9 xFp9 yFp9 Fp
′

1
xFp9 + 1 yFp9 + 1

Controlling points of 
the original panel

Coordinates Controlling points of the 
production panel

Coordinates

Horizontal 
direction

Vertical 
direction

Horizontal direction Vertical direction

Back panel Bp1 xBp1 yBp1 Bp
′

1
xBp1 − 1 yBp1

Bp2 xBp2 yBp2 Bp
′

2
xBp2 − 1 yBp2

Bp3 xBp3 yBp3 Bp
′

3
xBp3 − 1 yBp3 − 3.5

Bp4 xBp4 yBp4 Bp
′

4
xBp4 + 1 yBp4 − 3.5

Bp5 xBp5 yBp5 Bp
′

5
xBp5 + 1 yBp5

Bp6 xBp6 yBp6 Bp
′

6
xBp6 + 1 yBp6

Bp7 xBp7 yBp7 Bp
′

7
xBp7 + 1 yBp7

Bp8 xBp8 yBp8 Bp
′

8
xBp8 + 1 yBp8 + 1

Bp9 xBp9 yBp9 Bp
′

9
xFp9 − 1 yBp9 + 1
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be designed by the relationships between the controlling 
points in the production panels and the original panels. For 
instance, if the final coordinates of the Fp8 in the original 
panel (see Fig. 7) were xFp8 and yFp8 , then the coordinates 
of Fp′

8
 will be xFp

�

8 = xFp8 − 1 and yFp
�

8 = yFp8 + 1 . Table 9 
shows the design rules of the production panels.

5.2  Extensibility in the Associate Adaptation 
of the Production Patterns

Based on the relationships of the controlling points in the 
original and production panels, the associate adaptation 
rules of the production patterns can be further defined 
(see Table 9). For example, when the movements of the 
Fp2 in the original panel (see Fig. 6) are dxFp2 = −1.0457 
and dyFp2 = −0.9000 , the movements of Fp′

2
 in the pro-

duction panel are set to dxFp
�

2 = dxFp2 = −1.0457 and 

dyFp
�

2 = dyFp2 = −0.9000 . Finally, the associated adaptation 
rules of the production patterns are presented in Table 10.

5.3  Extensibility in the Development of Interactive 
Garment Pattern Recommendation System

We further developed an interactive pants pattern recom-
mendation system 2022 (IPPRS 2022) using MATLAB 
computer language. In the system, the user (consumer or 
designer) can intuitively input the feature body dimensions 
and determine the pants style and fitness demands using 
the interactive interfaces (see Fig. 8). The output of the 
system is a set of personalized pants production patterns.

With the help of IPPRS 2022, the consumer can con-
veniently express his/her personalized demands that usu-
ally cannot be presented in words accurately. More than 
that, the proposed system can support the pattern designer 
(especially the novice) to put forward accurate design 

Table 10  The associate adjustment rules of the production patterns

Front panel Controlling points of the 
original panel

Movements Controlling points of the 
production panel

Movements

Horizontal direc-
tion

Vertical direc-
tion

Horizontal direc-
tion

Vertical 
direction

Fp1 dxFp1 dyFp1 Fp
′

1
dxFp1 dyFp1

Fp2 dxFp2 dyFp2 Fp
′

2
dxFp2 dyFp2

Fp3 dxFp3 dyFp3 Fp
′

3
dxFp3 dyFp3

Fp4 dxFp4 dyFp4 Fp
′

4
dxFp4 dyFp4

Fp5 dxFp5 dyFp5 Fp
′

5
dxFp5 dyFp5

Fp6 dxFp6 dyFp6 Fp
′

6
dxFp6 dyFp6

Fp7 dxFp7 dyFp7 Fp
′

7
dxFp7 dyFp7

Fp8 dxFp8 dyFp8 Fp
′

8
dxFp8 dyFp8

Fp9 dxFp9 dyFp9 Fp
′

9
dxFp9 dyFp9

Back panel Controlling points of the 
original panel

Movements Controlling points of the 
production panel

Movements

Horizontal direc-
tion

Vertical direc-
tion

Horizontal direc-
tion

Vertical 
direction

Bp1 dxBp1 dyBp1 Bp
′

1
dxBp1 dyBp1

Bp2 dxBp2 dyBp2 Bp
′

2
dxBp2 dyBp2

Bp3 dxBp3 dyBp3 Bp
′

3
dxBp3 dyBp3

Bp4 dxBp4 dyBp4 Bp
′

4
dxBp4 dyBp4

Bp5 dxBp5 dyBp5 Bp
′

5
dxBp5 dyBp5

Bp6 dxBp6 dyBp6 Bp
′

6
dxBp6 dyBp6

Bp7 dxBp7 dyBp7 Bp
′

7
dxBp7 dyBp7

Bp8 dxBp8 dyBp8 Bp
′

8
dxBp8 dyBp8

Bp9 dxBp9 dyBp9 Bp
′

9
dxBp9 dyBp9
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solutions quickly and intelligently, to fulfil consumers’ 
personalized demands. Figure 9 shows a case of the pants 
production patterns generated by IPPRS 2022, correspond-
ing to the design solutions S1 presented in Table 6. The 
proposed system is feasible to generate various pants pro-
duction patterns according to the input parameters.

Compared with the existing garment pattern design meth-
ods, the IPPRS 2022 has the advantages below. First, it helps 
the consumer express their demands more intuitively and 

exactly, so that the communication gap between consumer 
and designer can be greatly narrowed. Second, it enables 
the designers to make patterns easier, more rapid and more 
accurate by integrating the machine learning models into 
the conventional design process. Third, it facilitates fashion 
companies to form a sustainable garment design and devel-
opment process based on 3D digital simulation and machine 
learning-supported human–product interactions.

Fig. 8  Parts of the interfaces of interactive pants pattern recom-
mendation system 2022. a The interactive interface of anthropomet-
ric data acquisition. b The interactive interface of collecting style 

demand on pants silhouette. c The interactive interface of collecting 
style demand on pants length. d The interactive interface of collecting 
fitness demands
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6  Conclusions

In this paper, we put forward a new design approach for cus-
tomized garments towards sustainable fashion. It was based 
on 3D digital simulation and a series of machine learning 
techniques, involving radial basis function artificial neural 
network, probabilistic neural network, genetic algorithms, 
and support vector regression. The proposed approach is 
available to be applied in various classical 3D garment soft-
ware, promoting the implementation level of garment e-MC 
for different fashion brand companies. The proposed design 
method as well as the process for customized garments are 
mainly supported by five design knowledge models. It can 
generate and recommend the most relevant design solution 
for consumers. Meanwhile, the proposed associate adjust-
ment mechanism for garment patterns can dramatically 
reduce the difficulties of garment pattern-making without 
reducing the quality of garment patterns. More importantly, 
it is also able to generate personalized garment production 
patterns that can effectively enhance the linkage of fashion 
design and garment manufacturing which is quite critical 
in garment e-MC towards sustainable fashion. The contri-
butions of this research can be mainly summarized as fol-
lows: (1) providing a feasible solution to resolve the critical 
technical bottleneck of offering quality products to satisfy 
consumer’s personalized demands under the circumstances 
of a limited quantity of available data in garment e-MC; 

(2) presenting potential prospects for sustainable fashion 
by designing quality customized products using 3D simula-
tion and machine learning-based interaction technology; (3) 
offering reliable communication channels and mechanisms 
among products, consumers, and designers using more 
robust and intelligent computational tools; (4) facilitating 
the formation of sustainable manufacturing mode in the 
fashion industry by integrating the proposed approach into 
the advanced clothing assembly line; (5) supporting the form 
of a new generalized fashion product e-MC framework or 
platform by fully and systematically taking human aesthetic 
preferences, ergonomic demands, and product parameters 
into account; (6) boosting the emergence of a new O2O 
(order online and receive services off-line) business model 
in the fashion industry under the scenario of sustainable 
development.

Due to the length limitation of the paper, the proposed 
approach was verified using a real case of leisure pants cus-
tomization only. Nonetheless, the general principles can be 
suitable for various garment styles. The validation of the 
proposed approach in other garment styles has become one 
of our future research works. Meanwhile, as the interac-
tions among products, consumers, and designers are rather 
complicated and influenced by multiple factors (e.g. socio-
cultural backgrounds and human emotions), more affecting 
factors as well as their coupling effects should be taken into 
consideration in the future. Moreover, the performance pro-
motion of the proposed approach through more advanced 
intelligent technologies constitutes one of our crucial future 
research directions.
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